SQL/XML, XQuery, and Native XML
Programming L anguages
Jonathan Robie

Abstract

The abstract was not availabl e at the time the proceedings were created. Please check an updated
version [http://www.idealliance.org/papers/dx_xml03/html/abstract/05-02-01.html] of the paper
abstracts at the conference proceedings web site.

Table of Contents

I 1o To (Ui 1o o RO RSP UPP PP SPPPTTRRPPPTN 1
2. XML and Relational - OPPOSItES ATFECEieeiieeeei et e e e et e et e e e e eeaas 2
3. XML and Relational: FOUr APPrOBCIRESiue ittt e e e et et e e e e e et e eaaaaeees 4
4. SQLIXIML et e et e et b e e et et bbb e e e e e e rabaan s 4
4.1 XML Publishing FUNCLIONSuuiieiei et e e e 4
N B TS Y L I B T - 1Y o = PP 7
4.3. SQL/XML MaEPPING RUIES ... ettt et e e et e e e e e e et e et e eaa s 8
5. XQuery and Native XML Programiming e et e et e e e e e e et eea e et e eenaeennaas 10
5.1. Native XML ProgramiMingoceue oot e et e e e e et e e et e e e e e et e eean e aeanaaeees 10
5.2. XQuery and SQL/XML VIBIWSuniiieei ettt e e e e et e et e ean e eees 14
5.3. Spanning Sources: XQuery, Web Messages, and Databasescoevuvveiiiiiiiiiiecieeeieeeeeen 16
5.4. XQUErY fOr JAVA (JSR 225) ...ttt et 17
6. SQL/XML and XQuery: Dowe need DOth?o e 17
(211 o] Te o r="o] |V PSPPI 18

1. Introduction

Most web applications have connections to databases and use XML to transfer data from the database to the web
application and vice versa. Every major database vendor has proprietary extensionsfor using XML with relational
databases, but they take completely different approaches, and there is no interoperability between them. Many
developers need to be able to write applications that work for databases from multiple vendors.

XQuery[XQuery] and SQL/XML[SQL/XML] are two standards that use declarative, portable queries to return
XML by querying data. In both standards, the XML can have any desired structure, and the queries can be arbit-
rarily complex. XQuery is XML-centric, while SQL/XML is SQL-centric.

SQL/XML isan extension of SQL that is part of ANSI/ISO SQL 2003. It lets SQL queries create XML structures
with afew powerful XML publishing functions. For aSQL programmer, SQL/XML easy to learn becauseit involves
only afew small additions to the existing SQL language. Since SQL is a mature language, there are alot of tools
and infrastructure for SQL . For instance, SQL/XML uses JDBC to return results, and thereis currently no equivalent
standard API for XQuery. SQL also hasfunctionaity not yet found in XQuery, such as updates or stored procedures.

Note

SQL/XML is completely different from Microsoft's SQLXML, a proprietary technology used in SQL
Server. The similarity in names has caused a great deal of confusion in the industry.

Proceedings by deepX Ltd. 1

http://www.idealliance.org/papers/dx_xml03/html/abstract/05-02-01.html
http://www.idealliance.org/papers/dx_xml03/html/abstract/05-02-01.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

XQuery is acompletely new query language that uses XML as the basis for its data model[DataM odel] and type
system [XQuery] [XQuerySemantics]. It is being developed in the XML Query Working Group[XQWG], which
isapart of theWorld Wide Web Consortium. In this paper, we characterize XQuery asa"Native XML Programming
Language". XQuery isbased on XML in the sameway that SQL isbased on therelational model or object oriented
languages are based on the object oriented model - XML iscentral toitstype system, in which elements and attributes
arejust as fundamental asintegers and strings. Although X Query per se has no concept of relational data, several
products and many projects provide ways to query relational data using an XML view of the database, and the
need to make this possible has influenced the design of XQuery throughout its development. X Query allows you
to work in the XML world no matter what type of data you're working with - relational, XML or object data.
XQuery isideal for native XML programming. When used with XML views of relational data, it isalso ideal for
queries data that must represent results as XML, to query XML stored inside or outside the database, or to span
relational and XML sources.

For queries based only onrelational data, SQL/XML and XQuery have substantially similar functionality. However,
theway in which agiven task isdoneis quite different, since SQL/XML operates on the borderline between SQL
and XML, and XQuery livesinapurely XML world. Even when the dataisall relational, the two languages appeal
to very different audiences - SQL/XML is very much an extension of SQL, designed for SQL programmers, and
XQuery takes a purely XML view of the world. For queries that span relational and XML sources, XQuery has
important advantages.

This talk uses a series of concrete queries written in each language to show the advantages of each. It explains
why we need both languages, discussing the ways in which the languages differ and in which they overlap. It also
explores the role of SQL/XML mappings as away of creating XML views for XQuery.

2. XML and Relational - Opposites Attract

XML and relational databases are tightly wed in most web applications, but alook at the two models shows that
itisan unlikely marriage - though anecessary one. Therelational model is based on two dimensional tableswhich
have neither hierarchy nor significant order. XML is based on trees in which order is significant. In the relational
model, neither hierarchy nor sequence may be used to model information; in XML, hierarchy and sequence are
the main ways to represent information. Although this is one of the more fundamental differences between the
two models, it is by no means the only one.

In many environments, the same information is represented in relational databases when it is stored or queried,
but in XML when it is exchanged or displayed on web pages. These representations are often completely different
due to the differences in the models.

Onweb pages, XML isuseful because the structure of XML closely matchesthe structure used to display the same
information in HTML. If you look at web pages, they often use a distinctly hierarchical structure to present data
for users - after all, users don't want to look at a bunch of tables and do joinsin their head. But most of the data
for these web pages comes from relational databases, and needs to be converted to appropriate XML hierarchies.

For web messages, the format of aweb message is often specified by a standards organization or atrade partner,
and these formats are generally hierarchical. Again, the data for a web message generally comes from relational
data, and the consumer of aweb message often needs to put datainto arelational database.

For instance, suppose a consulting company needs to represent a set of projects and the companies for whom the
projects are being done. In arelational database, this might be represented by the following tables:

Proj ects

1 Medusa 1
2 Pegasus 4
8 Typhon 4
10 Sphi nx 5

Proceedings by deepX Ltd. 2

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

Cust oner s
Custld Nane Gty
1 Woodwor ks Bal ti nore
2 Sof t ware Sol uti ons Bost on
3 Food Supplies New Yor k
4 Har dwar e Shop Washi ngt on
5 Books I nc. New O | eans

In SQL, if we want to see the projects associated with each customer, we would do the following query:

sel ect *

from Custonmers c, Projects p
where c. Custld = p.Custld
order by c.Custld, p.Projld

Here is the output of the above query:

Custld Cust Nane Cty Projld Pr oj Nane
1 Wyodwor ks Bal ti nore 1 Medusa
4 Har dwar e Shop Washi ngt on 2 Pegasus
4 Har dwar e Shop Washi ngt on 8 Typhon
5 Books I nc. New Ol eans 10 Sphi nx

Suppose we want to trandate thisinformation into XML for use on aweb page, in adocument, or in aweb message.
Like most XML applications, we will leverage the hierarchy of XML to express relationships, listing the projects
for each customer within the element that represents the customer:

<?xm version="1. 0" encodi ng="UTF-8"?>
<cust oner s>
<custoner id="1">
<name>Wodwor ks</ nane>
<city>Bal ti more</city>
<pr oj ect s>
<proj ect id="1"><nanme>Medusa</ name></ proj ect >
</ proj ect s>
</ cust oner >
<custoner id="4">
<name>Har dwar e Shop</ nane>
<ci t y>Washi ngton</ci ty>
<pr oj ect s>
<proj ect id="2"><name>Pegasus</nane></pr oj ect >
<proj ect id="8"><nanme>Typhon</ name></ proj ect >
</ proj ect s>
</ cust oner >
<l-- ' SNIP 'l -->
</ cust oner s>

Note that in the original SQL tables, each customer is represented only once. This is also true of the XML. The
SQL result set, however, contains multiple rowsfor agiven customer if that customer is associated with more than
one project, and these rows contain duplicate information. Trand ating thisresult set into the desired XML istedious
for the programmer. And just as a single relational database may be used with an infinite number of queries, it

Proceedings by deepX Ltd. 3

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

may al so be used to create an infinite number of XML documentswith different structures. Today, many program-
mers spend a great deal of time doing this kind of trandlation.

3. XML and Relational: Four Approaches

XML applications that use relational data can choose from four approaches, each with distinct advantages and
disadvantages. The first three of these are compared in some detail, with code samples, in [SQL/XML-JDBC].

The programmer can use JDBC or ODBC together with SAX or DOM and perhaps XSLT to transform the results
of SQL queriesto XML. For instance, the program might first query for customers, then perform an additional
query to find the projects associ ated with each customer. Thisisinefficient because of the number of queriesrequired.
Another approach would be to use SQL to create atable that lists customers and their projects, and pick through
the rowsto determine when arow represents a new customer. This requires more code, but is more efficient. Both
of these approaches require significant amounts of tedious code, but they are often used when database independence
isimportant.

The programmer can use the XML extensions provided by the major database vendors. These are based on several
different approaches. Some of these are smpler to use or maintainable than others, but they all make the task
easier. However, since these extensions are all proprietary, they are not an option when a database-independent
solution is needed.

The programmer can use SQL/XML, which is part of SQL 2003. For a SQL programmer, this approach requires
little new learning - a small set of XML publishing functions have been added to SQL to allow queries to create
any desired XML structure. This approach will be explored with examplesin the next section. SQL/XML isbeing
supported by Oracle and IBM, but not by Microsoft. Database-independent implementations of SQL/XML are
also available, and can be used with any major relational database. SQL/XML can be used with traditional database
APIs such as JDBC.

The programmer can use XQuery, a native XML query language. Since XQuery is a new language, it requires
more learning for SQL programmers, but it islikely to be more natural for XML programmers. Unlike SQL/XML,
XQuery is optimal for processing XML, and it is also particularly good for applications that must process XML
together with relational data, with full support for XML. Most of the major database vendors intend to support

XQuery. Thefirst standardized API for XQuery, XQuery for Java (JSR 225), is now being developed under Java
Community Process, and is expected to be available shortly after the X Query Recommendation is released.

4. SQL/XML

SQL/XML refersto the XML extensions of SQL. These are developed by INCITS H2.3, with participation from
Oracle, IBM, Microsoft (which does not plan to implement SQL/XML), Sybase, and DataDirect Technologies. In
SQL 2003, these extensions include:

» XML Publishing Functions
e The XML Datatype
* Mapping Rules

The XML Publishing Functions are the part that are directly used in a SQL query. The XML Datatype governs
the result of aquery, and the Mapping Rules determine how SQL data or metadata is represented as XML.

4.1. XML Publishing Functions

The XML Publishing Functions allow SQL to create any desired XML structure. They are part of SQL 2003, and
can be used in norma SQL expressions. Here are the XML publishing functions of SQL 2003:

xmlelement() Creates an XML element, allowing the name to be specified.

Proceedings by deepX Ltd. 4

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

SQL/XML, XQuery, and Native XML
Programming Languages

xmlattributes() Creates XML attributes from columns, using the name of each column as the name of
the corresponding attribute.

xmlroot() Creates the root node of an XML document.

xmlcomment() Creates an XML comment.

xmipi() Creates an XML processing instruction.

xmlparse() Parses a string as XML and returns the resulting XML structure.

xmiforest() Creates XML elements from columns, using the name of each column as the name of the

corresponding element.

xmlconcat() Combines a list of individual XML values to create a single value containing an XML
forest.
xmlagg() Combines a collection of rows, each containing a single XML value, to create a single

value containing an XML forest.

Let's compare atraditional SQL query with one that uses an XML publishing function. Here is atraditional SQL
guery that shows customers and their associated projects:

sel ect c.Custld, c.Nanme as Cust Nanme
fromcustonmers c

Hereisisan excerpt of the result:

Custld Cust Nane

1 Wodwor ks

4 Har dwar e Shop

6 Phot o Shop

8 Conput er Supplies

Now let'swrap the result in XML elements using xmlelement(), one of the publishing functions:

sel ect xm el ement (name " Custoner"”,
xm el enent (name "Custld", c.Custld),
xm el enent (nanme " Cust Nane", c.Nane)
xm el enent (name "City", c.Cty))
from Custoners ¢

Each row in the result contains one Customer element. A Customer element looks like this:

<Cust omer >
<Cust | d>1</ Cust | d>
<Cust Nanme>Wbodwor ks</ Cust Nanme>
<City>Baltinore</Cty>

</ Cust oner >

xmiforest() is an XML publishing function that creates elements from a list of columns, using the name of the
column as the name of the element. Using xmiforest() simplifies many queries significantly. For instance, the
following query is equivalent to the previous one:

Proceedings by deepX Ltd. 5

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

sel ect xm el ement (name " Custoner"”,
xm forest(c.Custld, c.Nane as CustNane, c.City))
from Custoners ¢

Now suppose we want to show customers and the projects associated with them. Thisis easily done with the fol-
lowing SQL query:

sel ect *

from Custonmers c, Projects p
where c. Custld = p.Custld
order by c.Custld, p.Projld

However, the result of this query isthat shown in the CustomerProject table in the previous section, with one row
for each Customer/Project pair. If acustomer is associated with more than one project, there will be arow for that
customer for each project. Hereisa SQL/XML query that creates the XML equivalent to that table:

sel ect xm el ement (nanme " CustonerProj",
xm forest(c.Custld, c.Nane as CustNane, p.Projld, p.Nanme as Proj Nane))
from Custoners c, Projects p
where p. Custld=c. Custld
order by c.Custld

Here are the results of this query:

<Cust orer Pr oj >
<Cust | d>1</ Cust | d>
<Cust Nane>Wbodwor ks</ Cust Nane>
<Proj 1 d>1</ Proj | d>
<Pr oj Nane>Medusa</ Pr oj Nane>
</ Cust oner Pr oj >
<Cust omner Pr oj >
<Cust | d>4</ Cust | d>
<Cust Nane>Har dwar e Shop</ Cust Nane>
<Proj | d>2</Proj | d>
<Pr oj Nane>Pegasus</ Pr oj Nane>
</ Cust oner Pr oj >
<Cust omner Pr oj >
<Cust | d>4</ Cust | d>
<Cust Nane>Har dwar e Shop</ Cust Nane>
<Proj | d>8</ Proj | d>
<Pr oj Nane>Typhon</ Pr oj Nane>
</ Cust oner Pr oj >

Thisisastraightforward XML trandation of the that a SQL result set shown in the previous section, but for most
XML applicationsit is not what we would want. Instead, we want to represent each customer once, with alist of
that customer's projects, as shown in the XML output in the previous section. In SQL/XML, this can be done by
using a sub-query. Here is a subquery that retrieves the projects associated with each customer. In this subquery
we use xmlattributes(), an XML publishing function that creates attributes within an element. The names of the
attributes are taken from the names of the columns.

(sel ect xm el ement (nanme proj ect,
xm attributes(p.Projld as id),
xm forest (p. Nane as nane))
fromProjects p
wher e p. Cust | d=c. Cust|d)

Proceedings by deepX Ltd. 6

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

Here is the output of the above sub-query when c.Custld is 4:

<project id='2">
<name>Pegasus</ nane>

</ proj ect >

<project id='8" >
<nane>Typhon</ name>

</ proj ect >

This output contains two rows, with one element in each row. Subqueriesin SQL/XML are allowed to return only
one row; therefore, to return more than one row of valuesin a SQL/XML subquery, they must be combined to
form asingle value. xmlagg() is an XML publishing function that produces a forest of elements by collecting the
XML valuesthat are returned from multiple rows and concatenating the values to make one value. Hereisaquery
that uses the above subquery to create the XML output from the previous section:

sel ect
xm el enent (name cust oner,
xm attributes(c.Custld as id),
xm forest(c. Nane as nane, c.City as city),
xm el enent (name proj ects,
(sel ect xm agg(xm el ement (nane proj ect,
xm attributes(p.Projld as id),
xm forest (p. Nane as nane)))
fromProjects p
where p. Custld=c.Custld))) as "custoner-projects"”
from Custoners c¢

The above query illustrates a very common pattern used to create XML hierarchies using SQL/XML.

4.2. The XML Datatype

The XML Datatypeisadatatypeinthe sameway that integer, date, or CLOB are datatypesin SQL. Since SQL/XML
allows a query to create XML instances, there must be a datatype that corresponds to these instances.

It is anticipated that the XML Datatype will be supported in JIDBC 4.0. It istoo early to say exactly how it will be
used in that specification, but it is likely that it will retrieve XML values much like other values, and that XML
values can beretrieved astext, DOM, or SAX events. Thisisthe approach currently taken by DataDirect Connect
for SQL/XML. To illustrate this, let's use a SQL/XML query to create a table with two columns, an integer con-
taining the Custld and an XML column containing the XML output from the previous query. Here is the query:

sel ect c. Custld,
xm el enent (name cust oner,
xm attributes(c.Custld as id),
xm forest(c. Nane as nane, c.City as city),
xm el enent (name proj ects,
(sel ect xm agg(xm el ement (nane proj ect,
xm attributes(p.Projld as id),
xm forest (p. Nane as nane)))
fromProjects p
where p. Custld=c. Custld))) as "custoner-projects"”
from Custoners c¢

Suppose the above query isin a string called sglxml String. Then the following Java code can be used to execute
the query and retrieve values.

Proceedings by deepX Ltd. 7

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

St at ement st at enent =con. cr eat eSt at enent () ;
Resul t Set rs=stat ement . execut eQuery(sqgl xm String);
whil e(rs. next())

int id=rs.getlnt(1);
com ddt ek. j dbc. j xtr. XM.Type xm C=
(com ddt ek. j dbc. jxtr. XM.Type) rs. get Obj ect (2);
org. wdc. dom Docunent doc=xmni C. get DOV) ;
doSonet hi ngUsef ul (i d, doc);

}

The XML Type also plays a second important role - relational databases now routinely store XML in individual
column, and the XML Type provides a standard type for such columns, which isuseful both in SQL and in JDBC.

4.3. SQL/XML Mapping Rules

The XML publishing functions use SQL values to create XML values, and these XML values have W3C XML
Schema types. When we discussed the XML publishing functions, we did not address specifically how the XML
representation is determined. The mapping rules of SQL/XML describe in excruciating detail how SQL values
can be mapped to and from XML values, and how SQL metadata can be mapped to and from W3C XML Schemas.
Togiveaflavor for thelevel of detail in which thisis specified, here arethe equivalent headingsfrom the SQL/XML
specification's table of contents:

» Mapping SQL character setsto Unicode.
e Mapping SQL <identifier>sto XML Names.

» Mapping SQL datatypes (as used in SQL-schemas to define SQL -schema objects such as columns) to XML
Schema data types.

* Mapping values of SQL datatypesto values of XML Schema data types.

e Mapping an SQL table to an XML document and an XML Schema document.

* Mapping an SQL schemato an XML document and an XML Schema document.
» Mapping an SQL catalog to an XML document and an XML Schema document.
e Mapping Unicodeto SQL character sets.

* Mapping XML Namesto SQL <identifier>s.

These mappings can be parameterized in several ways, including the target namespace for the result, whether to
handle nulls using xsi:nil or absence, and whether to map atable to asingle element or aforest of elements. Here
isan XML representation of the Customers table shown earlier, using asingle el ement for each table and no target
namespace:

<nyschena>

<Cust omrer s>
<r ow>
<Cust | d>1</ Cust | d>
<Nane>Wodwor ks</ Nanme>
<Addr ess>Bal ti nor e</ Addr ess>
</ row>
<r ow>

Proceedings by deepX Ltd. 8

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

SQL/XML, XQuery, and Native XML
Programming Languages

<Cust | d>2</ Cust | d>
<Nane>Sof t war e Sol uti ons</ Nane>
<Addr ess>Bost on</ Addr ess>
</ row>
<l-- 1L SNNP Il -->
</ Cust oner s>
<nyschena>

Hereisan XML representation of the same table using aforest of elements to represent each table:

<nyschenma>

<Cust oner s>
<Cust | d>1</ Cust | d>
<Name>Whodwor ks</ Nane>
<Addr ess>Bal t i nor e</ Addr ess>

</ Cust oner s>

<Cust omer s>
<Cust | d>2</ Cust | d>
<Name>Sof t war e Sol uti ons</ Nane>
<Addr ess>Bost on</ Addr ess>

</ Cust oner s>

<nyschenma>

These mappings are also defined on the metadatalevel. For instance, SQL/XML defines how the datatypes of SQL
are represented in the equivalent XML Schema Each SQL type is derived from an equivalent built-in W3C XML
Schema type. Where needed, facets are used to represent constraints added to those of the base type:

<xsd: si npl eType nane="| NTEGER" >
<xsd:restriction base="xsd:int" />
</ xsd: si npl eType>

<xsd: si npl eType nanme="CHAR 50" >
<xsd:restriction base="xsd:string">
<xsd: | ength val ue="50"/>
</xsd:restriction>
</ xsd: si npl eType>

As mentioned above, there are two ways to represent null values. Suppose the City column may have null values.
Hereisarow in the Customer's table that represents a null value using the first strategy, a nilled element:

<Cust oner s>
<r ow>
<Cust | d>1</ Cust | d>
<Name>Whodwor ks</ Nane>
<Address xsi:nil="true" />
</ row>
<l-- Il SNIP I'l'l -->

Hereisarow that uses the second strategy, an absent element:

<Cust omrer s>
<r ow>
<Cust | d>1</ Cust | d>

Proceedings by deepX Ltd. 9

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

<Name>Wodwor ks</ Nane>
</ row>
<l-- Il SNIP Il -->

5. XQuery and Native XML Programming

The XQuery language was designed for querying or processing XML. Just as atraditional SQL query takes a set
of tables as input and returns an XML table as its result, XQuery takes sequences of XML nodes as input and
evaluates to a sequence of XML nodes. However, from the very beginning, XQuery was designed to allow XML
views of non-XML data, aswell as serialized forms of non-XML data. Thereason for thisissimple: XML is used
to represent almost any conceivable kind of information, and it is easiest to integrate information if it is given a
common View.

If everything lookslike anail, all you need is ahammer. Conventional Internet applications often store and query
data using SQL, process data using Java or C#, and exchange dataas XML. Using XQuery, it is possible to store,
query, process, and exchange data as XML. This eliminates some of the mismatches that cause complications
when working with XML in other environments.

5.1. Native XML Programming

XQuery isalanguage designed for integrating datafrom multiple sources, including XML sources like documents
or web messages and databases. It does this by leveraging the ability of XML to model virtually any kind of data.
To query anything with XQuery, it must be presented as though it were XML, either by serializing it as XML or
by creating an XML view of the data through some form of middleware. For relational data, most systems use the
SQL/XML mappings for the XML view, since they are quite suitable and have been specified in detail .

XML isthe basis of XQuery's type system and data model. The fundamental types of XQuery include the kinds
of nodesfound in XML documents: document nodes, el ements, attributes, processing instructions, comments, and
text nodes. XQuery also supports the built-in datatypes of W3C XML Schema for representing integers, strings,
dates, and other datatypes - these built-in datatypes are predefined in X Query, and are available with or without a
schema.

Most modern programming languages provide some form of complex user-defined types, such as structures or
objects. In XQuery, the only complex types are XML documents, elements, attributes, and W3C XML Schema
complex types. Thereisno need to write a schemato create and manipulate complex XML structuresin XQuery.
However, if a query needs to ensure consistent use of the types in a schema, a schema may be imported into a
query. This has an effect analogous to importing structure or class definitions in an object oriented language.

Programs tend to revolve around data, and the complex datatypes used in a language have a profound effect on
theway that alanguageisused. Asaresult, languages are sometimesidentified by the way they represent complex
data; for instance, there are object-oriented languages and relational query languages. In this sense, XQuery can
be considered Native XML Programming Language. XSLT and XPath are also Native XML Programming Lan-
guages. Most other languages used to process XML, including Java, C#, Perl, and Python are not. SQL/XML is
fundamentally an extension to arelational query language, providing a bridge to XML.

The concept of aNative XML Programming Language is new, and many XML programmers are used to thinking
of XML interms of the constructs used in the languages with which they process XML. On XML-related mailing
listsit is reasonably common to see beginners assert that XML isfundamentally relational or object-oriented, and
even sophisticated XML programmers have been known to assert that XML isjust text. In fact, the phrase "XML
is Unicode with pointy brackets' has come to identify avocal part of the XML community.

5.1.1. XML isnot Objects!

An XML document can be represented using objects, and thisis precisely the approach taken by DOM and JDOM.
An XML parser can be used to create an appropriate object representation of an XML document without involving
the programmer. However, the fundamental types of XML are not fundamental in object oriented languages, so
casting and conversion is frequently required. Similarly, the basic notions of hierarchy and containment are not

Proceedings by deepX Ltd. 10

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

directly supported in the object oriented model, so explicit navigation is often required. This causes significant
work for the programmer.

Adam Bosworth pointed this out with the following example[Bosworth]. Suppose a programmer wantsto compute
price/earnings ratios from an XML feed. Anindividua stock might be represented as follows:

<st ock>
<name>Ci ndy' s Snowshoes</ nane>
<ti cker >NASDAQ RAKD</ti cker >
<price>20. 00</pri ce>
<revenues>2. 00</ r evenues>
<expenses>1. 00</ expenses>

</ st ock>

To compute the price/earnings ratio, we use the formula " pe = price/ (revenues - expenses)”. To do thiswith the
DOM, we also need to parse the XML, navigate to the places where thisinformation is found, and convert the text
of the document to the appropriate datatype. Here isthe DOM code Adam provides for this:

Tree t = ParseXM_("stock.xm");
PERati o = nunber (t. get menber ("/stock/price"))
[((nunber (t.get menber ("/stock/revenues") -
nunber (t. get menmber ("/ st ock/ expenses"))

This solution would have been much messier if Adam had not used the path expressions of X Path, asimple Native
XML language. In XQuery, path expressions are part of the language, and numeric conversions are automatically
done for untyped data. If the datais validated against a schema, the types assigned by the schema are used. This
makes it possible to solve the same problem much more simply:

l et $stock := docunment (' stock.xm"')/stock
return $stock/price div ($stock/revenue - $stock/expenses)

For XM L-centric applications, an object-oriented representation of an XML document imposes unneeded overhead
that complicates programs.

5.1.2. XML isnot just text!

To many intelligent and articulate XML programmers, "XML is just Unicode with pointy brackets' is amost a
statement of faith. Predictably, these people also complain that it is difficult to process XML without a parser. For
instance, Joe Gregorio [Gregoriol] notesthat in XML this document:

<item xm ns:dc="http://purl.org/dc/el enents/1.1/">
<title>MetaData</title>
<dc: dat e>2003- 01- 12T00: 18: 05- 05: 00</ bc: dat e>

<l i nk>http://bitworking.org/ news/8</Iink>

<descri pti on>Upon waki ng, the dinosaur...</description>
</itenp

must be treated as identical to this document:

<root:item xm ns: bc="http://purl.org/dc/elenments/1.1/" xm ns:root= >
<root:title>MetaData</root:title>

<bc: dat €>2003-01-12T00: 18: 05- 05: 00</ bc: dat e>

Proceedings by deepX Ltd. 11

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

<root:|ink>http://bitworking.org/ news/8</root:Iink>
<descri pti on>Upon waki ng, the dinosaur...</description>
</root:itenp

To many of us, thisis merely an indication that XML must first be parsed and converted to an appropriate data
model beforeit can easily be processed. In fairness to Joe, heinitially assumed this as well, but then changed his
mind:

More XML experience is gained by yours truly and on many occasions | have found myself
pining for the ability to do regular expression processing of XML. If only the pathologies of the
above examples didn't exist then | could use a combination of XPath and regular expressionsto
perform XML manipulationsthat would be easier for meto implement, understand and maintain.

Today | reached the breaking point. The problem isn't with regular expressions, the problem is
with XML. The pathologiesin XML that preclude the use of regular expressions are just that,
pathol ogies, and ones that need to be excised.

As aresult, he suggests that XML be subsetted as follows:

1. All namespace declarations must be done in the root element.

2. Never adeclaration for the "" namespace. |.e. if an element sitsthe
never have a namespace qualifier.

namespace then the element name will

3. No CDATA sections.
4. NoDTDs.

The above restrictions would make it easier for a programmer to work with XML without using an XML parser,
but it isunlikely that the XML community will replace XML with something along these lines - especially since
there areimportant usage scenariosfor featureslike DTDs, schemas, and the ability to build compound documents
without knowing, at the root level, all of the namespaces that may be used in a document. More to the point, Joe's
original reason for trying to solve these problems with XPath and regular expressions was that the standard APIs
do not make it easy to solve many simple problems. Looking at his article as a whole, and other articles he has
written, we believe that many of these difficulties are caused by the same kind of semantic mismatches that a
Native XML Programming Language is designed to solve.

In this paper, we assume that XML will remain asis, and that for general processing, the best approach isto use
an XML parser to build a data model instance from the XML documents, and query the data model instance. Not
everybody believesthisisthe best approach. Tim Bray, one of the editors of the original XML specification, objects
to the Native XML Programming solution because he objects to the notion of an XML data model: [Bray]

The notion that thereisan "XML datamodel" is silly and unsupported by real-world evidence.
The definition of XML is syntactic: the"Infoset" is an afterthought and in any caseisfar indeed
from being adata model specification that a programmer could work with. Empirical evidence:
| can point to a handful of different popular XML-in-Java APIs each of which hasits own data
model and each of which works. So why would you think that there's a datamodel thereto build
alanguage around?

Timfirst saysthat thereisno datamodel for XML, then arguesthat there are several. The differences among these
data models, while annoying, are not great, and could have been avoided if XML had had a full-fledged data
model. The differences between the DOM datamodel and the X Path datamodel arewell known inthe XML world.
XQuery, XPath, and XSLT now use one common datamodel, which can represent both XML and the XML Schema
datatypes. Although it would have been convenient if XML had defined adatamodel, there is no requirement that
the data model used by a Native XML Programming Language be the same as any particular data model used in
aJavaAPI. Aslong asthe datamodel supportsthe structure of XML directly, without losing or adding information
in violation of the XML spec, it can be used as the basis for processing.

Proceedings by deepX Ltd. 12

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

Tim also suggests that XML is "syntactic”, as though this implies that there is no data model. This implies that
syntax and structure are opposites, which is rather surprising, since the purpose of a syntax is to describe the
structure of alanguage. In the XML Recommendation, the structure that corresponds to a datamodel is called the
logica structure:

Each XML document has both alogical and a physical structure. [. . .] Logically, the document
is composed of declarations, elements, comments, character references, and processing instruc-
tions, al of which areindicated in the document by explicit markup.

Like most modern computer languages, XML uses a BNF to describe the syntactic representation of these structures.
For instance, hereis a production from the XML Recommendation:

[39] element := EnptyEl enTag| STag content ETag

The XML Recommendation is largely a description of these logical structures and the relationships among them.
For instance, consider the following text:

Example: The element structure of an XML document may, for validation purposes, be con-
strained using element type and attribute-list declarations. An element type declaration constrains
the element's content.

Element, XML document, and content all refer to logical structuresthat are represented in the BNF. These logical
structures, taken together with the relationships among them as described in the XML Recommendation, come
very close to being a data model, but the data model was not fully described.

The whole point of parsing is to create structures from a sequence of characters, using a grammar to determine
which structures to create. When a parser is used to interpret the characters of a program in Java, it creates an
Abstract Syntax Tree. When it is used to interpret the characters of XML, it creates a data model instance. We use
parsers because (1) the parsed structure is more convenient for further processing, (2) the parsed structure distin-
guishes information from noise, eliminating differences in the character representation that are not significant in
the relevant model, and (3) the parsed structure can fill in information not explicitly represented in the serialized
form.

However, an XML parser is not enough. A parser creates a convenient representation of XML. We need a Native
XML Programming Language to provide convenient processing of this XML.

5.1.3. What should a Native XML Programming L anguage do?

A Native XML Programming Language must provide the fundamental operations needed for XML. Some of these
operations are required because of the structure of XML itself.

A Native XML Programming Language should be able to easily find anything in an XML structure. XQuery, like
XSLT, uses XPath for this purpose. Every XPath expression is also an XQuery expression. For instance, if the
variable $cust is bound to a Customers element that contains the rows of arelational table, represented using the
SQL/XML mappings, then the following path expression finds all the Custlds from that table:

$cust/row Cust | d

A Native XML Programming Language should be ableto easily create any XML structure. X Query usesthe syntax
of XML for this purpose. For instance, the following X Query expression creates a Customer element:

<Cust oner >
<Cust | d>17</ Cust | d>
<Name>Ferd Berfl| e</ Nane>
</ Cust oner >

When X Query usesthe syntax of XML, acurly brace escapesto the syntax of XQuery, allowing dynamic expressions
to beinserted. Hereis an example that creates a customer with a new unique identifier:

Proceedings by deepX Ltd. 13

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

<Cust oner >
<Custld>{ max($cust/row Custld) + 1 }</Custld>
<Nane>Ferd Berf| e</ Nane>

</ Cust oner >

A Native XML Programming Language should be able to easily combine and restructure information from XML
sources, operating at the logical level without requiring the programmer to think about the internal representation
of the XML. For instance, if we are operating on the SQL/XML views of the customers database, the following
XQuery combines customers and projects to show the name of a customer and all projects associated with that
customer:

for $c in $cust/row
let $p := $proj/rowf Custld = $c/ Custld]
return
<cust oner >
<cust Nane>{ string($c/nane) }</cust Nane>
<proj Nanme{ string($p/nane) }</proj Nane>
</ cust oner >

A Native XML Programming Language should be able to easily use XML data in expressions. For instance,
arithmetic operations should be able to work directly with XML content, observing the data types of typed data
and converting appropriately when they encounter untyped data. It should be able to leverage schemas that have
been imported into a query, but work well on XML structures for which no schema has been imported.

In short, a Native XML Programming Language should be able to work with XML the way XML users think of
it, easily performing the kinds of tasksthat XML users need to have done. XQuery attempts to do just that, based
on the usage scenarios we gathered in the ### XML Query Use Cases.

5.2. XQuery and SQL/XML Views

Some peopl e seem to believe that the purpose of XQuery islargely the same asthat of SQL/XML - to allow XML
structuresto be created fromrelational data. Although XQuery isuseful for thistask, it hasrelatively few advantages
over SQL/XML when thisis al that is required. The reason for this is simple: SQL is a language designed for
handling SQL data sources, and it does that very well. Adding XML publishing functionsto SQL isasimple way
to let it create XML. However, it is interesting to note that the SQL/XML views of relational tables have avery
constrained structure, and X Query performed on such viewsisgenerally quite similar to the equivalent SQL/XML.

For instance, let's write an XQuery equivaent to the last SQL/XML query we used. This query will operate on a
SQL/XML view of therelational tables. The Projects table is represented as follows:

<Pr oj ect s>

<r ow>
<Proj | d>2</ Proj | d>
<Nanme>Pegasus</ Nane>
<Cust | d>4</ Cust | d>

</ row>

<r ow>
<Proj | d>8</ Proj | d>
<Nanme>Typhon</ Nane>
<Cust | d>4</ Cust | d>

</ row>

<l-- I SNIP Il -->

The Customerstable is represented as follows:

Proceedings by deepX Ltd. 14

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

SQL/XML, XQuery, and Native XML
Programming Languages

<Cust omer s>
<r ow>
<Cust | d>4</ Cust | d>
<Nane>Har dwar e Heaven</ Nanme>
<Addr ess>Washi ngt on</ Addr ess>
</ row>

<l-- 11l SNIP ! -->

We want to rename these elements and create a representation that shows customers together with their projects.

The output should look like this:

<customer id = "4">
<name>Har dwar e Heaven</ nane>
<pr oj ect s>
<project id
<project id
</ proj ect s>
</ cust oner >

"o nanme
"8" nane

"Pegasus"/ >
"Typhon"/ >

Here isan XQuery that creates the desired output:

for $¢c in $cust/row
return
<custoner id="{$c/Custld}">

<pr oj ect s>
{
for $p in $proj/row
where $p/Custld = $c/Custld
return
<pr oj ect
}

</ proj ect s>
</ cust oner >

i d="{$p/Projld}"

<nane>{ string($c/ Name) }</nanme>

name="{ $p/ Nane}"/ >

L et's compare this XQuery to the SQL/XML query from a prior section:

SQL/XML

XQuery

sel ect
xm el enent (name cust oner,
xm attributes(c. Custld as id),
xm forest (c. Nane as nane,
c.Cty as city),
xm el enent (nanme projects,
(sel ect xm agg(xm el ement
(name proj ect,
xm attributes(p.Projld as id),
xm f orest (p. Nane as nane)))
fromProjects p
where p. Custld=c. Custlid)))
as "custoner-projects”
from Custoners c¢

for $¢c in $cust/row
return
<custoner id="{$c/Custld}">
<name>{ string($c/ Name)} </ name>
<pr oj ect s>
{
for $p in $proj/row
where $p/ Custld = $c/Custld
return
<project id="{$p/Projld}"
name="{$p/ Narme}"/ >
}
</ pr oj ect s>
</ cust oner >

Table 1.

Proceedings by deepX Ltd.

15

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

In this example, as in most such examples, it is hard to argue that either solution is particularly superior to the
other. Either SQL/XML or XQuery handle such tasks quite well. The real strength of XQuery isin the ability to
easily process XML, whether or not relational datais being processed, including the XML that isfrequently stored
in columns of relational databases and the XML of web messages. Since XQuery also works well on SQL/XML
viewsof relational data, it isparticularly useful when both XML dataand relational datamust be used in processing.
Thisis explored in the next section.

5.3. Spanning Sour ces. XQuery, Web M essages, and Databases

XQuery, when combined with a SQL/XML view of arelational database, is extremely good for processing XML
together with relational data. Thisisavery common requirement in many environments, including web message
processing environments. Toillustrate this, we will use Example 1 from the SOAP Primer. Thetask isasfollows:
an incoming message requests a flight to Los Angeles departing from New Y ork as follows:

<l-- Exanple 1 from SCAP Primer -->
<env: Body>
<p:itinerary xmns:p="http://travel.org/reservation/travel ">

<p: departure>
<p: departi ng>New Yor k</ p: departi ng>
<p:arriving>Los Angel es</p:arriving>
<p: depart ur eDat e>2001- 12- 14</ p: depart ur eDat e>
<p: departureTi ne>l ate afternoon</p: departureTi ne>
<p: seat Pr ef er ence>ai sl e</ p: seat Pref erence>

</ p: departure>

</p:itinerary>

According to the SOAP Primer, the proper response is to point out that there are three airports that depart from
New Y ork, so that the user can be prompted to pick one. Here is the desired output:

<env: Body>
<p:itinerary xmns:p="http://travel .org/reservation/travel ">
<p: ai rport Choi ces>JFK LGA EWR</ p: ai r port Choi ces>
</p:itinerary>
</ env: Body>

Reading between the lines, we assume that there is a database somewhere that lists the airports for each city. The
SQL/XML view of the airports table might ook like this:

<Al RPORTS>
<r ow>
<Cl TY>Ral ei gh / Dur hanx/ Cl TY>
<Al RPORT>RDU</ Al RPORT>
</ row>
<r ow>
<ClI TY>New Yor k</ ClI TY>
<Al RPORT>JFK</ Al RPORT>
</ row>
<r ow>
<ClI TY>New Yor k</ ClI TY>
<Al RPORT>LGA</ Al RPORT>
</ row>

We will assume that when there is only one airport for a city, the output should simply list that city, and that an
error should beraised if thereisno airport for agiven city. The following XQuery handles all three of these cases:

Proceedings by deepX Ltd. 16

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

for $city in doc("incom ng.xm")//p:departing
et $airports := sqgl:table("airports")/ A RPORTS/ roW CI TY = $city]
return
if (count(%airports) = 0)
then <error> No airports found for {$city}!</error>
else if (count($airports) = 1)
then <airport>{ string(%$airports/Al RPORT) }</airport>
else if (count($airports) > 1)
t hen
<ai r port Choi ces>
{
for $c in $airports/ Al RPORT
return (string-value($), " ")
}
</ ai r port Choi ces>
el se ()

Note that this code operates at alevel very closeto the application domain, rather than navigating XML documents
and converting from XML to appropriate typesin the host language. XML data sources and relational data sources
are treated in the same way - to the query, they both look like XML documents.

5.4. XQuery for Java (JSR 225)

SQL programmers are used to using APIs such as ODBC or JDBC to set up the environment, execute queries, and
do processing in the business domain using the data returned by a query. Similar APIs are expect to emerge for
XQuery. The first standard API for this purpose is now being developed under Java Community Process. It is
known as XQuery for Java (XQJ), or JSR 225.

Significantly, the requirements of JSR 225 ensure that both XML documents and XML views of databases will
be supported, and the results of a query can be processed using JAXP and StAX.

6. SQL/XML and XQuery: Do we need both?

Although SQL/XML and XQuery are both XML query standards, they are based on quite different models, and
fit best in different architectures. SQL/XML fits cleanly into the relational model as areasonably small extension
to traditional SQL. This means that it works well in traditional SQL environments, providing full access to the
existing SQL language, including featureslike updates and full-text queriesthat are not going to be part of XQuery
1.0. One of the other advantages of using SQL asabasisisthat database manufacturers have many years of exper-
ience in optimizing SQL queries, which means that many of the optimization issues are well known. Also, it has
existing APIs, including ODBC and JDBC. In short, SQL/XML provides the functionality needed for creating
XML fromrelational datawhile still fitting cleanly into the existing SQL environment. SQL/XML implementations
will be available from Oracle and IBM, but not Microsoft, and a cross-database implementation is available from
DataDirect Technologies. Oracle's implementation also provides functionality for querying and processing XML
aswell as SQL, and thereis someinterest in adding extensions along these linesto SQL/XML. Some members of
the SQL/XML task force would also like to see parts of XQuery added to SQL/XML.

XQuery fitsmore cleanly into the XML environment, providing Native XML Programming for both XML sources
and non-XML sources accessed viaan XML view. It iswell designed for combining data from multiple sources,
and is very efficient for a variety of XML programming tasks. However, XQuery is a brand new language - in
fact, at the time of writing, XQuery 1.0 is merely a Working Draft, not likely to emerge until the second half of
2004. There is a great deal of enthusiasm surrounding XQuery, most major database vendors have announced
support for it, and there is a great deal of research on optimizing X Query. However, XQuery is a much younger
language, the industry has little experience optimizing it, and it lacks some features, including updates and full-
text, that are very important for some kinds of tasks. Also, the API for XQuery, XQuery for Java (JSR 225) isjust
now being developed.

Proceedings by deepX Ltd. 17

http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

Both languages will continue to evolve, trying to fill in the functionality found in the other. On the whole, we feel
that SQL/XML is best for SQL programmers who think of their task in terms of SQL, but need to create results
in XML. SQL/XML is used much like a report writing language, except that the reports are XML documents.
XQuery isbest for XML programmerswho areworking only with XML, or need to work with XML and relational
datatogether. In the short term, implementers and users of X Query should be aware that it is both new and revolu-
tionary - it shows great promise, but we have less industry experience with XQuery than with SQL/XML.

We are confident that both SQL/XML and XQuery will play an important rolein XML queries, and that XQuery
will become very important for general purpose XML processing. Native XML Programming is a revolution
waiting to happen, and XQuery will be key to this revolution.

Bibliography

[Bosworth] "Speaking XML", by Adam Bosworth. December 2002 Column in XML & Web Services Magazine.
Available at http://www.fawcette.com/xmlmag/2002_12/magazine/columns/endtag. Shows why DOM
and SAX are awkward for many kinds of programming tasks.

[Bray] "XML IsToo Hard For Programmers', by Tim Bray. Blog entry. Available at http://www.tbray.org/ongo-
ing/When/200x/2003/03/16/X M L-Prog. Discusses the problems raised by Bosworth and Gregorio, suggests
that XML stream processing be made idiomatic in as many programming languages as possible.

[DOM] Document Object Model (DOM) Level 2. Defined in several documents which can be found at ht-
tp:/iwww.w3.0rg/DOM/DOMTR.

[Gregoriol] "Regex-able XML", by Joe Gregorio. Available at http://bitworking.org/news/40. Suggests a subset
of XML that would be amenable to processing using X Path and Regular Expressions.

[Gregorio2] "DOM (Drudgery Object Model)", by Joe Gregorio. Availableat http://bitworking.org/news/22. Ex-
plores the shortcomings of the DOM for everyday programming tasks.

[JSR225] XQuery API for JavaTM (XQJ). Java Specification Request 225. Available at http://www.jcp.org/en/jsr/de-
tail 71d=225. Contains alist of proposed requirements that give insight into the scope of this project.

[SQL/XML] "(1SO-ANSI Working Draft) XML-Related Specifications (SQL/XML)", edited by Jm Melton.
WG3:HBA-010 = H2-2003-312 = 5WD-14-XML-2003-09. August, 2003. Available at ftp://sglstand-
ards.org/SC32/WG3/Progression_Documents/WD/5WD-14-XML-2003-09.pdf. The current draft of
SQL/XML.

[SQL/XML-A] "SQL/XML and the SQL X Informal Group of Companies’, by Andrew Eisenberg and Jim Melton.
ACM SIGMOD Volume 30, Number 3. September 2001. Available at http://www.acm.org/sigmod/re-
cord/issues/0109/standards.pdf. A report on SQL/XML - much more readabl e than the specification itself.

[SQL/XML-B] "SQL/XML is Making Good Progress', by Andrew Eisenberg and Jim Melton. ACM SIGMOD
Volume 31, Number 2. June 2002. Available at http://www.acm.org/sigmod/record/issues/0206/stand-
ard.pdf. A report on SQL/XML - much more readabl e than the specification itself.

[SQL/XML-IDBC] "SQL/XML in JDBC Applications: The simple way for Java applications to generate XML
from SQL queries using the SQL/XML features of SQL 2003", by Jonathan Robie and Peter Coppens.
Available at http://www.datadirect.com/products/connectsglxml/docs/sglxml_whitep.pdf. Compares the
code needed to publish relational dataas XML using SQL/XML, JDBC+DOM+SQL, and the proprietary
extensions of IBM DB2 UDB, Oracle XSU, and Microsoft SQL Server.

[XQueryTour] "XQuery: A Guided Tour", by Jonathan Robie. Chapter from "X Query from the Experts’ (see below).
Available on the web at http://www.datadirect.com/news/whatsnew/xquerybook.asp.

Proceedings by deepX Ltd. 18

http://www.fawcette.com/xmlmag/2002_12/magazine/columns/endtag
http://www.tbray.org/ongoing/When/200x/2003/03/16/XML-Prog
http://www.tbray.org/ongoing/When/200x/2003/03/16/XML-Prog
http://www.w3.org/DOM/DOMTR
http://www.w3.org/DOM/DOMTR
http://bitworking.org/news/40
http://bitworking.org/news/22
http://www.jcp.org/en/jsr/detail?id=225
http://www.jcp.org/en/jsr/detail?id=225
ftp://sqlstandards.org/SC32/WG3/Progression_Documents/WD/5WD-14-XML-2003-09.pdf
ftp://sqlstandards.org/SC32/WG3/Progression_Documents/WD/5WD-14-XML-2003-09.pdf
http://www.acm.org/sigmod/record/issues/0109/standards.pdf
http://www.acm.org/sigmod/record/issues/0109/standards.pdf
http://www.acm.org/sigmod/record/issues/0206/standard.pdf
http://www.acm.org/sigmod/record/issues/0206/standard.pdf
http://www.datadirect.com/products/connectsqlxml/docs/sqlxml_whitep.pdf
http://www.datadirect.com/news/whatsnew/xquerybook.asp
http://www.w3.org/Style/XSL
http://www.renderx.com/

SQL/XML, XQuery, and Native XML
Programming Languages

[XQWG] XML Query Working Group Home Page. Available at http://www.w3.org/ X ML/Query.html. Contains
pointersto all X Query-rel ated specifications, 20 X Query implementations, variousarticlesand publications.

[XQuery] XQuery 1.0: An XML Query Language. W3C Working Draft 22 August 2003. Most recent version is
available at http://www.w3.0org/TR/xquery/.

[XQueryUseCases] XML Query Use Cases, W3C Working Draft 22 August 2003. Most recent versionisavailable
at http://lwww.w3.0rg/ TR/xquery-use-cases.

[XQueryRegs] XML Query Requirements, W3C Working Draft 27 Jun 2003. Most recent version is available at
http://www.w3.0rg/TR/xquery-requirements/.

[DataModel] XQuery 1.0 and XPath 2.0 Data Model, W3C Working Draft May 2003. Most recent version is
available at http://lwww.w3.0rg/TR/xpath-datamodel/.

[XQuerySemantics] XQuery 1.0 and XPath 2.0 Formal Semantics, 22 August 2003. Most recent versionisavailable
at http://lwww.w3.0rg/TR/xquery-semantics/.

[XQueryFunctions] XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working Draft 2 May 2003. Most
recent version is available at http://www.w3.org/TR/xpath-functions/.

[XQueryExperts] XQuery from the Experts: A Guide to the W3C XML Query Language, by Howard Katz, Don
Chamberlin, Denise Draper, Mary Fernandez, Michael Kay, Jonathan Robie, Michael Rys, Jerome Simeon,
Jim Tivy, Philip Wadler. Addison-Wesley Pub Co; 1st edition (September 12, 2003) |SBN: 0321180607.

Biography

Jonathan Robie
DataDirect Technologies
United States of America

Jonathan Robieisthe XML Program Manager at DataDirect technologies, responsible for a SQL/XML product
that is currently shipping and an XQuery product that is under development. He is a co-inventor of Quilt,
which was the immediate predecessor of XQuery, the W3C XML Query language, and is how an editor of
many of the specifications which define the XQuery language. He is also a co-inventor of XQL, an earlier
XML query language which was a predecessor of XPath. Jonathan has been significantly involved in several
other W3C Working Groups, acting as an editor for documents produced by the XML Schemaand Document
Object Model Working Groups, and has also participated in the W3C XML Information Set and XML Stylesheet
Language (XSL) Working Groups. He is well known in the XML world, both as an innovator and as a
speaker.

Prior tojoining DataDirect, Jonathan worked asan XML Research Speciaist at Software AG, where he hel ped
design architectures for XML servers and represented Software AG on the XML Query and XML Schema
Working Groups. He has been on the architecture team for three XML databases or repositories, at Software
AG, Texcel Research, and POET Software. Since 1985 he has been working professionally with advanced
database systems and compl ex database applications, especially object oriented databases, multimediadatabases,
workgroup database applications, and XML/SGML databases.

Proceedings by deepX Ltd. 19

http://www.w3.org/XML/Query.html
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-requirements/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/Style/XSL
http://www.renderx.com/

