Stylus Studio XML Editor

Table of contents

Appendices

1.2 Benefits of XSL

Benefits of XSL

Unlike the case of HTML, element names in XML have no intrinsic presentation semantics. Absent a stylesheet, a processor could not possibly know how to render the content of an XML document other than as an undifferentiated string of characters. XSL provides a comprehensive model and a vocabulary for writing such stylesheets using XML syntax.

This document is intended for implementors of such XSL processors. Although it can be used as a reference manual for writers of XSL stylesheets, it is not tutorial in nature.

XSL builds on the prior work on Cascading Style Sheets [CSS2] and the Document Style Semantics and Specification Language [DSSSL] . While many of XSL's formatting objects and properties correspond to the common set of properties, this would not be sufficient by itself to accomplish all the goals of XSL. In particular, XSL introduces a model for pagination and layout that extends what is currently available and that can in turn be extended, in a straightforward way, to page structures beyond the simple page models described in this specification.

Paging and Scrolling[top]

Paging and Scrolling

Doing both scrollable document windows and pagination introduces new complexities to the styling (and pagination) of XML content. Because pagination introduces arbitrary boundaries (pages or regions on pages) on the content, concepts such as the control of spacing at page, region, and block boundaries become extremely important. There are also concepts related to adjusting the spaces between lines (to adjust the page vertically) and between words and letters (to justify the lines of text). These do not always arise with simple scrollable document windows, such as those found in today's browsers. However, there is a correspondence between a page with multiple regions, such as a body, header, footer, and left and right sidebars, and a Web presentation using "frames". The distribution of content into the regions is basically the same in both cases, and XSL handles both cases in an analogous fashion.

XSL was developed to give designers control over the features needed when documents are paginated as well as to provide an equivalent "frame" based structure for browsing on the Web. To achieve this control, XSL has extended the set of formatting objects and formatting properties. In addition, the selection of XML source components that can be styled (elements, attributes, text nodes, comments, and processing instructions) is based on XSLT and XPath [XPATH] , thus providing the user with an extremely powerful selection mechanism.

The design of the formatting objects and properties extensions was first inspired by DSSSL. The actual extensions, however, do not always look like the DSSSL constructs on which they were based. To either conform more closely with the CSS2 specification or to handle cases more simply than in DSSSL, some extensions have diverged from DSSSL.

There are several ways in which extensions were made. In some cases, it sufficed to add new values, as in the case of those added to reflect a variety of writing-modes, such as top-to-bottom and bottom-to-top, rather than just left-to-right and right-to-left.

In other cases, common properties that are expressed in CSS2 as one property with multiple simultaneous values, are split into several new properties to provide independent control over independent aspects of the property. For example, the "white-space" property was split into four properties: a "white-space-treatment" property that controls how white space is processed, a "linefeed-treatment" property that controls how line feeds are processed, a "white-space-collapse" property that controls how multiple consecutive spaces are collapsed, and a "wrap-option" property that controls whether lines are automatically wrapped when they encounter a boundary, such as the edge of a column. The effect of splitting a property into two or more (sub-)properties is to make the equivalent existing CSS2 property a "shorthand" for the set of sub-properties it subsumes.

In still other cases, it was necessary to create new properties. For example, there are a number of new properties that control how hyphenation is done. These include identifying the script and country the text is from as well as such properties as "hyphenation-character" (which varies from script to script).

Some of the formatting objects and many of the properties in XSL come from the CSS2 specification, ensuring compatibility between the two.

There are four classes of XSL properties that can be identified as:

  1. CSS properties by copy (unchanged from their CSS2 semantics)

  2. CSS properties with extended values

  3. CSS properties broken apart and/or extended

  4. XSL-only properties

Selectors and Tree Construction[top]

Selectors and Tree Construction

As mentioned above, XSL uses XSLT and XPath for tree construction and pattern selection, thus providing a high degree of control over how portions of the source content are presented, and what properties are associated with those content portions, even where mixed namespaces are involved.

For example, the patterns of XPath allow the selection of a portion of a string or the Nth text node in a paragraph. This allows users to have a rule that makes all third paragraphs in procedural steps appear in bold, for instance. In addition, properties can be associated with a content portion based on the numeric value of that content portion or attributes on the containing element. This allows one to have a style rule that makes negative values appear in "red" and positive values appear in "black". Also, text can be generated depending on a particular context in the source tree, or portions of the source tree may be presented multiple times with different styles.

An Extended Page Layout Model[top]

An Extended Page Layout Model

There is a set of formatting objects in XSL to describe both the layout structure of a page or "frame" (how big is the body; are there multiple columns; are there headers, footers, or sidebars; how big are these) and the rules by which the XML source content is placed into these "containers".

The layout structure is defined in terms of one or more instances of a "simple-page-master" formatting object. This formatting object allows one to define independently filled regions for the body (with multiple columns), a header, a footer, and sidebars on a page. These simple-page-masters can be used in page sequences that specify in which order the various simple-page-masters shall be used. The page sequence also specifies how styled content is to fill those pages. This model allows one to specify a sequence of simple-page-masters for a book chapter where the page instances are automatically generated by the formatter or an explicit sequence of pages such as used in a magazine layout. Styled content is assigned to the various regions on a page by associating the name of the region with names attached to styled content in the result tree.

In addition to these layout formatting objects and properties, there are properties designed to provide the level of control over formatting that is typical of paginated documents. This includes control over hyphenation, and expanding the control over text that is kept with other text in the same line, column, or on the same page.

A Comprehensive Area Model[top]

A Comprehensive Area Model

The extension of the properties and formatting objects, particularly in the area on control over the spacing of blocks, lines, and page regions and within lines, necessitated an extension of the CSS2 box formatting model. This extended model is described in [area_model] of this specification. The CSS2 box model is a subset of this model. See the mapping of the CSS2 box model terminology to the XSL Area Model terminology in [cssbox] . The area model provides a vocabulary for describing the relationships and space-adjustment between letters, words, lines, and blocks.

Internationalization and Writing-Modes[top]

Internationalization and Writing-Modes

There are some scripts, in particular in the Far East, that are typically set with words proceeding from top-to-bottom and lines proceeding either from right-to-left (most common) or from left-to-right. Other directions are also used. Properties expressed in terms of a fixed, absolute frame of reference (using top, bottom, left, and right) and which apply only to a notion of words proceeding from left to right or right to left do not generalize well to text written in those scripts.

For this reason XSL (and before it DSSSL) uses a relative frame of reference for the formatting object and property descriptions. Just as the CSS2 frame of reference has four directions (top, bottom, left and right), so does the XSL relative frame of reference have four directions (before, after, start, and end), but these are relative to the "writing-mode". The "writing-mode" property is a way of controlling the directions needed by a formatter to correctly place glyphs, words, lines, blocks, etc. on the page or screen. The "writing-mode" expresses the basic directions noted above. There are writing-modes for "left-to-right - top-to-bottom" (denoted as "lr-tb"), "right-to-left - top-to-bottom" (denoted as "rl-tb"), "top-to-bottom - right-to-left" (denoted as "tb-rl") and more. See [writing-mode] for the description of the "writing-mode" property. Typically, the writing-mode value specifies two directions: the first is the inline-progression-direction which determines the direction in which words will be placed and the second is the block-progression-direction which determines the direction in which blocks (and lines) are placed one after another. In addition, the inline-progression-direction for a sequence of characters may be implicitly determined using bidirectional character types for those characters from the Unicode Character Database [UNICODE-CD] for those characters and the Unicode bidirectional (BIDI) algorithm [UNICODE-TR9] .

Besides the directions that are explicit in the name of the value of the "writing-mode" property, the writing-mode determines other directions needed by the formatter, such as the shift-direction (used for subscripts and superscripts), etc.

Linking[top]

Linking

Because XML, unlike HTML, has no built-in semantics, there is no built-in notion of a hypertext link. In this context, "link" refers to "hypertext link" as defined in [http://www.w3.org/TR/html401/struct/links.html#h-12.1] as well as some of the aspects of "link" as defined in [http://www.w3.org/TR/xlink/#intro] , where "link is a relationship between two or more resources or portions of resources, made explicit by an XLink linking element". Therefore, XSL has a formatting object that expresses the dual semantics of formatting the content of the link reference and the semantics of following the link.

XSL provides a few mechanisms for changing the presentation of a link target that is being visited. One of these mechanisms permits indicating the link target as such; another allows for control over the placement of the link target in the viewing area; still another permits some degree of control over the way the link target is displayed in relationship to the originating link anchor.

XSL also provides a general mechanism for changing the way elements are formatted depending on their active state. This is particularly useful in relation to links, to indicate whether a given link reference has already been visited, or to apply a given style depending on whether the mouse, for instance, is hovering over the link reference or not.