
 1

Building XQuery with Stylus Studio

Web Service Aggregation and Reporting

 2

Contents

INTRODUCTION .. 3

SCENARIO... 3

WRITING THE SOLUTION IN XQUERY ... 5

REPORTING TO HTML USING XSLT.. 9

SUMMARY .. 10

OTHER RESOURCES ... 10

 3

Introduction
The widespread adoption of XML has profoundly altered the way that information is exchanged within and
between enterprises. XML, an extensible, text-based markup language, describes data in a way that is both
hardware- and software-independent. As such, it has become a standard of choice for a growing number of
Web services and Service Oriented Architectures. With a vast amount of data being published in XML
format by multiple sources, the need has arisen for an easy and efficient means of extracting and
manipulating this information. XQuery has emerged as an ideal way to aggregate data from Web services,
relational databases, and other applications that employ XML.

This article illustrates a scenario in which XQuery is used for aggregating data from multiple sources,
enabling reporting tools such as XSLT to present that information in HTML or other formats as desired.
Sonic Stylus Studio 5.0 is the core technology used in developing this scenario. Sonic Stylus Studio is an
award-winning XML development environment that includes an XSLT editor and debugger, a graphical
XML Schema designer, an XML-to-XML mapper, a WYSIWYG XML-to-HTML designer, and an
advanced XQuery editor and debugger.

Scenario
To illustrate the use of XQuery for aggregating data from multiple sources, we’ll be using real-world data
from a stock-quote Web service, and combining that information with historical company data stored in a
relational database and presented as XML. In this example, the historical data is being enhanced with live
data about the current stock price, which is being retrieved via a Web-service call. Once the data is
aggregated, it can be presented in any number of formats. For the purpose of this article, we’ll use Sonic
Stylus Studio to display the data in HTML using XSLT.

Figure 1 shows an end-to-end overview of the scenario. We’ll work through the various stages in more
detail throughout this article.

Figure 1: Using XML for data aggregation and reporting

There are two XML inputs in this example: the relational database (RDBMS) and the Web service. For the
RDBMS, Microsoft Access is being used to automatically format the data into XML. This conversion can
also be performed by Sonic Stylus Studio’s built-in ADO-to-XML Document Wizard. An excerpt of the
converted data from the RDBMS is seen in Figure 2.

 4

Figure 2: Historical stock data retrieved from Access database

The other source of XML data in this example is an actual real-time stock-quote Web service, which is
located at:
http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL#StockQuotesSoap

The result of executing this Web service is a SOAP response that can be seen in Figure 3. SOAP (Simple
Object Access Protocol) is the messaging protocol that allows Web service applications to talk to each
other. When a Web service is identified as an input source, Sonic Stylus Studio transparently invokes the
Web service as part of any operation in which that data source is being used.

Figure 3: Sample SOAP response from stock-price Web service

In order to extract and aggregate the XML data from both the Microsoft Access database and the Web
service, we’ll build a common information model in XML. This will enable us to more easily manipulate
the results of the data aggregation for reporting purposes. Separating presentation from data extraction

 5

enables us to develop reporting algorithms independently, which makes for a more easily maintainable
system. The schema for the common information model as used for the stock data results is depicted in
Figure 4.

Figure 4: Common information model for stock data aggregation

Writing the solution in XQuery
Because XQuery was designed for processing XML, it’s a logical choice for this scenario. Furthermore,
XQuery easily supports the notion of “joins,” which allows for two or more data sources to be combined
based on query conditions. Other language options include:
• Using a high-level language like Java and performing the parsing and manipulation of the data using

JDOM
• Using XSLT

The major difference is that with XSLT, the join logic is accomplished by saving the stock symbol in a
variable in an outer loop when processing the SOAP stock-ticker information, and then in an inner loop
testing that variable in an “xsl:if” against each stock element of the historical stock data. When the “xsl:if”
evaluates to true, Annual_Revenues and City are output.

For the XQuery solution, we first build a cross-product of the elements from the two XML files, and then
limit the result by returning only those items from both the Access database and SOAP sources that match.
The complete program is shown below:

declare namespace soap = "http://schemas.xmlsoap.org/soap/envelope/"
declare namespace a = "http://swanandmokashi.com/"

<Result>
{

for $Quote in
/soap:Envelope/soap:Body/a:GetStockQuotesResponse/a:GetStockQuote
sResult/a:Quote,

 $Report2003 in document(“Report2003.xml”)/dataroot/Report2003
 where $Report2003/Symbol = $Quote/a:StockTicker
 return
 <CompanyData>
 <Name_of_Company>
 {$Report2003/Company/text()}
 </Name_of_Company>
 <Ticker_Symbol>
 {$Report2003/Symbol/text()}
 </Ticker_Symbol>

 6

 <Current_Stock_Value>
 {$Quote/a:StockQuote/text()}
 </Current_Stock_Value>
 <Annual_Revenues>
 {$Report2003/Rev/text()}
 </Annual_Revenues>
 <HeadQuarters>
 <City>
 {$Report2003/City/text()}
 </City>
 </HeadQuarters>
 </CompanyData>
}
</Result>

Let’s walk through the program line by line. The first two lines of the program are namespace declarations,
which are used for accessing the data contained within a SOAP document.

 declare namespace soap = "http://schemas.xmlsoap.org/soap/envelope/"
 declare namespace a = http://swanandmokashi.com/

These declarations are required because SOAP requests contain two distinct namespaces: one that describes
the structure of the message, and one that describes the payload of the message – which, in this case, is the
real-time stock information. The two namespaces prevent naming conflicts. The elements referring to the
SOAP components of the message are accessed with a “soap:” prefix (/soap:Envelope/soap:Body), whereas
elements that are part of the embedded message that is transferred as part of the Web service response use
the “a:” prefix ($Quote/a:StockTicker).

The next two lines provide a clue as to how the program is going to operate:

 <Result>
 {

When the XQuery starts to execute, it builds an XML tree starting with the <Result> element. The squiggly
bracket “{” that follows is the start of a processing block that, when completed, will have its output added
to the XML tree.

The bulk of the processing of the program occurs in the “for/where” loop.

 for $Quote in
/soap:Envelope/soap:Body/a:GetStockQuotesResponse/a:GetStockQuotesResul
t/a:Quote,
 $Report2003 in document(“Report2003.xml”)/dataroot/Report2003
 where $Quote/a:StockTicker = $Report2003/Symbol

The “for” loop iterates over the SOAP message over the “a:Quote” repeating element. Each time through
the loop, it assigns the “a:Quote” element to the “$Quote” variable. Similarly, for each of the “Report2003”
repeating elements from the “Report2003.xml” file, the program assigns the element to $Report2003. Each
time through the loop, the “where” clause executes and when it evaluates to true, it lets the next line of the
XQuery run.

Note that an XQuery processor can in many cases optimize the execution of a query such as this. For
instance, it can take the result of the “$Quote” variable and use that to more optimally read from the
“Report2003.xml” document, creating or using an existing index if necessary. The XQuery processor could
also read the “Report2003.xml” document just once and create an in-memory hash-table of the structure so

 7

that during the next iteration through the loop, the “$Quote/a:StockTicker = $Report2003/Symbol”
comparison can be done very efficiently.

Let’s take a look at the state of the “$Quote” and “$Report2003” variables after one run through the loop:

Continuing through the code, once a “where” condition is satisfied, the return clause runs. Here’s what the
first few lines of the return look like:

 return
 <CompanyData>
 <Name_of_Company>
 {$Report2003/Company/text()}
 </Name_of_Company>

Here, an XML result tree is being built as part of the return operation, with <CompanyData> at the top-
level, and <Name_of_Company> as a nested sub-element. The value being evaluated by the query is
defined within the squiggly brackets. Note that you must specify the datatype being retrieved [here, it is
“text ()”]; otherwise, the XQuery copies just the “$Report2003/Company” element – and not the contents –
to the destination XML result tree.

As part of Sonic Stylus Studio’s XSLT debugger, the intermediate result of returns is made available in the
product’s “Variables” window. This is especially helpful for developing XQuery programs because, unlike
with languages like XSLT, the output isn’t generated immediately. Therefore, this tool allows for quickly
looking at the intermediate state during execution.

Skipping past the rest of the elements in the return statement, we see the following:

 }
 </Result>

 8

The end squiggly bracket “}” takes the XML result tree that was generated (starting with the begin squiggly
bracket “{”) and adds it to the outer XML result tree. Finally, the end tag of the <Result> is added to the
XML result tree and the XQuery program completes.

Achieving the result
When the XQuery is executed within Sonic Stylus Studio, the XML result tree is output to the Stylus
Preview Window. From there, sorting the result according to any element from the input can be useful, and
creating an extension to accomplish that is an easy matter. To sort the result in alphabetical order by
company name, for example, simply insert an “order by” statement after the “where” in the
“for/let/where/return” loop. We can then sort the output by company name with the following loop:

for $Quote in
/soap:Envelope/soap:Body/a:GetStockQuotesResponse/a:GetStockQuotesResul
t/a:Quote,
 $Report2003 in document("Report2003.xml”)/dataroot/Report2003
where $Quote/a:StockTicker = $Report2003/Symbol
order by $Quote/a:CompanyName
return
…

While the code to produce the above XQuery is fairly straightforward to write, Sonic Stylus Studio
provides a mapping tool that simplifies the building of basic maps. Building the XQuery as demonstrated in
this article can be accomplished in less than a minute using this mapping tool.

The visual representation of the XQuery is seen in Figure 5. The “for/let/where” loop is constructed by
dragging the repeating elements to a FLWOR icon (where the “for” clause is implemented); the “where”
clause is implemented by creating an “equal” icon and dragging the elements for both sides of the “equal”
to that icon. The “for/let/where” loop is completed by hooking the “equal” to the FLWOR and then
dragging the output of the FLWOR to the repeating element of the target document. After creating the
structure of the “for/let/where” loop, elements from the source schema can simply be dragged and dropped
onto the target schema.

Figure 5: Sonic Stylus Studio’s XQuery Visual Mapper

 9

Figure 6 shows a sample of resulting data produced by this XQuery:

Figure 6: Result of Xquery-based data aggregation

Reporting to HTML using XSLT
Once the XML-based common information model is populated, there are many options for presenting that
information to the user. To complete this example, we’ll create a style-sheet using Sonic Stylus Studio’s
WYSIWYG XML-to-HTML designer to present the data as HTML. Other options include using a
reporting tool such as Crystal Reports, or processing the XML with another language such as Visual Basic
or Java and then writing custom reports from that. Another option, of course, is simply to use XQuery to
generate HTML.

This was generated by Sonic Stylus Studio:

Sample Stock Report

Company Name Ticker Stock Price Annual
Revenue HeadQuarters

Progress Software PRGS 19.29 280.5 Bedford
Int'l Business Machines Corp IBM 86.32 81200 Armonk
BEA Systems, Inc. BEAS 10.29 934.1 San Jose

 10

Summary
Web services provide a wealth of new information that is described and made available to applications in
XML. Often, data analysis requires information from multiple sources, which means that Web service data,
for example, needs to be enhanced or aggregated with XML data obtained from other data sources.

Using Sonic Stylus Studio, we proved it to be quick and easy to create an XQuery that efficiently
aggregates data from historical stock data stored in a relational database with live stock-quote data provided
from a Web service. A common information model was used for the target of the aggregation, and the
result was translated into HTML for presentation purposes.

Other Resources
All of the sources used in this article can be found in www.StylusStudio.com/articles/stock-aggregation.zip.

The tool used for creation of this article is Sonic Stylus Studio. It can be downloaded from
http://www.sonicsoftware.com/products/additional_software/stylus_studio/index.ssp.

A good introductory article on XQuery can be found at:
http://www.xml.com/pub/a/2002/10/16/xquery.html.

The World Wide Web Consortium website use-case document has numerous and useful examples on the
use of XQuery. See http://www.w3.org/TR/xquery-use-cases/.

North America Corporate Headquarters
Sonic Software Corporation, 14 Oak Park, Bedford, MA 01730 USA , Tel: 781 999 7100 or toll free 866-GET-SONIC,
Fax 781 999 7202

Europe, Middle East & Africa Corporate Headquarters
Progress Software Europe B.V., P.O. Box 8644, Schorpioenstraat 67, 3067 GG Rotterdam, The Netherlands, Tel: +31 10 286
5700, Fax: +31 10 286 5777

Asia Pacific Corporate Headquarters
Progress Software Pty. Ltd., International Business Park, #03-11 The Synergy, Singapore 609917, Tel: +65 6563-1500, Fax:
+65 6563-1511

Sonic Stylus Studio is a trademark or registered trademark of Sonic Software Corporation in the U.S. and other countries.
Any other trademarks or service marks contained herein are the property of their respective owners..

www.sonicsoftware.com

Specifications subject to change without notice.
© 2003 Sonic Software Corporation.
All rights reserved.
June 2003

