
May 2003

DataDirect Connect®
for SQL/XML
User’s Guide

© 2003 DataDirect Technologies. All rights reserved. Printed in the U.S.A.

DataDirect, DataDirect Connect, and SequeLink are registered trademarks, and Client/Server MiddleWare,
DataDirect Connect Integrator, DataDirect jXTransformer, DataDirect Reflector, DataDirect SequeLink Integrator,
DataDirect Spy, and DataDirect Test are trademarks of DataDirect Technologies.

Java and JDBC are registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
DataDirect Technologies is independent of Sun Microsystems, Inc.

All other trademarks are the property of their respective owners.

DataDirect products for UNIX platforms include:

ICU Copyright (c) 1995-2001 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the"Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this
permission notice appear in all copies of the Software and that both the above copyright notice(s) and this
permission notice appear in supporting documentation.

DataDirect jXTransformer includes:

Xerces, developed by the Apache Software Foundation (http://www.apache.org). Copyright (C) 1999-2000 The
Apache Software Foundation. All rights reserved.

Xalan, developed by the Apache Software Foundation (http://www.apache.org). Copyright (C) 1999-2000 The
Apache Software Foundation. All rights reserved.

JDOM, developed by the JDOM Project (http://www.jdom.org). Copyright (C) 2000 Brett McLaughlin & Jason
Hunter. All rights reserved.

DataDirect SequeLink includes:

Portions created by Netscape are Copyright (C) 1998-1999 Netscape Communications Corporation. All Rights
Reserved.

Portions created by Eric Young are Copyright (C) 1995-1998 Eric Young. All Rights Reserved.

No part of this publication, with the exception of the software product user documentation contained in
electronic format, may be copied, photocopied, reproduced, transmitted, transcribed, or reduced to any
electronic medium or machine-readable form without prior written consent of DataDirect Technologies.

Licensees may duplicate the software product user documentation contained on a CD-ROM, but only to the
extent necessary to support the users authorized access to the software under the license agreement. Any
reproduction of the documentation, regardless of whether the documentation is reproduced in whole or in part,
must be accompanied by this copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the Documentation were
developed at private expense, that no part is in the public domain, and that the Software and Documentation
are Commercial Computer Software provided with RESTRICTED RIGHTS under Federal Acquisition Regulations
and agency supplements to them. Use, duplication, or disclosure by the Government of the United States is
subject to the restrictions as set forth in FAR52.227- 14 and DFAR252.227-7013 et seq. or the successor as
appropriate. Manufacturer is DataDirect Technologies, 3202 Tower Oaks Blvd. Suite 300, Rockville, Maryland
20852. Rights are reserved under copyright laws of the United States with respect to unpublished portions of the
Software.

DataDirect Technologies
3202 Tower Oaks Blvd. Suite 300
Rockville, Maryland 20852

3

Table of Contents

Preface . 11

What Is DataDirect Connect for SQL/XML? 11

Using This Book . 12

Conventions Used in This Book. 14

About DataDirect Documentation . 15

Contacting Technical Support . 16

1 Connect for SQL/XML Overview 19

Types of Connect for SQL/XML Queries . 22
SQL/XML Queries . 22
jXTransformer Queries. 26
SQL/XML or jXTransformer? . 29

jXTransformer Write Statements . 31
Architecture of jXTransformer Write Statements
in Java Applications . 32
jXTransformer Write Statement Example 33

DataDirect Query Builder for SQL/XML . 36

Connecting to the Database . 37

2 Understanding Connect for SQL/XML. 39

Using the Java Packages . 39

Using Both SQL/XML and jXTransformer Statements
in a Java Application . 40
DataDirect Connect for SQL/XML User’s Guide

4 Table of Contents
Using SQL/XML Queries . 40
Using key_expr Hints . 40
Using rewrite_algorithm Hints . 41
Creating Result Sets From SQL Queries 42

Using jXTransformer Queries. 43
Creating Hierarchical XML Documents 43
Using Keys . 45
Hiding Information . 47
Creating ID/IDREFS Links . 48
Creating XML Document Fragments 50
Creating XML in Result Sets . 52
Generating DTDs and Schemas . 52
Choosing an XML Document Structure. 53
Choosing an XML Output Format 55
Choosing a Rewrite Algorithm . 56

Using jXTransformer Write Statements. 57
jXTransformer Write Statement Processing Overview . . . 57
Disabling Autocommit Mode. 58
Choosing an XML Input Format. 58

3 Creating Connect for SQL/XML Queries
Using the Builder . 61

Working with the Builder . 62
Using Tree and Text Views . 63
Using Project Tree Nodes . 65
Working with Project Tree Nodes 70
Using Base SQL Query Nodes . 71

Starting the Builder . 72

Customizing the Builder . 72
Changing the GUI’s General Appearance 74
Changing the Text Editor . 75

Creating a Builder Project . 77

Opening a Builder Project . 79
DataDirect Connect for SQL/XML User’s Guide

Table of Contents 5
Closing a Builder Project . 79

Creating and Modifying SQL/XML Queries in Tree View 80
Creating Base SQL Query Nodes . 80
Creating XML Elements . 82
Creating XML Attributes . 84
Assigning Select Expression Values to ELEMENT
Nodes . 87
Assigning Constant Values to ELEMENT Nodes 88
Creating a Forest of XML Elements 89
Modifying Nodes . 94
Moving Nodes . 94
Deleting Nodes . 95

Creating and Modifying jXTransformer Queries
in Tree View . 96

Turning on the Document Header 97
Specifying Comments . 97
Specifying Processing Instructions 98
Specifying an External DTD. 100
Creating Base SQL Query Nodes . 101
Creating XML Elements . 102
Creating XML Attributes . 104
Specifying Hide Information . 107
Creating XML CDATA Sections . 108
Specifying XML Namespaces . 110
Assigning Select Expression Values to ELEMENT
Nodes . 111
Assigning Constant Values to ELEMENT Nodes 112
Modifying Nodes . 112
Moving Nodes . 113
Deleting Nodes . 113

Creating and Modifying SQL/XML and jXTransformer
Statements in Text View . 114

Importing a Query or Statement . 115

Checking Query or Statement Syntax 116
DataDirect Connect for SQL/XML User’s Guide

6 Table of Contents
Connecting to the Database . 116
Connecting Using JDBC Connection URLs. 118
Connecting Using JDBC Data Sources 119

Executing a Query or Statement . 120

Browsing the Database . 125
Using the Database Browser . 125
Customizing JDBC Filter Settings. 127

Opening an XML DTD . 129

Opening an XML Document . 131

Generating DTDs and XML Schemas . 133
Generating a DTD. 133
Generating an XML Schema . 135

Executing jXTransformer Write Statements 137

4 Syntax of SQL/XML Queries 141

SQL_value_expression . 142

XML_value_expression . 142
XMLAGG . 142
XMLCONCAT . 146
XMLELEMENT . 147
XMLFOREST. 149

rest_of_sql99_select . 151

Executing SQL/XML Queries. 151

5 Syntax of jXTransformer Queries 153

xml_document . 154

xml_document_info . 154

xml_constructor . 158
xml_element . 158
xml_attribute . 162
xml_cdata . 164
DataDirect Connect for SQL/XML User’s Guide

Table of Contents 7
xml_namespace . 165
xml_hide . 167
select_expression . 168

rest_of_sql99_select . 169

Query . 170

Rules and Exceptions for jXTransformer Query Syntax 172

Executing jXTransformer Queries . 172

6 Syntax of jXTransformer Write Statements. 173

Insert Statement . 174

Update Statement . 180

Delete Statement. 185

Executing jXTransformer Write Statements. 189

7 Using the SQL/XML JDBC Driver and
JDBC API Extensions . 191

Driver and Data Source Classes. 191

SQL/XML JDBC Driver Data Source . 192

Connection URLs . 192

Connection Properties . 193

Using Connect for SQL/XML Hints . 195

com.ddtek.jdbc.jxtr Java Package. 197
XMLType Class . 197
JXTRDataSource Class . 198

Connecting to the Database . 199

Using SQL/XML Queries in Java Applications. 202
DataDirect Connect for SQL/XML User’s Guide

8 Table of Contents
8 Using the jXTransformer API 207

jXTransformer API Classes . 208
JXTRQuery and JXTRResultSetWrapper Classes 211
JXTRUpdate and JXTRSingleTableUpdate Classes 213

Connecting to the Database . 216

Using jXTransformer Queries and Write Statements
in a Java Application . 223

Example A: jXTransformer Query 224
Example B: jXTransformer Write Statement 227

9 Tutorial: Using SQL/XML Queries 233

Creating the Builder Project . 235

Constructing the SQL/XML Query in the Builder 237

Using the SQL/XML Query in a Java Application 249

10 Tutorial: Using jXTransformer Queries 253

Creating the Builder Project . 256

Constructing the Parent Query in the Builder 259

Constructing the Child Query in the Builder 266

Specifying Document-Level Constructs in
the jXTransformer Query . 273

Adding the Root Element . 274
Adding an Attribute to the Root Element 276
Add Namespaces to the Root Element 277
Adding a Comment . 279
Adding a Reference to an External DTD. 280
Adding a Processing Instruction . 281
Executing the jXTransformer Query 282
DataDirect Connect for SQL/XML User’s Guide

Table of Contents 9
Using a jXTransformer Query in a Java Application 286
Example A: Document-Level Constructs in
the jXTransformer Query. 286
Example B: Document-Level Constructs in
the jXTransformer API . 291

A JDBC Data Types . 295

B jXTransformer Query and Statement Processing . . 297

Handling of JDBC PreparedStatement Objects 297

Using Namespaces in XPath Expressions for
jXTransformer Write Statements . 298

Using NULL Replacement Values for jXTransformer
Write Statements . 298

Glossary . 299

Index . 301
DataDirect Connect for SQL/XML User’s Guide

10 Table of Contents
DataDirect Connect for SQL/XML User’s Guide

11
Preface

This book is your guide to using the DataDirect Connect® for
SQL/XML product from DataDirect Technologies. Read on to find
out more about DataDirect Connect for SQL/XML and how to use
this book.

What Is DataDirect Connect for SQL/XML?
DataDirect Connect for SQL/XML is your solution for producing
XML for data exchange. Developers need a way to build
hierarchical XML structures using queries on a set of relational
tables. Similarly, they need a way to update the content of their
relational tables using data in XML hierarchies. Using Connect for
SQL/XML, you can accomplish both of these tasks, and you can
accomplish them by writing one Java application that works
without change for any database DataDirect Technologies JDBC
drivers support.

Connect for SQL/XML lets Java applications connect to databases
using DataDirect Technologies JDBC drivers, return XML values in
the columns of JDBC result sets, and access XML columns as
JDOM, SAX, DOM, or text. See Chapter 1, “Connect for SQL/XML
Overview” on page 19 for a more detailed explanation of
Connect for SQL/XML.
DataDirect Connect for SQL/XML User’s Guide

12 Preface
Using This Book
This book assumes that you are familiar with your operating
system and its commands; the concept of directories; the
management of user accounts and security access; and your
network protocol and its configuration. You should also be
familiar with Java, the JDBC API, and SQL.

This book contains the following information:

� Chapter 1, “Connect for SQL/XML Overview” on page 19
provides an overview of the DataDirect Connect for SQL/XML
product.

� Chapter 2, “Understanding Connect for SQL/XML” on page 39
describes some key features of Connect for SQL/XML and
provides examples to help you decide how to use them.

� Chapter 3, “Creating Connect for SQL/XML Queries Using the
Builder” on page 61 explains how to create SQL/XML and
jXTransformer queries using the DataDirect Query Builder for
SQL/XML (the Builder).

� Chapter 4, “Syntax of SQL/XML Queries” on page 141
describes the syntax of SQL/XML queries.

� Chapter 5, “Syntax of jXTransformer Queries” on page 153
describes the syntax of jXTransformer queries.

� Chapter 6, “Syntax of jXTransformer Write Statements” on
page 173 describes the syntax of jXTransformer Insert,
Update, and Delete statements.

� Chapter 7, “Using the SQL/XML JDBC Driver and JDBC API
Extensions” on page 191 describes the SQL/XML JDBC driver
and the classes it uses to process SQL/XML queries. It also
provides information about connecting to the database and
using SQL/XML queries in Java applications.
DataDirect Connect for SQL/XML User’s Guide

Using This Book 13
� Chapter 8, “Using the jXTransformer API” on page 207
describes the jXTransformer API and the classes it uses to
process jXTransformer queries and write statements. It also
provides information about connecting to the database and
using jXTransformer queries and write statements in Java
applications.

� Chapter 9, “Tutorial: Using SQL/XML Queries” on page 233
contains a step-by-step tutorial that show you how to create
a SQL/XML query using the DataDirect Query Builder for
SQL/XML. It also shows you how to embed that query in a Java
application and use Connect for SQL/XML hints to specify
processing options that are not supported through the
standard SQL/XML query syntax.

� Chapter 10, “Tutorial: Using jXTransformer Queries” on
page 253 contains a step-by-step tutorial that shows you how
to create a jXTransformer query using the DataDirect Query
Builder for SQL/XML. It also shows you how to embed that
query in a Java application using the jXTransformer API.

� Appendix A “JDBC Data Types” on page 295 lists the JDBC
data types supported by Connect for SQL/XML and the XML
representations to which they are converted when building
XML values.

� Appendix B “jXTransformer Query and Statement
Processing” on page 297 provides additional information
that you need to know about how Connect for SQL/XML
processes jXTransformer queries and write statements.

In addition, this book contains a “Glossary” on page 299 that
defines terms used in this book.

NOTE: This book refers the reader to Web URLs for more
information about specific topics, including Web URLs not
maintained by DataDirect Technologies. Because it is the nature
of Web content to change frequently, DataDirect Technologies
can guarantee only that the URLs referenced in this book were
correct at the time of publishing.
DataDirect Connect for SQL/XML User’s Guide

14 Preface
Conventions Used in This Book
This section describes the typography, terminology, and other
conventions used in this guide.

Typographical Conventions

This guide uses the following typographical conventions:

Convention Explanation

italics Introduces new terms that you may not be
familiar with, and is used occasionally for
emphasis.

bold Emphasizes important information. Also
indicates button, menu, and icon names on
which you can act. For example, click Next.

UPPERCASE Indicates the name of a file. For operating
environments that use case-sensitive
filenames, the correct capitalization is used in
information specific to those environments.

Also indicates keys or key combinations that
you can use. For example, press the ENTER
key.

monospace Indicates syntax examples, values that you
specify, or results that you receive.

monospaced
italics

Indicates names that are placeholders for
values you specify; for example, filename.

forward slash / Separates menus and their associated
commands. For example, Select File / Copy
means to select Copy from the File menu.

vertical rule | Indicates an OR separator to delineate items.

brackets [] Indicates optional items. For example, in the
following statement: SELECT [DISTINCT],
DISTINCT is an optional keyword.
DataDirect Connect for SQL/XML User’s Guide

About DataDirect Documentation 15
About DataDirect Documentation
The DataDirect Connect for SQL/XML library consists of the
following books:

� DataDirect Connect for SQL/XML Installation Guide details
requirements and procedures for installing Connect for
SQL/XML.

� DataDirect Connect for SQL/XML User’s Guide provides
detailed information about using DataDirect Connect for
SQL/XML both to retrieve relational data and transform it into
XML structures, and to transform XML data into relational
data.

� DataDirect Connect for JDBC User’s Guide and Reference
provides detailed information about using DataDirect
Connect for JDBC drivers to connect to the database.

braces { } Indicates that you must select one item. For
example, {yes | no} means you must specify
either yes or no.

ellipsis . . . Indicates that the immediately preceding item
can be repeated any number of times in
succession. An ellipsis following a closing
bracket indicates that all information in that
unit can be repeated.

Convention Explanation
DataDirect Connect for SQL/XML User’s Guide

16 Preface
For detailed information about DataDirect SequeLink for JDBC,
refer to the Connect for SQL/XML product documentation on the
DataDirect Technologies web site:

http://www.datadirect-technologies.com/download/docs/
dochome.asp

NOTE: Depending on your configuration, you may have to
configure the Web browser as described in “Changing the GUI’s
General Appearance” on page 74 before you can use the
DataDirect Query Builder for SQL/XML help or the Web links in the
Help menu of the Builder.

Contacting Technical Support
DataDirect Technologies provides technical support for registered
users of this product, including limited installation support, for
the first 30 days. Register online for your SupportLink user ID and
password for access to the password-protected areas of the
SupportLink web site at
http://www.datadirect-technologies.com/support/support_index.asp.
Your user ID and password are issued to you by email upon
registration.

For post-installation support, contact us using one of the
methods listed below or purchase further support by enrolling in
the SupportLink program. For more information about
SupportLink, contact your sales representative.

The DataDirect Technologies web site provides the latest support
information through SupportLink Online, our global service
network providing access to support contact details, tools, and
valuable information. Our SupportLink users access information
using the web and automatic email notification. SupportLink
Online includes a knowledge base so you can search on keywords
for technical bulletins and other information.
DataDirect Connect for SQL/XML User’s Guide

http://www.datadirect-technologies.com/support/support_index.asp
http://www.datadirect-technologies.com/download/docs/dochome.asp

Contacting Technical Support 17
When you contact us, please provide the following information:

� The product serial number or a case number. If you do not
have a SupportLink contract, we will ask you to speak with a
sales representative.

� Your name and organization. For a first-time call, you may be
asked for full customer information, including location and
contact details.

� The version number of your DataDirect product.

� The type and version of your operating system.

� Any third-party software or other environment information
required to understand the problem.

World Wide Web

http://www.datadirect-technologies.com/support/support_index.asp

E-Mail

USA, Canada, and Mexico supportlink@datadirect-technologies.com

Europe, Middle East, and Africa int.supportlink@datadirect-technologies.com

Japan jpn.answerline@datadirect.co.jp

All other countries http://www.datadirect-technologies.com/
contactus/distributor.asp provides a list of
the correct e-mail contacts.

Local Telephone Support

Local phone numbers can be found at:

http://www.datadirect-technologies.com/support/support_contact_aline.asp

SupportLink support is available 24 hours a day, seven days a week.

Fax Information

Fax US, Mexico, and Canada 1 919 461 4527

Fax EMEA +32 (0) 15 32 09 19
DataDirect Connect for SQL/XML User’s Guide

http://www.datadirect-technologies.com/support/support_index.asp
http://www.datadirect-technologies.com/contactus/distributor.asp
http://www.datadirect-technologies.com/contactus/distributor.asp
http://www.datadirect-technologies.com/support/support_contact_aline.asp

18 Preface
� A brief description of the problem, including any error
messages you have received, and the steps preceding the
occurrence of the problem. Depending on the complexity of
the problem, you may be asked to submit an example so that
we can recreate the problem.

� An assessment of the severity level of the problem.
DataDirect Connect for SQL/XML User’s Guide

19
1 Connect for SQL/XML Overview

Many Java applications exchange data as XML, but store and
query data using a JDBC connection to a traditional relational
database. Unfortunately, XML and SQL represent information in
very different ways, and many developers spend significant
effort converting information between the two. The following
example shows the same information represented in relational
tables and represented in XML. In the XML representation,
hierarchy and sequence are the main ways used to represent
relationships among data; in the relational representation, data
is represented as unordered two-dimensional tables.

CustId Name Address
1 Woodworks Baltimore
2 Software Solutions Boston
3 Food Supplies New York
4 Hardware Store Washington
5 Books Inc. New Orleans
�

ProjId Name CustId
1 Medusa 1
2 Pegasus 4
3 Python 6
� � �
8 Typhon 4
�

Customers Projects

<?xml version="1.0" encoding="UTF-8"?>
<customers>

<customer id="1">
<name>Woodworks</name><address>Baltimore</address>

<projects>
<project id="1"><name>Medusa</name></project>

</projects>
</customer>

�
<customer id="4">

<name>Hardware Store</name><address>Washington</address>
<projects>

<project id="2"><name>Pegasus</name></project>
<project id="8"><name>Typhon</name></project>

</projects>
</customer>

�
</customers>

XML

Relational Tables
DataDirect Connect for SQL/XML User’s Guide

20 Chapter 1 Connect for SQL/XML Overview
When producing XML for data exchange, developers need a way
to build hierarchical XML structures using queries on a set of
unordered two-dimensional tables. Similarly, they need a way to
update the content of their two-dimensional tables using data in
XML hierarchies.

Almost all major RDBMS vendors now supply tools or product
enhancements to help bridge the gap between XML and
relational data. Unfortunately, their proprietary approaches are
incompatible and are often ad hoc or awkward. A better,
standards-based approach now exists. SQL/XML is an extension to
the ANSI/ISO SQL standard that allows XML to be generated as
the result of a query, and adds an XML data type to SQL so that
XML query results can be returned in columns of normal SQL
result sets. The final draft of SQL that includes these extensions is
expected in mid-2003. Using standard SQL/XML instead of
proprietary vendor extensions simplifies development, provides
for more maintainable code, and provides portability across
databases.

For most Java applications that need to exchange data in XML,
the most efficient approach is to use SQL/XML to query relational
data and build the appropriate XML structure. For example,
suppose your company uses data stored in an Oracle database for
billing purposes. You may want to make available some of the
same data over your company’s Intranet for project planning
purposes. Using Connect for SQL/XML, you can create Connect for
SQL/XML queries to structure that information any way you want it
in the returned result set or XML. You can create one Connect for
SQL/XML query that lists each project by employee and their
billable hours, and you can create another Connect for SQL/XML
query that lists each employee by their project assignment and
billable hours.

DataDirect Connect for SQL/XML lets Java applications connect to
databases using DataDirect Technologies JDBC drivers, return
XML values in the columns of JDBC result sets, and access XML
columns as JDOM, SAX, DOM, or text. This makes it easy to write

DataDirect Connect for SQL/XML User’s Guide

21
applications that work without change for any database
DataDirect Technologies JDBC drivers support.

Currently, the SQL/XML standard supports queries, but not
updates. DataDirect Technologies is a member of the H2.3 Task
Group that is responsible for SQL/XML. We hope that updates
will be added to the standard; in the meantime, Connect for
SQL/XML provides proprietary extensions to the SQL99 Insert,
Update, and Delete statements that allow you to update data
stored in relational databases with information extracted from
XML.

DataDirect Connect for SQL/XML was originally introduced as
DataDirect jXTransformer, which used a query language derived
from the same paper that inspired SQL/XML. DataDirect
Technologies is committed to supporting standards, so we have
renamed the product to clearly convey our support for SQL/XML.
The older, proprietary language and API are still available, and
are particularly useful for updates. As SQL adds this functionality
to the standard, we will provide it in our SQL/XML
implementation. As a member of the SQL/XML task group,
DataDirect Technologies wants the standard to cover all
functionality required for common applications, allowing you to
build your applications using standards-based components.
DataDirect Connect for SQL/XML User’s Guide

22 Chapter 1 Connect for SQL/XML Overview
Types of Connect for SQL/XML Queries
DataDirect Connect for SQL/XML supports two types of queries:
SQL/XML queries and proprietary queries known as
jXTransformer queries. Using either type of query, you can create
XML for data exchange or another purpose.

SQL/XML queries return JDBC result sets that can contain XML
values. SQL/XML queries must be executed through the Connect
for SQL/XML JDBC driver (the SQL/XML JDBC driver). SQL/XML is an
extension to the ANSI/ISO SQL standard.

jXTransformer queries return XML results in the form of an XML
document, a JDBC result set, or directly to your Java application.
Typically, jXTransformer queries are executed through the
proprietary jXTransformer API, but they also can be executed
through the SQL/XML JDBC driver.

SQL/XML Queries

This section provides information about the architecture of a
SQL/XML query used in a Java application and an example of a
SQL/XML query.
DataDirect Connect for SQL/XML User’s Guide

Types of Connect for SQL/XML Queries 23
Architecture of SQL/XML Queries in Java
Applications

Figure 1-1 shows the components involved when a SQL/XML
query is used in a Java application.

Figure 1-1. Architecture of a SQL/XML Query in a Java
Application

1 The Java application establishes a JDBC connection with the
database.

2 The Java application issues the SQL/XML query using the
SQL/XML JDBC driver.

3 The SQL/XML JDBC driver processes the SQL/XML query and
sends one or multiple SQL statements through to the
database to retrieve the result set.

NOTE: As database vendors begin implementing the
SQL/XML extensions to SQL, the SQL/XML JDBC driver may
not need to process the SQL/XML query before sending it to

Java Application with
SQL/XML Query

DataDirect
JDBC Driver

1

2

4

RDBMS

Result Set
(XML Type)

3

SQL/XML JDBC Driver 5
DataDirect Connect for SQL/XML User’s Guide

24 Chapter 1 Connect for SQL/XML Overview
the database. Whether the driver processes the SQL/XML
query in the future will depend on performance advantages.

4 The database sends the requested result set to the SQL/XML
JDBC driver.

5 The SQL/XML JDBC driver creates a JDBC result set containing
the XML structure specified by the SQL/XML query and returns
it to the application.

SQL/XML Query Example

SQL/XML queries contain two types of instructions for the
SQL/XML JDBC driver to process. The first type of instruction is
conventional SQL99, which is used to identify the data that will
be retrieved. The second type includes XML constructors that are
used to create the XML structures of the data the query will
return.

For example, let us examine a simple SQL query:

SELECT
e.EmpID,
e.FirstName,
e.LastName,
e.Title,
e.StartDate,
e.HourlyRate

FROM Employees e WHERE e.Start-Date >= {d '2000-01-01'}

Now, let us compare the preceding SQL query with a SQL/XML
query that uses the same Select statement and wraps XML
constructors around the columns to define how to structure the
JDBC result set:

SELECT
XMLELEMENT (NAME "EMPLOYEES_INFO",
XMLATTRIBUTES (e.EmpID AS "ID"),
XMLELEMENT (NAME "name",
XMLELEMENT (NAME "first", e.FirstName),
DataDirect Connect for SQL/XML User’s Guide

Types of Connect for SQL/XML Queries 25
XMLELEMENT (NAME "last", e.LastName)),
XMLELEMENT (NAME "title", e.Title),
XMLELEMENT (NAME "hiredate", e.StartDate),
XMLELEMENT (NAME "salary", e.HourlyRate)) AS "result"

FROM Employees e WHERE e.StartDate >= {d '2000-01-01'}

Notice that, in this example, we used every column specified in
the SQL query and wrapped XML constructors around the
columns. The returned result set contains one column and two
rows.

To represent XML in result sets, SQL/XML introduces a data type
called the XMLType and places instances of the XML type in
columns. Connect for SQL/XML provides the
com.ddtek.jdbc.jxtr.XMLType class to allow instances of the
XMLType to be retrieved as DOM, JDOM, SAX, or text.

See “Syntax of SQL/XML Queries” on page 141 for more
information about the syntax of SQL/XML queries.

result

<Employees_Info ID='9'>
<name>

<first>Mike</first>
<last>Johnson</last>

</name>
<title>Mr</title>
<hiredate>2000-01-15 00:00:00.0</hiredate>
<salary>95</salary>

</Employees_Info>

<Employees_Info ID='18'>
<name>

<first>Sonia</first>
<last>Evans</last>

</name>
<title>Ms</title>
<hiredate>2000-10-01 00:00:00:.0</hiredate>
<salary>105</salary>

</Employees_Info>
DataDirect Connect for SQL/XML User’s Guide

26 Chapter 1 Connect for SQL/XML Overview
jXTransformer Queries

This section provides information about the architecture of a
jXTransformer query used in a Java application and an example
of a jXTransformer query.

Architecture of jXTransformer Queries in Java
Applications

Figure 1-2 shows the components involved when a jXTransformer
query is used in a Java application.

Figure 1-2. Architecture of a jXTransformer Query in a Java
Application

Java Application with
jXTransformer Query

jXTransformer
API

DataDirect
JDBC Driver

1

3

2

4

5

RDBMS

4

XML
Document

5

3

DataDirect Connect for SQL/XML User’s Guide

Types of Connect for SQL/XML Queries 27
1 The Java application establishes a JDBC connection with the
database.

2 The Java application issues the jXTransformer query using the
jXTransformer API.

3 The jXTransformer API processes the jXTransformer query
and sends one or multiple SQL99 statements through the
DataDirect Technologies JDBC driver to the database to
retrieve the result set.

4 The DataDirect Technologies JDBC driver returns the
requested result set to the jXTransformer API.

5 The jXTransformer API formats the data in the XML structure
specified by the jXTransformer query and returns it to the
application (for example, in a DOM or JDOM representation)
or writes it to a standalone XML document file.

jXTransformer Query Example

jXTransformer queries contain two types of instructions for the
jXTransformer API to process. The first type of instruction is
conventional SQL99, which is used to identify the data that will
be retrieved. The second type includes XML constructors that are
used to create the XML structures of the data the query will
return.

For example, let us examine a simple SQL query:

SELECT
e.EmpID,
e.FirstName,
e.LastName,
e.Title,
e.StartDate,
e.HourlyRate

FROM Employees e WHERE e.StartDate >= {d '2000-01-01'}
DataDirect Connect for SQL/XML User’s Guide

28 Chapter 1 Connect for SQL/XML Overview
Now, let us compare the preceding SQL99 query with a
jXTransformer query that uses the same Select statement and
adds jXTransformer syntax constructs about how to structure the
data that the query retrieves in XML:

xml_document(xml_element('result',
SELECT

xml_element('Employees_Info',
xml_attribute('ID', e.EmpID),
xml_element('name',

xml_element('first', e.FirstName),
xml_element('last', e.LastName)),

xml_element('title', e.Title),
xml_element('hiredate', e.StartDate),
xml_element('salary', e.HourlyRate))

FROM Employees e WHERE e.StartDate >= {d '2000-01-01'}))

The resulting XML document for this jXTransformer query
example would look like this:

<?xml version="1.0" encoding="UTF-8" ?>
<result>

<Employees_Info ID='9'>
<name>

<first>Mike</first>
<last>Johnson</last>

</name>
<title>Mr</title>
<hiredate>2000-01-15 00:00:00.)</hiredate>
<salary>95</salary>

</Employees_Info>
<Employees_Info ID='18'>

<name>
<first>Sonia</first>
<last>Evans</last>

</name>
<title>Ms</title>
<hiredate>2000-10-0 00:00:00.0</hiredate>
<salary>105</salary>

</Employees_Info>
</result>
DataDirect Connect for SQL/XML User’s Guide

Types of Connect for SQL/XML Queries 29
See “Syntax of jXTransformer Queries” on page 153 for more
information about the syntax of jXTransformer queries.

SQL/XML or jXTransformer?

We recommend that you use SQL/XML whenever you can. You
may find, however, that the current SQL/XML extensions to the
SQL standard do not contain the functionality that you need. In
these cases, we still support our older jXTransformer language
because many developers need to perform updates or to create
processing instructions, CDATA Sections, comments, or
DOCTYPEs in the results of queries. In the future, we hope that
this functionality will all be available as part of the SQL standard.

Both SQL/XML and jXTransformer queries support the following
features:

� Read access to any relational database supported by
DataDirect Technologies JDBC drivers

� Support for constructing XML typed values based on
relational data

� Creation of XML structures based on standard JDBC result
sets

� DataDirect Query Builder for SQL/XML GUI tool that allows you
to quickly create, modify, and test Connect for SQL/XML queries
without having to know the details of the query syntax

� JAXP 1.2, DOM level 2, JDOM 1.0 Beta 7, SAX 2.0.1, writer
object interfaces, and XPath 1.0

� Parameter markers, SQL Select expressions, and JDBC scalar
functions within Connect for SQL/XML queries

� Reuse of prepared statements, batch updates, and other
performance-enhancing techniques
DataDirect Connect for SQL/XML User’s Guide

30 Chapter 1 Connect for SQL/XML Overview
The following list describes the features provided by
jXTransformer statements that are not provided by SQL/XML
queries:

� Write access to any relational database supported by
DataDirect Technologies JDBC drivers

� Native XML results (transforming into XML from result sets is
not required)

� Full support for XML, including:

• DTDs, XML schemas, and namespaces

• CDATA sections

• Comments in the XML document header

• Document-level processing instructions, such as the
specification of XSL stylesheets
DataDirect Connect for SQL/XML User’s Guide

jXTransformer Write Statements 31
jXTransformer Write Statements
To write data stored in XML documents to relational databases,
you create jXTransformer write statements (Insert, Update, and
Delete statements). jXTransformer write statements allow you to
perform the following tasks:

� jXTransformer Insert statements insert data from an XML
document into new rows in relational database tables.

� jXTransformer Update statements update data in relational
database tables with data from an XML document.

� jXTransformer Delete statements delete data in a relational
database table. The rows that are deleted are specified by a
Where clause in the jXTransformer Delete statement.

For example, suppose your company’s Human Resources (HR)
department uses a Web interface to enter and make changes to
employee information. When a HR representative adds a new
employee or changes an employee’s existing information using
the Web interface, the data is written to an XML document.
Because employee data is stored in an Oracle database for
payroll purposes, jXTransformer write statements are used in a
Java application that runs automatically at the end of each day
to change the employee data in the Oracle database.
DataDirect Connect for SQL/XML User’s Guide

32 Chapter 1 Connect for SQL/XML Overview
Architecture of jXTransformer Write
Statements in Java Applications

Figure 1-3 shows the components involved when jXTransformer
write statements are used in a Java application.

Figure 1-3. Architecture of a jXTransformer Write Statement in a
Java Application

1 The Java application establishes a JDBC connection with the
database.

2 The Java application issues the jXTransformer write statement
(Insert, Update, or Delete) using the jXTransformer API.

3 The jXTransformer API retrieves the data that is to be written
to the database from the XML document.

Java Application with
jXTransformer Write

Statements

jXTransformer
API

DataDirect
JDBC Driver

1

4

2

5

RDBMS

5

XML
Document

3

4

5

DataDirect Connect for SQL/XML User’s Guide

jXTransformer Write Statements 33
4 The jXTransformer API sends one or multiple SQL99
statements through the DataDirect Technologies JDBC driver
to the database and the database tables are updated.

5 The DataDirect Technologies JDBC driver returns the result of
executing the jXTransformer write statements to the
jXTransformer API, and the API returns update row count
values to the application.

See “Using jXTransformer Queries and Write Statements in a
Java Application” on page 223 for more information about
using a jXTransformer write statement in a Java application.

jXTransformer Write Statement
Example

The following example inserts new rows into the following
database tables:

� Employees table: EmpID, FirstName, LastName, Title,
StartDate, HourlyRate, and Resume columns

� EmpBenefits table: BenefitId, EmpId, Amount, and StartDate
columns

� Assignments table: ProjId, EmpId, and Task columns

The values for the columns are retrieved from the following XML
document named emp.xml:

<?xml version="1.0" encoding="UTF-8"?>
<insert>
<employee ID="21" FirstName="Anne" LastName="Dodsworth"
Title="Miss" StartDate="2001-10-24" HourlyRate="115">
<resume><![CDATA[

A. Dodsworth]]></resume>
DataDirect Connect for SQL/XML User’s Guide

34 Chapter 1 Connect for SQL/XML Overview
<benefits>
<benefit ID="1" Amount="1"/>
<benefit ID="2" Amount="175" StartDate="2001-11-01"/>

</benefits>
<projects>

<project ID="8">
<task>Analysis</task>
<task>Development</task>

</project>
<project ID="9">
<task>Analysis</task>

</project>
</projects>

</employee>
</insert>

Insert statement:

insert xml_document('emp.xml', 1)
into Employees (EmpId, FirstName, LastName, Title,
StartDate, HourlyRate, Resume)
xml_row_pattern('/insert/employee')
values(xml_xpath('@ID', 0, 'Integer'),

xml_xpath('@First'),
xml_xpath('@LastName'),
xml_xpath('@Title'),
xml_xpath('@StartDate', 'Timestamp'),
xml_xpath('@HourlyRate', 'Integer'),
xml_xpath('resume[1]/text()')

)
into EmpBenefits (BenefitId, EmpId, Amount, StartDate)
xml_row_pattern('/insert/employee/benefits/benefit')
values(xml_xpath('@ID', 'Integer'),

xml_xpath('../../@ID', 'Integer'),
xml_xpath('@Amount', 'Integer'),
xml_xpath('@StartDate', 'Timestamp')

)
into Assignments (ProjId, EmpId, Task)
xml_row_pattern('/insert/employee/projects/project/task')
values(xml_xpath('../@ID', 'Integer'),

xml_xpath('../../../@ID', 'Integer'),
DataDirect Connect for SQL/XML User’s Guide

jXTransformer Write Statements 35
xml_xpath('text()')
)

Results:

One new row inserted into the Employees table:

Two new rows inserted into the EmpBenefits table:

Three new rows inserted into the Assignments table:

See Chapter 6, “Syntax of jXTransformer Write Statements” on
page 173 for more information about the syntax for writing
jXTransformer write statements.

EmpId LastName FirstName Title StartDate EndDate HourlyRate Resume

21 Dodsworth Anne Miss 2001-10-24 115 <a href=
'http://www.xesdemo/
resume21.htm'>
A.Dodsworth

EmpId BenefitId StartDate EndDate Amount

21 1 2001-10-24 1

21 2 2001-22-01 175

EmpId ProjId Task StartDate EndDate TimeUsed EstimatedDuration

21 8 Analysis

21 8 Development

21 9 Analysis
DataDirect Connect for SQL/XML User’s Guide

36 Chapter 1 Connect for SQL/XML Overview
DataDirect Query Builder for SQL/XML

The DataDirect Query Builder for SQL/XML is a graphical user
interface tool that helps you create and modify Connect for
SQL/XML queries, both SQL/XML and jXTransformer queries. It also
allows you to test jXTransformer write statements. The following
example screen shows a SQL/XML query defined using the
Builder.

Figure 1-4. DataDirect Query Builder for SQL/XML
DataDirect Connect for SQL/XML User’s Guide

Connecting to the Database 37
You also can use the DataDirect Query Builder for SQL/XML to
check the syntax of queries and write statements before you use
them in your Java applications. You can save a Connect for
SQL/XML query as a Builder project file for future fine-tuning or
reuse.

See Chapter 3, “Creating Connect for SQL/XML Queries Using the
Builder” on page 61 for more information about using the
DataDirect Query Builder for SQL/XML to create Connect for
SQL/XML queries.

For a tutorial on using the DataDirect Query Builder for SQL/XML
to create:

� SQL/XML queries, see Chapter 9, “Tutorial: Using SQL/XML
Queries” on page 233

� jXTransformer queries, see Chapter 10, “Tutorial: Using
jXTransformer Queries” on page 253

Connecting to the Database
The way you connect to the database differs slightly depending
on whether you are using the SQL/XML JDBC driver or the
jXTransformer API to execute statements. In both cases, an
underlying DataDirect Technologies JDBC driver is used for the
connection to the database. Connect for SQL/XML works only with
DataDirect Technologies JDBC drivers.

For complete information about connecting to the database
when you are using:

� SQL/XML JDBC driver, see “Connecting to the Database” on
page 199

� jXTransformer API, see “Connecting to the Database” on
page 216
DataDirect Connect for SQL/XML User’s Guide

38 Chapter 1 Connect for SQL/XML Overview
DataDirect Connect for SQL/XML User’s Guide

39
2 Understanding Connect for
SQL/XML

This chapter describes some key features of Connect for SQL/XML
and provides examples to help you decide how to use them.

Using the Java Packages
Connect for SQL/XML contains two Java packages:
com.ddtek.jdbc.jxtr and com.ddtek.jxtr. The com.ddtek.jdbc.jxtr
package is mainly used for processing SQL/XML queries, and the
com.ddtek.jxtr package is used for processing jXTransformer
queries and jXTransformer write statements.

One interface, JXTRStatementFactory, within the
com.ddtek.jdbc.jxtr package is used to create instances of
com.ddtek.jxtr objects from a SQL/XML JDBC driver connection
object.
DataDirect Connect for SQL/XML User’s Guide

40 Chapter 2 Understanding Connect for SQL/XML
Using Both SQL/XML and jXTransformer
Statements in a Java Application

Both SQL/XML queries and jXTransformer statements can be used
in the same Java application. In this case, you can either:

� Use a SQL/XML JDBC driver connection to process both types
of statements. In this case, you must use the
JXTRStatementFactory interface of the com.ddtek.jdbc.jxtr
package to process the jXTransformer statements.

� Use a SQL/XML JDBC driver connection to process the
SQL/XML queries and a DataDirect Technologies JDBC driver
connection to process the jXTransformer statements.

When you are writing an application that uses both SQL/XML
queries and jXTransformer statements, you may find it useful to
use this interlace so that you only have one database connection
in your application.

Using SQL/XML Queries
This section provides information to help you use SQL/XML
queries to transform relational data into XML.

Using key_expr Hints

You can optimize processing of a SQL/XML query by specifying
key_expr hints as comments in your SQL/XML query. A key_expr
hint uniquely identifies each of the rows retrieved from the
database. If you do not specify any key_expr hint, all the selected
database columns concatenated together compose the key. Note
that the key columns are used to link parent rows to child rows
DataDirect Connect for SQL/XML User’s Guide

Using SQL/XML Queries 41
when you are using nested queries. In SQL/XML queries that do
not contain nested queries, there is no need to specify key_expr
hints. Notice that only the sorted_outer_union algorithm uses
keys; see the next section for a definition of this algorithm.

See “Using Connect for SQL/XML Hints” on page 195 for more
information about hints.

Using rewrite_algorithm Hints

A SQL/XML query cannot be passed directly to the underlying
database system; therefore, the SQL/XML JDBC driver translates
the query to one or multiple SQL Select statements. The
SQL/XML JDBC driver uses one of the following rewrite
algorithms to perform this translation:

� Nested loop
� Sorted outer union

You can specify which algorithm to use by specifying a
rewrite_algorithm hint in your SQL/XML query. Hints are placed
within comments in the SQL/XML query. If no algorithm is
specified, the driver uses sorted outer union.

The following list explains why you would use one algorithm
versus the other:

� If a SQL/XML query does not contain nested queries and you
want the order of the data to be determined by the database
system, use the nested loop algorithm. By default, the sorted
outer union algorithm is used, and data is sorted according
to key columns specified in the SQL/XML query.

� If you are connecting to a Sybase or an Informix database
and your SQL/XML query contains nested queries where both
parent and child queries contain SQL aggregate functions,
you must use the nested loop algorithm.
DataDirect Connect for SQL/XML User’s Guide

42 Chapter 2 Understanding Connect for SQL/XML
See “Using Connect for SQL/XML Hints” on page 195 for more
information about hints.

Creating Result Sets From SQL Queries

In addition to creating result sets from SQL/XML queries, the
SQL/XML JDBC driver also allows you to generate result sets from
normal SQL queries. These result sets do not contain XML values
unless the values are stored in the database as XML data types.
For example, if you process the following SQL query using the
SQL/XML JDBC driver:

SELECT e.FirstName, e.LastName
FROM Employees e AS Employees
WHERE e.EmpId < 3

Result Set:

This process is no different than returning a result set from a SQL
query with any DataDirect Technologies JDBC driver. See
“Connecting to the Database” on page 199 for instructions on
connecting with the SQL/XML JDBC driver.

Employees

Marc Marshall

Brian Ayers
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries 43
Using jXTransformer Queries
This section provides information to help you use jXTransformer
queries to transform relational data into XML.

Creating Hierarchical XML Documents

Using the jXTransformer query syntax, you can create
hierarchical XML documents and define parent and child
relationships for data from one or multiple database tables.
Also, you can use nested jXTransformer queries to link data from
multiple database tables and hierarchically structure that data.

Let us look at a simple jXTransformer query that retrieves data
from one database table and creates a hierarchical XML
document with one parent XML element named
Employees_info, and with one child element named name that is
parent to two child elements named first and last.

SELECT
xml_element('Employees_Info',

xml_attribute('Department', e.Dept),
xml_element('name',

xml_element('first', e.FirstName),
xml_element('last', e.LastName)))

FROM Employees e WHERE e.Dept = 'QA'

XML Result:

<Employees_Info Department='QA'>
<name>

<first>Paul</first>
<last>Steward</last>

</name>
</Employees_Info>
<Employees_Info Department='QA'>

<name>
<first>John</first>
DataDirect Connect for SQL/XML User’s Guide

44 Chapter 2 Understanding Connect for SQL/XML
<last>Jenkins</last>
</name>

</Employees_Info>

Now, look at another query that uses nested jXTransformer
queries. In this example, the nested query uses the e.EmpId
column to link the rows selected in the parent query with the
rows selected in the nested, or child, query. Using
xml_attribute_key in the parent query creates an XML attribute
and specifies that the e.EmpId column in the database uniquely
identifies the rows retrieved from the first query. Also, it specifies
that the attribute value uniquely defines the parent element
named employee.

SELECT
xml_element('employee',
xml_attribute_key('ID', e.EmpId),
xml_attribute('name',
{fn concat({fn concat(e.FirstName, ' ')},e.LastName)}),
(SELECT

xml_element('project',
xml_attribute('name',p.Name),
xml_attribute('task',a.Task))

FROM Projects p, Assignments a
WHERE p.ProjId=a.ProjId and a.EmpId=e.EmpId))

FROM Employees e WHERE e.EmpId < 3

XML Result:

<employee ID='1' name='Marc Marshall'
<project name='Medusa' task='Analysis'></project>
<project name='Medusa' task='Documentation'></project>
<project name='Medusa' task='Planning'></project>
<project name='Medusa' task='Testing'></project>
<project name='Phoenix' task='Analysis'></project>
<project name='Phoenix' task='Documentation'></project>

</employee>
<employee ID='2' name='Brian Ayers'
<project name='Python' task='Analysis'></project>
<project name='Python' task='Development'></project>
<project name='Hydra' task='Analysis'></project>
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries 45
<project name='Hydra' task='Documentation'></project>
</employee>

NOTE: When you use nested queries, you must use an explicit
key, specified through one, or a combination, of
xml_attribute_key, xml_element_key, and xml_hide_key;
otherwise, Connect for SQL/XML creates an implicit key by making
all the columns specified in the top-level jXTransformer query
part of the key, in which case, the query results could be
incorrect.

See “Choosing an XML Document Structure” on page 53 for
more information about choosing an XML document structure.

Using Keys

You can optimize processing of a jXTransformer query by
specifying key columns using the "key" keyword. If you do not
specify any key columns, Connect for SQL/XML automatically
assumes that all the selected columns concatenated together
compose the key. Notice that the key columns are used to link
parent rows to child rows when you are using jXTransformer
nested queries. In jXTransformer queries that do not contain
nested queries, there is no need to specify key columns.

The following jXTransformer query constructors support the
"key" keyword:

� xml_element_key
� xml_attribute_key
� xml_hide_key
DataDirect Connect for SQL/XML User’s Guide

46 Chapter 2 Understanding Connect for SQL/XML
Look at a jXTransformer query that uses the jXTransformer
constructor xml_hide_key. In this example, xml_hide_key is used
to relate parent rows to child rows.

SELECT
xml_element('employee',
xml_hide_key(e.EmpId),
xml_attribute('name',
{fn concat({fn concat(e.FirstName, ' ')},e.LastName)}),
(SELECT

xml_element('project',
xml_attribute('name',p.Name),
xml_attribute('task',a.Task))

FROM Projects p, Assignments a
WHERE p.ProjId=a.ProjId and a.EmpId=e.EmpId))

FROM Employees e WHERE e.EmpId < 3

XML Result:

<employee name='Marc Marshall'>
<project name='Medusa' task='Analysis'></project>
<project name='Medusa' task='Documentation'></project>
<project name='Medusa' task='Planning'></project>
<project name='Medusa' task='Testing'></project>
<project name='Phoenix' task='Analysis'></project>
<project name='Phoenix' task='Documentation'></project>

</employee>
<employee name='Brian Ayers'>

<project name='Python' task='Analysis'></project>
<project name='Python' task='Development'></project>
<project name='Hydra' task='Analysis'></project>
<project name='Hydra' task='Documentation'></project>

</employee>

NOTE: When you use nested queries, you must use an explicit key,
specified through one, or a combination, of xml_attribute_key,
xml_element_key, and xml_hide_key; otherwise, Connect for
SQL/XML creates an implicit key by making all the columns
specified in the top-level jXTransformer query part of the key, in
which case, the query results could be incorrect.
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries 47
Hiding Information

The jXTransformer query xml_hide[_key] constructor allows you
to select and "hide" database columns you do not want to
display in the resulting XML document. For example, suppose
you have a database table that contains the following employee
information:

SSN (primary key)
LastName
FirstName
JobTitle
Department
Salary
HireDate
ParentSSN

From this database table, you want to retrieve the names and
salaries of the employees in the "QA" department as well as list
dependents for those employees. In this case, to optimize
processing, you want to write a jXTransformer query that selects
the SSN column (a primary key), but you do not want to display
the SSN information in the XML document, so you use the
xml_hide_key construct to select the SSN data. The
jXTransformer query might look like:

SELECT
xml_element('QAemployees',
xml_hide_key(e.SSN),
xml_element('Salaries',

xml_element('first', e.FirstName),
xml_element('last', e.LastName),
xml_element('salary', e.Salary))
(SELECT
xml_element('children',

xml_attribute('first-name', c.first),
xml_attribute('last-name', c.last))

FROM Employees C WHERE c.ParentSSN=e.SSN))
FROM Employees e WHERE e.Department='QA'
DataDirect Connect for SQL/XML User’s Guide

48 Chapter 2 Understanding Connect for SQL/XML
This query retrieves information about employees in the QA
department and lists the names of their dependents. In this
query, using xml_hide_key optimizes processing of the query by
linking information about the parents with information about
their children through a common denominator, the SSN
information.

Creating ID/IDREFS Links

The jXTransformer query syntax allows you to create IDREFS as
values for XML attributes. IDREFS are references to unique
attribute ID values for XML elements in the same XML document.

You can use the jXTransformer query constructor xml_attribute to
create IDREFS using the following syntax:

xml_attribute ('xml_attribute_name', sql99_select)

When you specify a SQL query, a space-separated concatenation
of the complete result set is created; these values typically are
IDREFS for an ID attribute of another XML element in the same
XML document.

Using the xml_attribute query constructor, in combination with
multiple top-level queries within a jXTransformer query, you can
create ID/IDREFS links in the resulting XML document. To specify
multiple top-level queries, separate the queries with a
semicolon (;). The result is a single XML document that contains
the concatenation of the results of the different top-level
queries.
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries 49
Let us take a look at an example that creates ID/IDREFS links.

SELECT
xml_element('employees',

xml_attribute_key('emp-id',
{fn concat('e-',{fn convert(e1.EmpId,VARCHAR)})}),
xml_attribute('emp-name',e1.LastName),
xml_attribute('emp-benefits',
SELECT
{fn concat('b-',

{fn convert(eb1.BenefitId,VARCHAR)})}
FROM EmpBenefits eb1 WHERE eb1.EmpId=e1.EmpId))

FROM Employees e1 WHERE exists
(SELECT * from EmpBenefits eb2 WHERE e1.EmpId=eb2.EmpId)

;
SELECT
xml_element('benefits',

xml_attribute_key('benefit-id',
{fn concat('b-',
{fn convert(b2.BenefitId,VARCHAR)})}),

xml_attribute('benefit-description',b2.Description),
xml_attribute('benefit-employees',
SELECT
{fn concat('e-',

{fn convert(eb3.EmpId,VARCHAR)})}
FROM EmpBenefits eb3
WHERE eb3.BenefitId=b2.BenefitId))

FROM Benefits b2
WHERE exists
(SELECT * FROM EmpBenefits eb4
WHERE b2.BenefitId=eb4.BenefitId)

First query

Creates IDREFS

Semicolon separating
queries

Second query

Creates IDREFS
DataDirect Connect for SQL/XML User’s Guide

50 Chapter 2 Understanding Connect for SQL/XML
XML Result:

<employees emp-id="e-1" emp-name="Marshall"
emp-benefits="b-1 b-3" />

<employees emp-id="e-12" emp-name="Steward"
emp-benefits="b-3" />

<employees emp-id="e-2" emp-name="Allen"
emp-benefits="b-1 b-4" />

<benefits benefit-id="b-1" benefit-description="Bonus"
benefit-employees="e-1 e-2" />

<benefits benefit-id="b-3" benefit-description="Car"
benefit-employees="e-1 e-12" />

<benefits benefit-id="b-4" benefit-description="Commission"
benefit-employees="e-2" />

Creating XML Document Fragments

The jXTransformer query syntax allows you to create complete
XML documents and XML document fragments. Unlike a
document fragment, a complete XML document contains an XML
root element; in addition, it can contain processing instructions,
comments, and a reference to a private or public external DTD.

Typically, you create XML document fragments to insert into an
existing DOM or JDOM document. For example, suppose your
company wants to produce an XML document that contains a
sales report. This sales report contains a message to all sales
representatives as well as sales data that is retrieved from a
relational database. In this scenario, you first create a DOM
document that contains the message. Then, you use a
jXTransformer query to retrieve the sales data from the database
and to place the XML results into the existing DOM document.
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries 51
The Java application code required for this scenario might look
like:

import java.io.OutputStreamWriter;
import java.sql.*;
import org.w3c.dom.*;
import javax.xml.parsers.*;

import com.ddtek.jxtr.*;
{
//Load properties from the resource
loadProperties();

//Create JDBC connection
jdbcConnect();

//Build jXTransformer query
StringBuffer jxtrQ = new StringBuffer();
jxtrQ.append ("select ");
jxtrQ.append (" xml_element('Order-by-SalesID', ");
jxtrQ.append (" xml_attribute('Salesperson', o.SalesID), ");
jxtrQ.append (" xml_attribute('CustomerID', o.CustomerID), ");
jxtrQ.append (" xml_element('OrderDate', o.OrderDate), ");
jxtrQ.append (" xml_element('ShipDate', o.ShipDate), ");
jxtrQ.append (" xml_element('OrderAmount', o.OrderAmt)) ");
jxtrQ.append ("from Orders o order by o.SalesID ");

//Construct new JXTRQuery object
JXTRQuery jxtrQuery = JXTRQuery (conn, new String (jxtrQ))

// Create DOM Document through JAXP
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance ();
DocumentBuilder db = dbf.newDocumentBuilder ();
Document doc = db.newDocument ();

// Create root node and place it in DOM document
domRoot = doc.createElementNS (null, "sales-root");
doc.appendChild (domRoot);
DataDirect Connect for SQL/XML User’s Guide

52 Chapter 2 Understanding Connect for SQL/XML
// Create a child node for the root node and append it
Node domS1 = doc.createElementNS (null, "sales-query-result");
domRoot.appendChild (domS1);

// Create text content for the subelement
domS1.appendChild (doc.createTextNode ("Text message. . ."));

// Execute and place the result into the previously created DOM node
jxtrQuery.executeDOM (domS1);

// Close JDBC connection
jdbcDisconnect();

}

Creating XML in Result Sets

In addition to creating complete XML documents and XML
document fragments, you can also return XML values in result
sets from jXTransformer queries. For example, you may want to
return a large XML result of a jXTransformer query as a result set
so that you can process it row by row. To create a result set, use
the executeQuery method in the JXTRQuery class. Once you have
returned the XML as a result set, you can use the methods in the
JXTRColInfo class to work with those XML results.

Generating DTDs and Schemas

You can generate a DTD or schema that describes the structure of
the XML result of a jXTransformer query using the jXTransformer
API or the DataDirect Query Builder for SQL/XML. For example, you
may want to distribute a DTD or schema you have generated
describing the XML results of a jXTransformer query to a business
partner.
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries 53
The JXTRQuery class implements the methods you can use to
generate DTDs or schemas based on the XML result of a
jXTransformer query.

See “Generating DTDs and XML Schemas” on page 133 for
instructions on generating DTDs or XML schemas using the
DataDirect Query Builder for SQL/XML.

Choosing an XML Document Structure

jXTransformer queries provide the flexibility to define a complex
hierarchical structure for XML documents. jXTransformer queries
also allow you to generate XML documents from SQL queries. In
this case, the rows and columns returned from the SQL queries
are transformed into either to a flat-attribute or element-centric
XML structure (see the following sections for definitions).

Hierarchical XML

For hierarchical XML structures, all data retrieved from the
database is structured as defined by parent and child
relationships, and nested queries, using the jXTransformer query
syntax. The JXTRQuery class implements the methods to
transform a jXTransformer query into an XML structured
document. See “Creating Hierarchical XML Documents” on
page 43 for more information about structured XML.

Flat Attribute and Element-Centric Structures

The following XML documents are generated from executing a
SQL query, rather than a jXTransformer query:

� For flat-attribute XML structures, all data retrieved from the
database is structured inside attributes, one attribute for
each column. One element is created for each row retrieved
and the column values are defined as its attributes. The
DataDirect Connect for SQL/XML User’s Guide

54 Chapter 2 Understanding Connect for SQL/XML
attribute names are derived from the database column
names.

� For element-centric XML structures, all data retrieved from
the database is structured inside elements. One element is
created for each row retrieved and the column values are
defined as its subelements. The element names are derived
from the database column names.

The JXTRResultSetWrapper class implements the methods
required to execute a SQL query to generate attribute- and
element-centric XML documents.

In the following example, data is retrieved from the FirstName
and LastName table columns and is placed in an attribute-centric
or element-centric XML document.

SELECT e.FirstName, e.LastName
FROM Employees e
WHERE e.EmpId < 3

Attribute-Centric Result:

<?xml version="1.0" encoding="UTF-8" ?>
<jxtr-result>

<row FirstName='Marc' LastName='Marshall'/>
<row FirstName='Brian' LastName='Ayers'/>

</jxtr-result>

Element-Centric Result:

<?xml version="1.0" encoding="UTF-8" ?>
<jxtr-result>

<row>
<FirstName>Marc</FirstName>
<LastName>Marshall</LastName>

</row>
<row>

<FirstName>Brian</FirstName>
<LastName>Ayers</LastName>

</row>
</jxtr-result>
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries 55
Choosing an XML Output Format

The JXTRQuery and JXTRResultSetWrapper classes implement
the methods listed in Table 2-1 for generating XML documents.
These two classes are in the com.ddtek.jxtr package.

Table 2-1. jXTransformer Query XML Output Options

XML Document Output Options Methods

Write the XML document as a
character stream to a Writer object

executeWriter

Return the XML document as a DOM
level 2 document object

executeDOM

Create the XML document under an
existing DOM level 2 element node

executeDOM

Return the XML document as a
JDOM tree

executeJDOM

Create the XML document under an
existing JDOM tree element node

executeJDOM

Invoke SAX2 callbacks as XML
document results are being retrieved
from the database

executeSAX

Create the XML within a result set executeQuery
DataDirect Connect for SQL/XML User’s Guide

56 Chapter 2 Understanding Connect for SQL/XML
Choosing a Rewrite Algorithm

A jXTransformer query cannot be passed to the underlying
database system; therefore, Connect for SQL/XML translates a
jXTransformer query to one or multiple SQL Select statements or
uses one of the following jXTransformer rewrite algorithms to
perform this translation:

� Nested loop
� Sorted outer union
� Outer union
� For XML explicit

For a complete description of each rewrite algorithm, refer to the
Javadoc shipped with this product.

In most cases, you do not need to know the rewrite algorithm
Connect for SQL/XML uses to translate a jXTransformer query;
however, you may find it helpful to know the following
information about the rewrite algorithms:

� If a jXTransformer query does not contain nested queries, the
nested loop algorithm is used for the translation. When the
nested loop algorithm is used, the order of the data is
determined by the database system.

� For Informix and Sybase only: If your jXTransformer query
contains nested queries where both parent and child queries
contain aggregate functions, Connect for SQL/XML uses the
nested loop algorithm for translation. The nested loop
algorithm must be used.

� Do not use the outer union algorithm if your jXTransformer
query contains Distinct clauses.

The JXTRQuery class contains methods that allow you to specify
which rewrite algorithm you want to use for the translation of
your jXTransformer query.
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Write Statements 57
Using jXTransformer Write Statements
This section provides information you need to know to use
jXTransformer write statements to write data from XML
documents into your relational database.

jXTransformer Write Statement
Processing Overview

When the jXTransformer API executes a jXTransformer write
statement (Insert, Update, or Delete statements), the following
events occur:

1 The jXTransformer API validates the jXTransformer write
statement syntax.

2 One or multiple SQL99 Insert, Update, or Delete statements
are parsed from the jXTransformer write statements.

3 For each of the SQL99 Insert, Update, or Delete statements
resulting from the previous action, the following tasks are
performed:

a A JDBC preparedStatement is created.

b The xml_row_pattern XPath expressions in the statements
are evaluated against the input XML document and the
nodes specified by the XPath expressions are returned.

c For each of the nodes returned from the
xml_row_pattern XPath expressions, the following tasks
are performed:

• Each xml_xpath expression is evaluated and the
appropriate setXXX method is invoked on the JDBC
preparedStatement using the result of the xml_xpath
expression.
DataDirect Connect for SQL/XML User’s Guide

58 Chapter 2 Understanding Connect for SQL/XML
• The java.sql.PreparedStatement.addBatch method is
invoked on the JDBC prepared statement.

• The JDBC prepared statement is executed.

See Appendix B, “jXTransformer Query and Statement
Processing” on page 297 for more information about
jXTransformer write statement processing.

Disabling Autocommit Mode

When using jXTransformer write statements in Java applications,
we recommend that Autocommit mode be disabled. Invoke
con.setAutoCommit(false), execute the jXTransformer write
statement, and then, invoke con.commit() or con.rollback().

Choosing an XML Input Format

The JXTRUpdate and JXTRSingleTableUpdate classes implement
the methods listed in Table 2-2 for writing data from an XML
document to a relational database.

Table 2-2. jXTransformer Write XML Document Options

XML Document Input Options Methods

Read the XML document input as a
character stream to a Reader object

setReader

Read the XML document input as a
DOM level 2 document object

setDOM

Read the XML document input from a
DOM level 2 element node

setDOM

Read the XML document input as a
JDOM tree

setJDOM
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Write Statements 59
Read the XML document input from a
JDOM tree element node

setJDOM

Read the XML document input from a
SAX2 input source

setSAX

Table 2-2. jXTransformer Write XML Document Options(cont.)

XML Document Input Options Methods
DataDirect Connect for SQL/XML User’s Guide

60 Chapter 2 Understanding Connect for SQL/XML
DataDirect Connect for SQL/XML User’s Guide

61
3 Creating Connect for SQL/XML
Queries Using the Builder

This chapter explains how to create SQL/XML and jXTransformer
queries using the DataDirect Query Builder for SQL/XML (the
Builder). The Builder is a Java application that makes it easy for
you to create SQL/XML and jXTransformer queries without
having detailed knowledge of the query syntax.

For more information about:

� SQL/XML query syntax, see Chapter 4, “Syntax of SQL/XML
Queries” on page 141

� jXTransformer query syntax, see Chapter 5, “Syntax of
jXTransformer Queries” on page 153

HTML-based online help for the Builder is placed on your system
during the installation of your DataDirect product. To access help
for the Builder, you must have Internet Explorer 5.x or higher, or
Netscape 4.x or higher installed. Open the Builder help by
selecting Help / Contents.

NOTE: Depending on your configuration, you may have to
configure the Web browser as described in “Changing the GUI’s
General Appearance” on page 74 before you can use the Builder
help or the Web links in the Help menu.

For installation requirements and instructions for Connect for
SQL/XML and the Builder, refer to the Connect for SQL/XML
Installation Guide.
DataDirect Connect for SQL/XML User’s Guide

62 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Working with the Builder
Using the Builder, you can create and store SQL/XML and
jXTransformer queries in a SQL/XML Builder project file. Builder
project files for SQL/XML queries have the file extension .cfb;
Builder project files for jXTransformer queries (and jXTransformer
write statements) have the file extension .jxb.

The Builder allows you to create SQL/XML or jXTransformer
queries, execute the queries, and view the resulting XML using
the following types of views:

� Tree view uses nodes in a project tree to represent SQL/XML
and jXTransformer query constructs. To construct SQL/XML
and jXTransformer queries, you can add, modify, delete, and
move these nodes using position-sensitive menu commands
and drag-and-drop functionality. Detailed knowledge of the
SQL/XML or jXTransformer query syntax is not required to
construct a query in this view. To work in Tree view, select the
Tree View tab at the bottom of the SQL/XML Statement
window or jXTransformer Statement window.

� Text view allows you to construct SQL/XML and jXTransformer
queries using their respective query syntax. To work in Text
view, select the Text View tab at the bottom of the SQL/XML
Statement window or jXTransformer Statement window. For
more information about:

• SQL/XML query syntax, see Chapter 4, “Syntax of SQL/XML
Queries” on page 141

• jXTransformer query syntax, see Chapter 5, “Syntax of
jXTransformer Queries” on page 153

Text view also allows you to execute jXTransformer write
statements. See “Executing jXTransformer Write Statements”
on page 137 for instructions.
DataDirect Connect for SQL/XML User’s Guide

Working with the Builder 63
Using Tree and Text Views

Using Tree view, you can create and modify SQL/XML and
jXTransformer queries without having to know the syntax of
their respective query syntax. The SQL/XML and jXTransformer
query constructs are represented as nodes in a Builder project
tree, similar to a DOM tree, as shown in Figure 3-1. You can
structure the data you retrieve from the database any way you
want it in the resulting XML by adding, modifying, deleting, and
moving nodes. The following figure shows a Tree view of a
SQL/XML query.

Figure 3-1. jXTransformer Query in Tree View

Each node in the Builder project tree indicates the type of query
construct that node represents. See “Using Project Tree Nodes”
on page 65 for a list of the node types you can use in the Builder
project tree.
DataDirect Connect for SQL/XML User’s Guide

64 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
When you create SQL/XML and jXTransformer queries using a
Tree view, you can easily see the query syntax used in the source
of the query by switching to a Text view. The following figure
shows a Text view of a SQL/XML query.

 The same query shown in Tree view in Figure 3-1 is displayed in
Text view in Figure 3-2.

Figure 3-2. jXTransformer Query in Text View

Conversely, if you want to work in Text view and create a query
using the SQL/XML or jXTransformer query syntax, you can view
the resulting changes in the Builder project tree by switching to
Tree view.

For more information about:

� SQL/XML query syntax, see Chapter 4, “Syntax of SQL/XML
Queries” on page 141

� jXTransformer query syntax, see Chapter 5, “Syntax of
jXTransformer Queries” on page 153
DataDirect Connect for SQL/XML User’s Guide

Working with the Builder 65
NOTE: Before you can switch between Tree view and Text view,
the syntax of your query must be correct. The Builder generates
a message if an error is encountered. If an error is encountered,
you cannot switch views until you correct the error.

Using Project Tree Nodes

The node types you can create in a Builder project in Tree view
depend on whether you are creating a SQL/XML or
jXTransformer query.

SQL/XML Queries

Table 3-1 lists the SQL/XML query node types you can create in a
Builder project in Tree view and provides a description of each
node type. Notice that most of the node types correspond to
operators in the SQL/XML query syntax. See Chapter 4, “Syntax
of SQL/XML Queries” on page 141 for information about
SQL/XML query syntax.

Table 3-1. Builder Project Tree Nodes for SQL/XML Queries

SQL/XML Nodes Description

project node Specifies the parent node for the SQL/XML
query. This node is required and is created
when you create a Builder project. It cannot
be modified, moved, or deleted. This node is
used only in the Tree view and does not
correspond to a SQL/XML operator.
DataDirect Connect for SQL/XML User’s Guide

66 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Base SQL Query node Specifies a SQL query on which all or part of
the SQL/XML query is based. This node is
required. When specifying table names, you
must use unique table aliases. This node is
used only in Tree view and does not
correspond to a SQL/XML operator.

See “Using Base SQL Query Nodes” on
page 71 for more information.

ELEMENT node Specifies an XML element. This node can
have multiple values and mixed content.
This node corresponds to the XMLELEMENT
operator.

ATTRIBUTE node Specifies an XML attribute associated with
an ELEMENT node. This node corresponds to
a single attribute specified by the
XMLATTRIBUTES operator.

SELECT EXPR node Specifies a Select expression value for an
ELEMENT node.

CONSTANT node Specifies a constant value for an ELEMENT
node.

SELECT EXP KEY Specifies that a value that is a Select
expression for an ELEMENT node is also a
key. This node corresponds to a Connect for

SQL/XML hint; it does not correspond to a
SQL/XML operator.

ATTRIBUTE KEY Specifies that a value that is a Select
expression for an ATTRIBUTE node is also a
key. This node corresponds to a Connect for

SQL/XML hint; it does not correspond to a
SQL/XML operator.

CONCAT node Specifies a forest of elements that is
produced by concatenating a list of XML
values. This node corresponds to the
XMLCONCAT operator.

Table 3-1. Builder Project Tree Nodes for SQL/XML Queries (cont.)

SQL/XML Nodes Description
DataDirect Connect for SQL/XML User’s Guide

Working with the Builder 67
See “Creating and Modifying SQL/XML Queries in Tree View” on
page 80 for instructions on using these nodes to create SQL/XML
queries in Tree view of the Builder.

FOREST node Specifies a forest of elements that is
produced from a list of arguments. This
node corresponds to the XMLFOREST
operator.

FOREST ELEMENT node Specifies an element that belongs to a forest
of elements. This node corresponds to an
argument accepted by the XMLFOREST
operator.

AGG node Specifies a forest of elements that is
produced from a collection of XML
elements. This node corresponds to the
XMLAGG operator.

Table 3-1. Builder Project Tree Nodes for SQL/XML Queries (cont.)

SQL/XML Nodes Description
DataDirect Connect for SQL/XML User’s Guide

68 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
jXTransformer Queries

Table 3-2 lists the jXTransformer node types you can create in a
Builder project in Tree view and provides a description of each
node type. Notice that most of the node types correspond to
keywords in the jXTransformer query syntax. See Chapter 5,
“Syntax of jXTransformer Queries” on page 153 for information
about jXTransformer query syntax.

Table 3-2. Builder Project Nodes for jXTransformer Queries

jXTransformer Nodes Description

project node Specifies the parent node for the
jXTransformer query, which can contain
one or multiple sub-queries. This node is
required and is created when you create a
jXTransformer Builder project. It cannot be
modified, moved, or deleted. This node is
used only in the Tree view and does not
correspond to a jXTransformer keyword.

ROOT ELEMENT node Specifies the root element to be used for
the resulting XML document. When you
turn on the document header, a ROOT
ELEMENT node is inserted in the project
tree with the default root element name
jxtr-result. This node corresponds to the
xml_element keyword when the keyword is
used to specify a root element.

COMMENT node Specifies comments in the XML document
header. This node corresponds to the
xml_comment keyword.

PROCESSING
INSTRUCTION node

Specifies an XML processing instruction.
This node corresponds to the xml_pi
keyword.

EXTERNAL DTD node Specifies an external public or private DTD.
This node corresponds to the
xml_external_dtd keyword.
DataDirect Connect for SQL/XML User’s Guide

Working with the Builder 69
Base SQL Query node Specifies a SQL query on which all or part of
the jXTransformer query is based. This node
is required. When specifying table names,
you must use unique table aliases. This
node is used only in Tree view and does not
correspond to a jXTransformer keyword.

See “Using Base SQL Query Nodes” on
page 71 for more information.

ELEMENT node Specifies an XML element. This node can
have multiple values and mixed content.
This node corresponds to the xml_element
keyword.

ATTRIBUTE node Specifies an XML attribute associated with
an ELEMENT node or a ROOT ELEMENT
node. This node corresponds to the
xml_attribute keyword.

HIDE node Specifies a node that allows you to retrieve
information from the database you do not
want to include in the resulting XML
document. This node corresponds to the
xml_hide keyword.

CDATA node Specifies an XML CDATA section. This node
corresponds to the xml_cdata keyword.

NAMESPACE node Specifies an XML namespace associated
with an ELEMENT node or a ROOT
ELEMENT node. This node corresponds to
the xml_namespace keyword.

SELECT EXPR node Specifies Select expression value for an
ELEMENT node.

CONSTANT node Specifies a constant value for an ELEMENT
node.

SELECT EXP KEY Specifies that a value that is a Select
expression for an ELEMENT node is also a
key. This node corresponds to the
xml_element_key keyword.

Table 3-2. Builder Project Nodes for jXTransformer Queries (cont.)

jXTransformer Nodes Description
DataDirect Connect for SQL/XML User’s Guide

70 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
See “Creating and Modifying jXTransformer Queries in Tree
View” on page 96 for instructions on using these nodes to create
jXTransformer queries in Tree view of the Builder.

Working with Project Tree Nodes

You can expand or collapse any node in the project tree by
double-clicking that node or by single-clicking the + (plus sign) or
- (minus sign) for that node. You can also expand or collapse any
node and its child nodes by right-clicking the node and selecting
Expand Branch or Collapse Branch.

Builder menu commands in the Tree view are position-sensitive.
When you create a node, the new node becomes a child of the
selected node. For example, if you have an ELEMENT node
selected when you select Insert / Attribute Node, the ATTRIBUTE
node will be created as a child of that ELEMENT node.

Also, to help you create a valid query that complies with the
SQL/XML or jXTransformer query syntax, the Builder menu
commands that are available depend on the selected node.

ATTRIBUTE KEY Specifies that a value that is a Select
expression for an ATTRIBUTE node is also a
key. This node corresponds to the
xml_attribute_key keyword.

HIDE KEY Specifies that a value that is a Select
expression for a HIDE node is also a key.
This node corresponds to the xml_hide_key
keyword.

Table 3-2. Builder Project Nodes for jXTransformer Queries (cont.)

jXTransformer Nodes Description
DataDirect Connect for SQL/XML User’s Guide

Working with the Builder 71
Using Base SQL Query Nodes

The Base SQL Query node is a SQL query that forms a base for all
or part of your query. It is a required node in the Builder project
tree. It allows you to decide which data you want to retrieve
from the database before you create the query and facilitates
the process of constructing the query. Figure 3-3 shows a
SQL/XML query in Tree view. Notice the Base SQL Query node is
the first node under the project node named employees.

Figure 3-3. Base SQL Query in SQL/XML Query
DataDirect Connect for SQL/XML User’s Guide

72 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Starting the Builder
How you start the Builder depends on your platform:

� On Windows: Run the builder.bat file located in the Connect
for SQL/XML installation directory.

� On UNIX: Run the builder.sh shell script located in the Connect
for SQL/XML installation directory.

During a normal installation, the builder.bat file and builder.sh
script are automatically customized to include the path to your
JDK. If the installer was unable to detect a required JDK or you
want to change the JDK to be used, refer to the DataDirect
Connect for SQL/XML Installation Guide for instructions on
configuring the startup file for the Builder.

Customizing the Builder
You can customize the following settings in the Builder:

� General appearance of the GUI, including:

• Java Look and Feel theme

• Font size of the text in Builder menus and dialog boxes

• Web browser that is used to display the online help and
access the Web links in the Help menu

NOTE: You may have to configure this setting before you
can access the online help for the Builder and use the Web
links in the Help menu. See “Changing the GUI’s General
Appearance” on page 74 for instructions.

• Turn on and off debug logging
DataDirect Connect for SQL/XML User’s Guide

Customizing the Builder 73
� Editor in the Text view of the SQL/XML Statement window
and jXTransformer Statement window, as well as the XML
window. For example, you may want SQL/XML query
operators or jXTransformer keywords to appear in a blue
color or bold type.

� DataDirect Technologies JDBC drivers that are not shipped
with Connect for SQL/XML. A named driver for each of the
Connect for JDBC drivers and the SequeLink JDBC driver
shipped with Connect for SQL/XML is configured by default. To
use this feature, select Tools / Options. Then, select the
Drivers tab.

NOTE: This feature is reserved for DataDirect Technologies
use; only use when instructed to do so by DataDirect
Technologies.
DataDirect Connect for SQL/XML User’s Guide

74 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Changing the GUI’s General
Appearance
1 Select Tools / Options. The General tab appears.

2 In the Look and Feel group, complete the following
information:

Look and Feel: From the drop-down list, select the Java theme
you want to use. The default is Metal. The screenshots in this
book use the Windows Java theme.

Font Size: From the drop-down list, select the font size you
want the Builder to use for text in menus and dialog boxes.
The default is 12 points. The font size for the text and tree
views in the SQL/XML Statement window and jXTransformer
Statement window can be specified on the Editor tab.
DataDirect Connect for SQL/XML User’s Guide

Customizing the Builder 75
3 In the Other group, complete the following information:

Web Browser Command: Type the full path of the Web
browser executable to be used to display the online help and
access the Web links from the Help menu. Append a space
and %1 to the executable. For example:

C:\Program Files\Internet Explorer\iexplore.exe %1

Debug logging: Debug logging is used for troubleshooting
and dumps debug messages to your standard error stream. It
is turned off by default. Check the Debug logging check box
to turn debug logging on.

Changing the Text Editor
1 Select Tools / Options. Then, select the Editor tab.
DataDirect Connect for SQL/XML User’s Guide

76 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
2 To change the appearance of the editor in the:

� Text view of the SQL/XML Statement window and
jXTransformer Statement window, in the Category list,
select Query Editor. Continue with the next step.

� XML window, in the Category list, select XML Window.
The selections that are unavailable for the XML window
become disabled. Continue with Step 4.

3 To change the appearance of the editor in the Text view of
the SQL/XML Statement window and jXTransformer
Statement window, complete the following information:

Font: From the drop-down list, choose the font you want to
use in the text editor.

Size: From the drop-down list, choose the size of the font you
want to use in the text editor. The default is 12 points.

If you want to define a style for an item in the text editor,
which include comments, SQL/XML query operators or
jXTransformer query keywords, SQL keywords, numerical
values, and strings, select that item in the Style group. You
can distinguish any listed item by color, bold type, italic type,
or any combination of these characteristics.

NOTE: You can disable any style without deleting its
definition by selecting the Disable check box in the Style
group.

Select your choices, and click OK.

4 To change the appearance of the editor in the XML window,
complete the following information:

Font: From the drop-down list, choose the font you want to
use in the text editor.

Size: From the drop-down list, choose the size of the font you
want to use in the text editor. The default is 12 points.

Select your choices, and click OK.
DataDirect Connect for SQL/XML User’s Guide

Creating a Builder Project 77
Creating a Builder Project
From the main menu, select File / New Project. The New Project
dialog box appears, prompting you to select which type of
project to create: SQL/XML or jXTransformer.

From the drop-down list, select the type of Builder project
to create:

� Select SQL/XML to create a Builder project for SQL/XML
queries (.cfb).

� Select jXTransformer to create a Builder project for
jXTransformer queries or write statements (.jxb).

An untitled project node appears in Tree view of the SQL/XML
Statement window or jXTransformer Statement window,
depending on the type of Builder project you chose to create.
DataDirect Connect for SQL/XML User’s Guide

78 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
The following figure shows a newly created SQL/XML project in
the SQL/XML Statement window.

When you save the Builder project to a file, the project node is
renamed to the name of the Builder project file. You cannot
modify, move, or delete this node.

For instructions on creating and modifying:

� SQL/XML queries in Tree view, see “Creating and Modifying
SQL/XML Queries in Tree View” on page 80

� jXTransformer queries in Tree view, see “Creating and
Modifying jXTransformer Queries in Tree View” on page 96

� SQL/XML queries and jXTransformer queries and write
statements in Text view, see “Creating and Modifying
SQL/XML and jXTransformer Statements in Text View” on
page 114

When you are ready to save your Builder project, select File / Save
Project As. Specify the filename of the project, and click Save.
DataDirect Connect for SQL/XML User’s Guide

Opening a Builder Project 79
Opening a Builder Project
From the main menu, select File / Open Project. A dialog box
allows you to browse and select a project to open. Select the
Builder project you want to open, and click OK.

NOTE: Remember that Builder projects for SQL/XML queries have
a file extension of .cfb; Builder projects for jXTransformer
queries and jXTransformer write statements have a file extension
of .jxb.

A SQL/XML query or jXTransformer query appears in the Tree
view or the Text view of the Builder, depending on which view
was active when the project was last saved. A jXTransformer
write statement appears in Text view only.

Closing a Builder Project
When you are ready to close a Builder project, select File / Close
Project. You are prompted to confirm whether you want to save
the project before it is closed. Click OK to save the project. When
this project is opened again in the Builder, it will appear in the
view that was active when the project was last saved.
DataDirect Connect for SQL/XML User’s Guide

80 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Creating and Modifying SQL/XML Queries in
Tree View

This section describes how to create and modify SQL/XML queries
in Tree view and provides instructions on performing the
following tasks:

� “Creating Base SQL Query Nodes” on page 80
� “Creating XML Elements” on page 82
� “Creating XML Attributes” on page 84
� “Assigning Select Expression Values to ELEMENT Nodes” on

page 87
� “Assigning Constant Values to ELEMENT Nodes” on page 88
� “Creating a Forest of XML Elements” on page 89
� “Modifying Nodes” on page 94
� “Moving Nodes” on page 94
� “Deleting Nodes” on page 95

NOTE: Builder menu commands are position-sensitive. When
creating Builder project tree nodes, the resulting hierarchy
depends on the node you have selected when you perform the
menu command.

See “Creating and Modifying SQL/XML and jXTransformer
Statements in Text View” on page 114 for instructions on
creating and modifying queries and statements in Text view of
the Builder.

Creating Base SQL Query Nodes

A Base SQL Query node contains the SQL query on which the
SQL/XML query is based. A Base SQL Query node is required for
each SQL/XML sub-query within a Builder project. See “Using
Base SQL Query Nodes” on page 71 for information about using
Base SQL Query nodes.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying SQL/XML Queries in Tree View 81
To create a Base SQL Query node:

1 Right-click the project node, and select Insert / Base SQL
Query node. The Base SQL Query Node dialog box appears.

2 Using a simple Select statement, type a SQL query or click the
From File button to navigate to a text file that contains a SQL
query.

3 Click OK.

The Builder checks the SQL query for syntax. If an error is
detected, a dialog box appears describing the error. If no
errors are detected, a Base SQL Query node appears in the
Builder project tree.

Once a Base SQL Query node is created, you can construct the
SQL/XML query based on the Base SQL Query node, creating
other types of nodes for XML elements, attributes, and so on.
DataDirect Connect for SQL/XML User’s Guide

82 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Creating XML Elements

You specify XML elements in the Tree view of the Builder using
ELEMENT nodes. Because ELEMENT nodes can have multiple
values and mixed content, values of ELEMENT nodes are shown as
child nodes. You can create an ELEMENT node with any of the
following values:

� A Select expression, which can be any Select expression
specified in the Base SQL Query node (for example, a
database column such as e.LastName).

� A constant, which can be any character string literal (for
example, a literal such as 8 or TRUE).

� Empty (no value). Use this value if you want the node to
contain only XML subelements such as other XML elements or
a nested SQL/XML query.

Select Expression

1 Right-click a Base SQL Query node or an ELEMENT node, and
select Insert / Element Node / as Select Expression. The
Element Node dialog box appears.

2 In the Name field, type the name of the XML element.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying SQL/XML Queries in Tree View 83
3 From the Select Expression drop-down list, select an available
Select expression. This list is populated with the Select
expressions specified in the Base SQL Query node.

4 Select the Is Key? checkbox if the Select expression associated
with this node is the key or part of a multi-value key. Keys
uniquely identify each row selected by the base SQL query.

5 Click OK. The ELEMENT node appears in the project tree with
a Select expression node as its child.

Constant

1 Right-click a Base SQL Query node or an ELEMENT node, and
select Insert / Element Node / as Constant. The Element Node
dialog box appears.

2 In the Name field, type the name of the XML element.

3 In the Value field, type a constant value. This can be any
character string literal.

4 Click OK. The ELEMENT node appears in the project tree with
a CONSTANT node as its child.
DataDirect Connect for SQL/XML User’s Guide

84 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Empty

1 Right-click a Base SQL Query node or an ELEMENT node, and
select Insert / Element Node / Empty. The Element Node
dialog box appears.

2 In the Name field, type the name of the XML element.

3 Click OK. The ELEMENT node appears in the project tree.

Creating XML Attributes

You specify XML attributes in the Tree View of the Builder using
ATTRIBUTE nodes. You can create an ATTRIBUTE node with any of
the following values:

� A Select expression, which can be any Select expression
specified in the Base SQL Query node (for example, a
database column such as e.LastName).

� A constant, which can be any character string literal (for
example, a literal such as 8 or TRUE).
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying SQL/XML Queries in Tree View 85
Select Expression

1 Right-click an ELEMENT node, and select Insert / Attribute
Node / as Select Expression. The Attribute Node dialog box
appears.

2 In the Name field, type the name of the XML attribute.

3 From the Select Expression drop-down list, select an available
Select expression. This list is populated with the Select
expressions specified in the Base SQL Query node.

4 Select the Is Key? checkbox if the Select expression associated
with this node is the key or part of a multi-value key. Keys
uniquely identify each row selected by the base SQL query.

5 Click OK. The ATTRIBUTE node appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

86 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Constant

1 Right-click an ELEMENT node and select Insert / Attribute
Node / as Constant. The Attribute Node dialog box appears.

2 In the Name field, type the name of the XML attribute.

3 In the Value field, type a constant value. This can be any
character string literal.

4 Click OK. The ATTRIBUTE node appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying SQL/XML Queries in Tree View 87
Assigning Select Expression Values to
ELEMENT Nodes

Because XML elements can have multiple values and mixed
content, you can assign a Select expression value to an empty
ELEMENT node.

To assign a Select expression value to an ELEMENT node:

1 Select Insert / Select Expression Node. The Select Expression
Node dialog box appears.

2 From the Select Expression drop-down list, select an available
Select expression. This list is populated with the Select
expressions specified in the Base SQL Query node.

3 Select the Is Key? checkbox if the Select expression associated
with this node is the key or part of a multi-value key. Keys
uniquely identify each row selected by the base SQL query.

4 Click OK. The SELECT EXPR node appears in the project tree
as a child of the selected ELEMENT node.
DataDirect Connect for SQL/XML User’s Guide

88 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Assigning Constant Values to ELEMENT
Nodes

Because XML elements can have multiple values and mixed
content, you can assign a constant value to an empty ELEMENT
node.

To assign a constant value to an ELEMENT node:

1 Select Insert / Constant Node. The Constant Node dialog box
appears.

2 In the Value field, type a constant value. This can be any
character string literal.

3 Click OK. The CONSTANT node appears in the project tree as a
child of the selected ELEMENT node.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying SQL/XML Queries in Tree View 89
Creating a Forest of XML Elements

There are multiple ways to create a forest of XML elements,
which is a collection of XML elements. The Builder allows you to
create a forest of XML elements in Tree view using the following
types of nodes:

� FOREST nodes produce a forest of XML elements from a
given list of arguments. A FOREST node is parent to one or
multiple FOREST ELEMENT nodes. A FOREST ELEMENT node
corresponds to a single argument in the list of arguments.

� CONCAT nodes produce a forest of XML elements by
concatenating a list of XML values. The CONCAT node is
parent to one or multiple of the following nodes that
compose the list of XML values:

• ELEMENT nodes
• FOREST nodes
• Other CONCAT nodes
• AGG nodes

� AGG nodes produce a forest of XML elements from a
collection of XML elements. An AGG node is parent to only
one of the following nodes:

• ELEMENT nodes
• FOREST nodes
• CONCAT nodes
• AGG nodes

XML Forest

A FOREST node produces a forest of XML elements from a given
list of arguments. To create a FOREST node, select Insert / XML
Forest Node. The FOREST node appears in the project tree. Add
one or more Forest Elements as described in the next section.
DataDirect Connect for SQL/XML User’s Guide

90 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Forest Elements

You can create an FOREST ELEMENT node with any of the
following values:

� A Select expression, which can be any Select expression
specified in the Base SQL Query node (for example, a
database column such as e.LastName).

� A constant, which can be any character string literal (for
example, a literal such as 8 or TRUE).

� Empty (no value). Use this value if you want the node to
contain only XML subelements such as other XML elements or
a nested SQL/XML query.

Select Expression

1 Right-click a FOREST node, and select Insert / Forest Element
Node / as Select Expression. The Forest Element Node dialog
box appears.

2 In the Name field, type the name of the XML forest element.

3 From the Select Expression drop-down list, select an available
Select expression. This list is populated with the Select
expressions specified in the Base SQL Query node.

4 Select the Is Key? checkbox if the Select expression associated
with this node is the key or part of a multi-value key. Keys
uniquely identify each row selected by the base SQL query.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying SQL/XML Queries in Tree View 91
5 Click OK. The FOREST ELEMENT node appears in the project
tree with a Select expression node as its child.

Constant

1 Right-click a FOREST node, and select Insert / Forest Element
Node / as Constant. The Forest Element Node dialog box
appears.

2 In the Name field, type the name of the XML forest element.

3 In the Value field, type a constant value. This can be any
character string literal.

4 Click OK. The FOREST ELEMENT node appears in the project
tree with a CONSTANT node as its child.
DataDirect Connect for SQL/XML User’s Guide

92 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Empty

1 Right-click a FOREST node, and select Insert / Forest Element
Node / Empty. The Forest Element Node dialog box appears.

2 In the Name field, type the name of the XML forest element.

3 Click OK. The FOREST ELEMENT node appears in the project
tree.

XML Concatenation

CONCAT nodes produce a forest of XML elements by
concatenating a list of XML values.

To create a forest of XML elements using XML concatenation:

1 Select Insert / XML Concatenation Node. The CONCAT node
appears in the project tree.

2 Select the CONCAT node and add one or multiple nodes of
the following types to specify the list of XML values:

� ELEMENT nodes as described in “Creating XML Elements”
on page 82

� FOREST nodes as described in “XML Forest” on page 89

� CONCAT nodes as described in this procedure

� AGG nodes as describe in “XML Aggregate” on page 93
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying SQL/XML Queries in Tree View 93
XML Aggregate

AGG nodes produce a forest of XML elements from a collection
of XML elements that is specified using a single XML value.

To create a forest of XML elements using XML aggregate:

1 Select Insert / XML Aggregate Node. The XML Aggregate
Node dialog box appears allowing you to optionally specify
an Order by condition.

2 If you want to sort your results, in the Order by field, type a
value by which you want the returned result set to be sorted.
You can specify any alternative for a sort list as defined in the
document ISO/IEC 9075-2.

If you do not want to sort your results, leave the Order by
field empty.

3 Click OK. The AGG node appears in the project tree.

4 Select the AGG node and add one node of the following
node types to specify a collection of XML elements:

� ELEMENT nodes as described in “Creating XML Elements”
on page 82

� FOREST nodes as described in “XML Forest” on page 89

� CONCAT nodes as described in “XML Concatenation” on
page 92

� AGG nodes as described in this procedure
DataDirect Connect for SQL/XML User’s Guide

94 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Modifying Nodes

Right-click the node you want to modify, and select Edit. Change
the information in the dialog box as necessary. When you are
satisfied with your changes, click OK.

NOTES:

� You cannot modify a project node.

� Changes to a validated Base SQL Query node may invalidate
nodes in the project tree.

� For ELEMENT nodes, you can only change the name of the
node because ELEMENT nodes can contain multiple value
nodes.

Moving Nodes

Select the node you want to move. Then, drag and drop the node
to the location you want it to appear in the project tree.

NOTES:

� You cannot move the project node.

� The Builder restricts moves to valid choices as defined by the
SQL/XML syntax.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying SQL/XML Queries in Tree View 95
Deleting Nodes

Right-click the node you want to delete and select Delete. If the
selected node has children, a window appears asking you to
confirm the deletion of the node and all its children. To confirm,
click OK.

NOTES:

� When you delete a parent node with children nodes, the
children nodes are deleted also.

� You cannot delete the project node.
DataDirect Connect for SQL/XML User’s Guide

96 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Creating and Modifying jXTransformer
Queries in Tree View

This section describes how to create and modify jXTransformer
queries in Tree view and provides instructions on performing the
following tasks:

� “Turning on the Document Header” on page 97
� “Specifying Comments” on page 97
� “Specifying Processing Instructions” on page 98
� “Specifying an External DTD” on page 100
� “Creating Base SQL Query Nodes” on page 80
� “Creating XML Elements” on page 82
� “Creating XML Attributes” on page 84
� “Specifying Hide Information” on page 107
� “Creating XML CDATA Sections” on page 108
� “Specifying XML Namespaces” on page 110
� “Assigning Select Expression Values to ELEMENT Nodes” on

page 111
� “Assigning Constant Values to ELEMENT Nodes” on page 112
� “Modifying Nodes” on page 112
� “Moving Nodes” on page 113
� “Deleting Nodes” on page 113

NOTE: Builder menu commands are position-sensitive. When
creating Builder project tree nodes, the resulting hierarchy
depends on the node you have selected when you perform the
menu command.

See “Creating and Modifying SQL/XML and jXTransformer
Statements in Text View” on page 114 for instructions on
creating and modifying queries in Text view of the Builder.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying jXTransformer Queries in Tree View 97
Turning on the Document Header

To generate a complete XML document instead of an XML
document fragment from a jXTransformer query, you must turn
on the document header by selecting Insert / Document Header.
If you do not turn on the document header, an XML document
fragment is generated when the query is executed.

Turning on the document header automatically inserts a ROOT
ELEMENT node in the project tree with a default root element
name of jxtr-result. You can change the default root element
name by editing the ROOT ELEMENT node. See “Modifying
Nodes” on page 112 for instructions. Only one XML root
element is allowed in each XML document.

NOTE: When you turn off the document header, the ROOT
ELEMENT node, and any COMMENT, PROCESSING INSTRUCTION,
and EXTERNAL DTD nodes are deleted.

Specifying Comments

You can specify one or multiple comments in the document
header only. Comments are specified in the Tree view of the
Builder by using COMMENT nodes, with the project node as the
parent. To specify multiple comments, create multiple
COMMENT nodes, one for each comment.

NOTE: To create a COMMENT node, you first must turn on the
document header. See “Turning on the Document Header” on
page 97 for instructions.
DataDirect Connect for SQL/XML User’s Guide

98 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
To specify a comment:

1 Select the project node, and select Insert / Comment. The
Comment Node dialog box appears.

2 In the Comment field, type a comment.

3 Click OK. A COMMENT node with the specified comment
appears in the project tree.

Specifying Processing Instructions

You can create one or multiple processing instructions in the
resulting XML document. For example, if the generated XML
document will be viewed in a browser, you may want to specify a
processing instruction so that a specific XSL stylesheet is used
when the XML document is viewed. Processing instructions are
specified in the Tree view of the Builder using PROCESSING
INSTRUCTION nodes, with the project node as the parent. To
specify multiple processing instructions, create multiple
PROCESSING INSTRUCTION nodes, one node for each processing
instruction.

NOTE: To create a PROCESSING INSTRUCTION node, you first must
turn on the document header. See “Turning on the Document
Header” on page 97 for instructions.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying jXTransformer Queries in Tree View 99
To specify a processing instruction:

1 Select the project node, and select Insert / Processing
Instruction. The Processing Instruction Node dialog box
appears.

2 In the Processing instruction target field, type the target of
the processing instruction. For example, if you are specifying
a processing instruction for an XSL stylesheet, you may want
to type xsl-stylesheet.

3 In the Processing instruction field, type a valid XML
processing instruction. For example, if you are specifying a
processing instruction for an XSL stylesheet named
common.xsl, you would type:

type="text/xsl" href="file://common.xsl"

4 Click OK. A PROCESSING INSTRUCTION node with the
specified processing instruction appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

100 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Specifying an External DTD

You can specify an external private or public DTD in the
document header. External DTDs are specified in the Tree view of
the Builder using EXTERNAL DTD nodes, with the project node as
the parent.

NOTE: To create an EXTERNAL DTD node, you first must turn on
the document header. See “Turning on the Document Header”
on page 97 for instructions.

To view a DTD, you can open the DTD in the Open DTD window.
See “Opening an XML DTD” on page 129 for instructions.

To specify an external DTD:

1 Select the project node, and select Insert / External DTD. The
External DTD Node dialog box appears.

2 If specifying a public external DTD, in the Public Identifier
field, type the public identifier of the public external DTD. Do
not specify anything in this field if specifying a private
external DTD.

3 In the URI field, type the Uniform Resource Identifier that
identifies the external DTD.

4 Click OK. An EXTERNAL DTD node appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying jXTransformer Queries in Tree View 101
Creating Base SQL Query Nodes

A Base SQL Query node contains the SQL query on which the
jXTransformer query is based. A Base SQL Query node is required
for each jXTransformer sub-query within a Builder project. See
“Using Base SQL Query Nodes” on page 71 for information
about using Base SQL Query nodes.

To create a Base SQL Query node:

1 Right-click the project node or a ROOT ELEMENT node, and
select Insert / Base SQL Query node. The Base SQL Query
Node dialog box appears.

2 Using a simple Select statement, type a SQL query or click the
From File button to navigate to a text file that contains a SQL
query.

3 Click OK.

The Builder checks the SQL query for syntax. If an error is
detected, a dialog box appears describing the error. If no
errors are detected, a Base SQL Query node appears in the
project tree.

Once a Base SQL Query node is created, you can construct the
jXTransformer query based on the Base SQL Query node,
DataDirect Connect for SQL/XML User’s Guide

102 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
creating other types of nodes for jXTransformer elements,
attributes, and so on.

Creating XML Elements

You specify XML elements in the Tree view of the Builder using
ELEMENT nodes. Because ELEMENT nodes can have multiple
values and mixed content, values of ELEMENT nodes are shown as
child nodes. You can create an ELEMENT node with any of the
following values:

� A Select expression, which can be any Select expression
specified in the Base SQL Query node (for example, a
database column such as e.LastName).

� A constant, which can be any character string literal (for
example, a literal such as 8 or TRUE).

� Empty (no value). Use this value if you want the node to
contain only XML subelements such as other XML elements,
mixed content, or a nested jXTransformer query.

Select Expression

1 Right-click a Base SQL Query node or an ELEMENT node, and
select Insert / Element Node / as Select Expression. The
Element Node dialog box appears.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying jXTransformer Queries in Tree View 103
2 In the Name field, type the name of the XML element.

3 From the Select Expression drop-down list, select an available
Select expression. This list is populated with the Select
expressions specified in the Base SQL Query node.

4 Select the Is Key? checkbox if the Select expression associated
with this node is the key or part of a multi-value key. Keys
uniquely identify each row selected by the base SQL query.

5 Click OK. The ELEMENT node appears in the project tree with
a Select expression node as its child.

Constant

1 Right-click a Base SQL Query node or an ELEMENT node, and
select Insert / Element Node / as Constant. The Element Node
dialog box appears.

2 In the Name field, type the name of the XML element.

3 In the Value field, type a constant value. This can be any
character string literal.
DataDirect Connect for SQL/XML User’s Guide

104 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
4 Click OK. The ELEMENT node appears in the project tree with
a CONSTANT node as its child.

Empty

1 Right-click a Base SQL Query node or an ELEMENT node, and
select Insert / Element Node / Empty. The Element Node
dialog box appears.

2 In the Name field, type the name of the XML element.

3 Click OK. The ELEMENT node appears in the project tree.

Creating XML Attributes

You specify XML attributes in the Tree View of the Builder using
ATTRIBUTE nodes. You can create an ATTRIBUTE node with any of
the following values:

� A Select expression, which can be any Select expression
specified in the Base SQL Query node (for example, a
database column such as e.LastName).

� A constant, which can be any character string literal (for
example, a literal such as 8 or TRUE).

� A SQL query (typically used to construct IDREF values for an
XML attribute). This query must select only one table column.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying jXTransformer Queries in Tree View 105
Select Expression

1 Right-click an ELEMENT node, and select Insert / Attribute
Node / as Select Expression. The Attribute Node dialog box
appears.

2 In the Name field, type the name of the XML attribute.

3 From the Select Expression drop-down list, select an available
Select expression. This list is populated with the Select
expressions specified in the Base SQL Query node.

4 Select the Is Key? checkbox if the Select expression associated
with this node is the key or part of a multi-value key in the
database. Keys uniquely identify each row selected by the
base SQL query.

5 Click OK. The ATTRIBUTE node appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

106 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Constant

1 Right-click an ELEMENT node and select Insert / Attribute
Node / as Constant. The Attribute Node dialog box appears.

2 In the Name field, type the name of the XML attribute.

3 In the Value field, type a constant value. This can be any
character string literal.

4 Click OK. The ATTRIBUTE node appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying jXTransformer Queries in Tree View 107
SQL Query

1 Right-click an ELEMENT node and select Insert / Attribute
Node / as SQL Query. The Attribute Node dialog box appears.

2 In the Name field, type the name of the XML attribute.

3 From the Select Expression field, type a SQL query or click the
From File button to navigate to a text file that contains a SQL
query. This query must select only one table column.

4 Click OK. The ATTRIBUTE node appears in the project tree.

Specifying Hide Information

You can retrieve information from the database that you do not
want to include in the resulting XML document using HIDE
nodes. Hide information typically is used to select database
columns that are a key or part of a multi-value key that you do
not want to display in the resulting XML document.
DataDirect Connect for SQL/XML User’s Guide

108 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
To specify hide information:

1 Right-click the Base SQL Query node or an ELEMENT node,
and select Insert / Hide Node. The Hide Node dialog box
appears.

2 From the Select Expression drop-down list box, select a Select
expression. This list is populated with the Select expressions
specified in the Base SQL Query node.

3 Select the Is Key? checkbox if the select expression associated
with this node is the key or part of a multi-value key. Keys
uniquely identify each row selected by the base SQL query.

4 Click OK. The HIDE node appears in the project tree.

Creating XML CDATA Sections

You can create CDATA sections in the Tree view of the Builder
using CDATA nodes. You can create a CDATA node with any of
the following values:

� Select expression, which can be any Select expression
specified in the Base SQL Query node (for example, a
database column such as e.LastName).

� Constant, which can be any character string literal (for
example, a literal such as 8 or TRUE).
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying jXTransformer Queries in Tree View 109
Select Expression

1 Right-click the Base SQL Query node or an ELEMENT node,
and select Insert / CDATA Node / as Select Expression. The
CDATA Node dialog box appears.

2 From the Select Expression drop-down list, select a Select
expression. This list is populated with the Select expressions
specified in the Base SQL Query node.

3 Click OK. The CDATA node appears in the project tree.

Constant

1 Right-click the Base SQL Query node or an ELEMENT node,
and select Insert / CDATA Node / as Constant. The CDATA
Node dialog box appears.
DataDirect Connect for SQL/XML User’s Guide

110 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
2 In the Value field, type a constant value or click the From File
button to navigate to a file containing the constant value.
This can be any character string literal.

3 Click OK. The CDATA node appears in the project tree.

Specifying XML Namespaces

An XML namespace allows you to create a namespace definition
for an XML element. You can create XML namespace definitions
in the Tree view of the Builder using NAMESPACE nodes.

To specify a namespace:

1 Right-click an ELEMENT node or a ROOT ELEMENT node, and
select Insert / Namespace Node. The Namespace Node dialog
box appears.

2 (Optional) In the Prefix field, type a prefix for the namespace.
If you do not specify a prefix, the default XML namespace will
be defined.

3 In the Namespace URI field, type a URI to identify the
namespace.

4 Click OK. The NAMESPACE node appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying jXTransformer Queries in Tree View 111
Assigning Select Expression Values to
ELEMENT Nodes

Because XML elements can have multiple values and mixed
content, you can assign a Select expression value to an empty
ELEMENT node.

To assign a Select expression value to an ELEMENT node:

1 Select Insert / Select Expression Node. The Select Expression
Node dialog box appears.

2 From the Select Expression drop-down list, select an available
Select expression. This list is populated with the Select
expressions specified in the Base SQL Query node.

3 Click OK. The SELECT EXPR node appears in the project tree
as a child of the selected ELEMENT node.
DataDirect Connect for SQL/XML User’s Guide

112 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Assigning Constant Values to ELEMENT
Nodes

Because XML elements can have multiple values and mixed
content, you can assign a constant value to an empty ELEMENT
node.

To assign a constant value to an ELEMENT node:

1 Select Insert / Constant Node. The Constant Node dialog box
appears.

2 In the Value field, type a constant value. This can be any
character string literal.

3 Click OK. The CONSTANT node appears in the project tree as a
child of the selected ELEMENT node.

Modifying Nodes

Right-click the node you want to modify, and select Edit. Change
the information in the dialog box as necessary. When you are
satisfied with your changes, click OK.
DataDirect Connect for SQL/XML User’s Guide

Creating and Modifying jXTransformer Queries in Tree View 113
NOTES:

� You cannot modify a project node.

� Changes to a validated Base SQL Query node may invalidate
nodes in the project tree.

� For ELEMENT nodes, you can only change the name of the
node because ELEMENT nodes can contain multiple value
nodes.

Moving Nodes

Select the node you want to move. Then, drag and drop the
node to the location you want it to appear in the project tree.

NOTES:

� You cannot move the project node.

� The Builder restricts moves to valid choices as defined by the
jXTransformer query syntax.

Deleting Nodes

Right-click the node you want to delete and select Delete. If the
selected node has children, a window appears asking you to
confirm the deletion of the node and all its children. To confirm,
click OK.

NOTES:

� When you delete a parent node with children nodes, the
children nodes are deleted also.

� You cannot delete the project node.
DataDirect Connect for SQL/XML User’s Guide

114 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Creating and Modifying SQL/XML and
jXTransformer Statements in Text View

To create and modify SQL/XML and jXTransformer statements in
Text view, you must be familiar with their respective syntax. Using
valid syntax, you can type the statement in the Text view of the
Builder. Figure 3-4 shows a SQL/XML query in the Text view of the
SQL/XML Statement window.

Figure 3-4. SQL/XML Query in Text View

You can also copy or import an existing SQL/XML or
jXTransformer query or statement into Text view of the Builder
and modify them as needed. See “Importing a Query or
Statement” on page 115 for instructions.
DataDirect Connect for SQL/XML User’s Guide

Importing a Query or Statement 115
For more information about:

� SQL/XML query syntax, see Chapter 4, “Syntax of SQL/XML
Queries” on page 141

� jXTransformer query syntax, see Chapter 5, “Syntax of
jXTransformer Queries” on page 153

� jXTransformer write statement syntax, see Chapter 6, “Syntax
of jXTransformer Write Statements” on page 173

Importing a Query or Statement
You can only import a query or statement into Text view of the
Builder.

To import a query or statement:

1 Select File / Import Statement. The Open Statement
Document dialog box appears allowing you to specify a path
to an existing query or statement.

2 In the Path field, type the path to the file containing the
query or statement, or click the Browse (...) button to
navigate to the file.
DataDirect Connect for SQL/XML User’s Guide

116 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
3 Click OK. The contents of the specified file appear in the
SQL/XML Statement window or jXTransformer Statement
window.

Checking Query or Statement Syntax
When you switch between the Tree and Text views, the Builder
automatically checks the syntax of your query or statement. If an
error is encountered, a message is generated. You can also check
the syntax of a query or statement by selecting Project / Check
Statement Syntax.

Connecting to the Database
To browse the database or execute a query or statement, a JDBC
connection to the database using a DataDirect Technologies JDBC
driver is required. The JDBC connection can be accomplished
using a JDBC connection URL or JDBC data source.
DataDirect Connect for SQL/XML User’s Guide

Connecting to the Database 117
To connect to the database:

Select Project / Connect to Database. The Open JDBC Connection
dialog box appears.

The Connection URL option is selected by default. If you want to
connect to the database using:

� JDBC connection URL, continue with “Connecting Using JDBC
Connection URLs” on page 118

� JDBC data source, continue with “Connecting Using JDBC
Data Sources” on page 119
DataDirect Connect for SQL/XML User’s Guide

118 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Connecting Using JDBC Connection
URLs

When you connect to the database, the Open JDBC Connection
dialog box appears with the Connection URL option selected by
default.

To connect using a JDBC connection URL:

1 In the Driver group, type or select the driver you want to use
for the connection from the drop-down list. You can enter
any driver class specified in your classpath or enter any named
driver that you have explicitly configured.

2 In the Connection group, complete the following
information:

URL: Select the URL you want to use for the connection from
the drop-down list or type a URL.

UID: Type a user name for the database.

PWD: Type a password for the database.
DataDirect Connect for SQL/XML User’s Guide

Connecting to the Database 119
3 Click OK. When you are connected, a message confirming the
connection appears in the Output window.

Connecting Using JDBC Data Sources

NOTE: To use JDBC data sources with the Builder if you are not
using JDK 1.4 or higher, you must install the JNDI service
providers used by your data sources and you must install the
following Java packages and include them in your classpath:

� JDBC 2.0 Optional Package
� Java Naming and Directory Interface Package

To connect to the database using a JDBC data source, select the
data source option on the Open JDBC Connection dialog box.
The fields on the dialog box change to accommodate
information required for a data source.
DataDirect Connect for SQL/XML User’s Guide

120 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
To connect using a JDBC data source:

1 In the JNDI group, complete the following information:

Context Factory: Type the name of the JNDI context factory to
be used, or select the name from the drop-down list.

Provider URL: Type the URL that locates the JNDI provider to
be used, or select a URL from the drop-down list.

2 In the Data Source group, complete the following
information:

Name: Type the name of the data source you want to use for
the connection.

UID: Type a user name for the database.

PWD: Type a password for the database.

3 Click OK. When you are connected, a message confirming the
connection appears in the Output window.

Executing a Query or Statement
Once you execute a query or statement, you can view the results
in Tree view or Text view by selecting the appropriate tab at the
bottom of the results window. The type of results that are
returned depend on the type of query or statement being
executed:

� A SQL/XML query returns a result set, where one or multiple
columns in the result set can contain XML type values. The
Builder displays these result sets by concatenating all columns
or rows after converting the values to strings.

� A jXTransformer query returns an XML document or XML
document fragment.

� A jXTransformer write statement returns a list of update
counts.
DataDirect Connect for SQL/XML User’s Guide

Executing a Query or Statement 121
To execute a query or statement:

1 Select Project / Execute Statement. If you are not connected
to the database, you first must make a JDBC connection. The
Open JDBC Connection dialog box appears.

The Connection URL option is selected by default. If you
want to connect to the database using:

� JDBC connection URL, see “Connecting Using JDBC
Connection URLs” on page 118

� JDBC data source, see “Connecting Using JDBC Data
Sources” on page 119
DataDirect Connect for SQL/XML User’s Guide

122 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
2 Parameter markers are placeholders for values, represented
by question marks (?). If a query contains parameter markers,
the Statement Parameters dialog box appears, prompting you
for the parameter marker values.

In the Value field, type the value of the parameter marker or
select the Null checkbox to set the parameter marker to a null
value. Then, click OK.

The Execute Statement dialog box appears.
DataDirect Connect for SQL/XML User’s Guide

Executing a Query or Statement 123
3 In the Output group, select one of the following options:

� To Window causes the results to display in a separate
window. You can save the results to a file from this
window by selecting File / Save as.

� To File causes the results to be saved directly to a file
instead of displaying it in the Builder. Type the path and
name of the file in the associated field, or click the
Browse (...) button to browse to a file.

4 In the Options group, complete the following information:

Execute using ResultSetWrapper: This option is enabled only
for jXTransformer query projects that execute a SQL query; it
is disabled for all SQL/XML queries. Check this option to
execute the SQL query using an attribute-centric or
element-centric formula.

Mode: From the drop-down list, select attribute-centric or
element-centric to choose a document structure for the SQL
query.

See “Choosing an XML Document Structure” on page 53 for
information about attribute-centric and element-centric
document structures.

Beautify: This option is turned on by default. The Beautify
option formats the content of XML with standard indents
and line breaks. Uncheck the Beautify checkbox to turn off
this option. The content of XML will be formatted without
indents and line breaks.

Encoding: Select the type of encoding to use for the XML.
The default depends on your platform.

5 From the Rewrite Algorithm drop-down list, select a rewrite
algorithm. In most cases, you should use the default.
DataDirect Connect for SQL/XML User’s Guide

124 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
For more information about choosing rewrite algorithms for:

� SQL/XML queries, see “Using rewrite_algorithm Hints” on
page 41

� jXTransformer queries, see “Choosing a Rewrite
Algorithm” on page 56

6 Click OK to execute the query or statement. If you
selected the:

� To Window option, results appear in a separate window.
Select File / Save as to save the results to a file. The
following figure shows an XML document fragment, the
result of a jXTransformer query.

� To File option, the results are saved to the specified file.
DataDirect Connect for SQL/XML User’s Guide

Browsing the Database 125
Browsing the Database
To make sure that you know the correct columns and table
names to retrieve from the database and use in your query, you
can browse the database using a tool within the Builder named
the DataDirect Technologies Database Browser (or Database
Browser). A JDBC connection is required to browse the database.
The Database Browser also allows you to customize the JDBC
filter settings. See “Customizing JDBC Filter Settings” on
page 127 for instructions.

Using the Database Browser
1 To open the Database Browser, select Tools / Database

Browser. The Database Browser appears.

This example shows the Database Browser in a
non-connected state. If you were already connected to the
database when you opened the Database Browser, you
would see the database tree in the left pane.
DataDirect Connect for SQL/XML User’s Guide

126 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
2 If you are already connected to the database, continue with
Step 3. Otherwise, make a JDBC connection. Right-click the
Not connected node in the Database Browser, and select
Connect to Database. The Open JDBC Connection dialog box
appears.

The Connection URL option is selected by default. If you want
to connect to the database using:

� JDBC connection URL, see “Connecting Using JDBC
Connection URLs” on page 118

� JDBC data source, see “Connecting Using JDBC Data
Sources” on page 119

Then, continue with the next step.

3 Browse the database as needed. You can expand any node in
the database tree by double-clicking that node or by
single-clicking the + (plus sign) for that node. When you select
an entity in the database tree, its properties appear in the
DataDirect Connect for SQL/XML User’s Guide

Browsing the Database 127
right pane of the Database Browser as shown in the
following example:.

Customizing JDBC Filter Settings

You can customize JDBC filter settings in the Database Browser
to show specific database tables. For example, you may want to
customize the filter settings to view database tables that begin
with the characters "Emp."
DataDirect Connect for SQL/XML User’s Guide

128 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
To customize the JDBC filter settings:

1 In the Database Browser, select Tools / Options. The Options
dialog box appears.

2 In the Name group, complete the following information:

Show All Catalogs: Select this checkbox if you want to show
all catalogs in the database.

Schema: Using the % character as a wildcard, set a filter to
only show schemas named with the characters you specify.

Table: Using the % character as a wildcard, set a filter to only
show tables named with the characters you specify.

Column: Using the % character as a wildcard, set a filter to
only show columns named with the characters you specify.
DataDirect Connect for SQL/XML User’s Guide

Opening an XML DTD 129
3 In the Type group, select the type of information you want to
see when you browse the database.

4 When you are satisfied with your JDBC filter settings, click OK.

Opening an XML DTD
You can open an XML DTD in a separate window in the Builder
for reference. For example, you may want to compare a DTD
definition with the structure of an XML document.

To open a DTD:

1 Select File / Open DTD. The Open DTD dialog box appears.

2 In the Path field, select a path to the DTD you want to open
from the drop-down list, type the path, or click the
Browse (...) button to browse and select a DTD.
DataDirect Connect for SQL/XML User’s Guide

130 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
3 Click OK. A window opens with the path and name of the
DTD displayed in the top-level node. The following figure
shows a jXTransformer query with a DTD opened.
DataDirect Connect for SQL/XML User’s Guide

Opening an XML Document 131
Opening an XML Document
You can open an XML document in a separate window in the
Builder for reference. The Builder allows you to view the XML
document in Tree view or Text view.

To open an XML document:

1 Select File / Open XML Document. The Open XML Document
dialog box appears.

2 In the Path field, select a path to the XML document you
want to open from the drop-down list, type the path, or click
the Browse (...) button to browse and select an XML
document.
DataDirect Connect for SQL/XML User’s Guide

132 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
3 Click OK. The XML document opens in a separate window
with the path and name of the XML document in the title bar.
The following figure shows a jXTransformer query with an
XML document opened in the separate window.
DataDirect Connect for SQL/XML User’s Guide

Generating DTDs and XML Schemas 133
Generating DTDs and XML Schemas
This section describes how to generate DTDs and XML schemas
from a jXTransformer query using the Builder.

Generating a DTD
1 With a jXTransformer query open, select Project / Create DTD

from query. If you are not connected to the database, you
first must make a JDBC connection. The Open JDBC
Connection dialog box appears.

The Connection URL option is selected by default. If you
want to connect to the database using:

� JDBC connection URL, see “Connecting Using JDBC
Connection URLs” on page 118

� JDBC data source, see “Connecting Using JDBC Data
Sources” on page 119
DataDirect Connect for SQL/XML User’s Guide

134 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Then, continue with the next step.

2 Use the Create DTD dialog box to navigate to an existing
directory or create a new directory for the DTD, and specify
the filename of the DTD you want to create. Then, click Save.

The DTD is created in the specified directory and appears in a
separate window.
DataDirect Connect for SQL/XML User’s Guide

Generating DTDs and XML Schemas 135
Generating an XML Schema

To generate an XML schema using the Builder, you must specify
every namespace URI defined in your query. A separate XML
schema will be created for each specified namespace.

To generate an XML schema:

1 With a jXTransformer query open, select Project / Create XML
Schema from query. If you are not connected to the
database, you first must make a JDBC connection. The Open
JDBC Connection dialog box appears.

The Connection URL option is selected by default. If you
want to connect to the database using:

� JDBC connection URL, see “Connecting Using JDBC
Connection URLs” on page 118

� JDBC data source, see “Connecting Using JDBC Data
Sources” on page 119

Then, continue with the next step.
DataDirect Connect for SQL/XML User’s Guide

136 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
2 The Create XML Schema dialog box appears.

In the Output group, map namespace URIs or XML constructs
that are not qualified by a namespace to XML schema files by
completing the following information:

Namespace URI: Type each namespace URI specified in your
query as a separate entry. To generate an XML schema for
XML constructs that are not qualified by a namespace, create
a blank entry in this field, but make sure that you complete
the Path field for that entry.

Path: Type the corresponding full path and name of the file to
which you want each XML schema saved, or click the
Browse (...) button to navigate to a file.

3 In the Options group, complete the following information:

Beautify: This option is turned on by default. The Beautify
option formats the content of the XML schema with standard
indents and line breaks. Uncheck the Beautify checkbox to
turn off this option. The content of the XML schema will be
formatted without indents and line breaks.
DataDirect Connect for SQL/XML User’s Guide

Executing jXTransformer Write Statements 137
Encoding: Select the type of encoding to use for the XML
schema. The default depends on your platform.

4 Click OK. A separate XML schema is generated for each
namespace entry and, if specified, any XML constructs that
are not qualified by a namespace.

Executing jXTransformer Write Statements
You can use the Builder to test jXTransformer write statements
by executing the jXTransformer write statement in the Text view
of the jXTransformer Statement window.

NOTE: You cannot use the Tree view of the jXTransformer
Statement window to view or execute jXTransformer write
statements.

So that the Builder can locate the XML document referenced in
the jXTransformer write statement, the path to the XML
document must be specified in the write statement as a URL or
the XML document must be in the same directory as the Builder
tool. For example, let us look at the following jXTransformer
Insert statement fragment:

insert xml_document('Insert.xml', 1)
into Employees (EmpId, FirstName, LastName, Title,

StartDate, HourlyRate, Resume)
...

In the previous example, the Builder would be unable to find
Insert.xml unless that document existed in the Builder directory.
The following example shows the same jXTransformer Insert
statement fragment with a path to the XML document specified
in a URL format:

insert xml_document('file://C:\Program Files\DataDirect\
Connect for SQLXML\XML_documents\Insert.xml', 1)
into Employees (EmpId, FirstName, LastName, Title,
DataDirect Connect for SQL/XML User’s Guide

138 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
StartDate, HourlyRate, Resume)
...

To execute a jXTransformer write statement:

1 Create a Builder project for a jXTransformer write statement
or open an existing Builder project for a jXTransformer write
statement. See “Creating a Builder Project” on page 77 and
“Opening a Builder Project” on page 79 for instructions.

2 If you are creating a Builder project for a jXTransformer write
statement, you can copy or import the jXTransformer write
statement into the Text view of the jXTransformer Statement
window. See “Importing a Query or Statement” on page 115
for instructions. For example, the following figure shows an
Insert statement in the jXTransformer statement window.
DataDirect Connect for SQL/XML User’s Guide

Executing jXTransformer Write Statements 139
3 Select Project / Execute Statement to execute the
jXTransformer write statement. If you are not connected to
the database, you must make a JDBC connection. The Open
JDBC Connection dialog box appears.

The Connection URL option is selected by default. If you
want to connect to the database using:

� JDBC connection URL, see “Connecting Using JDBC
Connection URLs” on page 118

� JDBC data source, see “Connecting Using JDBC Data
Sources” on page 119
DataDirect Connect for SQL/XML User’s Guide

140 Chapter 3 Creating Connect for SQL/XML Queries Using the Builder
Once you are connected to the database, the Execute
Statement dialog box appears confirming if the execution of
the statement was successful. It also lists any update counts
and prompts you to commit or roll back any database changes
resulting from the write operation.

In the preceding example, an array of update counts is
returned. Each line of the array represents one database table
that is updated. Each line returns one value for each of the
nodes returned from the row pattern expression for that
table. If more than one row is updated, a comma-separated
list is returned. For example, 1,1,1 shows that three rows were
updated in the database table.

4 Commit or roll back database changes:

� To commit database changes, click the Commit button.

� To roll back database changes, click the Rollback button.

A message appears confirming the operation you performed.
DataDirect Connect for SQL/XML User’s Guide

141
4 Syntax of SQL/XML Queries

This chapter describes the syntax of Connect for SQL/XML queries.
The following conventions are used to document the query
syntax:

� Bold type indicates keywords and tokens that must be
entered as part of the query.

� Italic type indicates variables.

� Square brackets [] surround optional items.

� A vertical rule | indicates an OR separator to delineate items.

� Curly brackets { } surround items that can repeat zero or
more times.

The following SQL/XML query syntax shows the high-level
components of a Connect for SQL/XML query.

sqlxml_query ::= select
SQL_value_expression | XML_value_expression
{, SQL_value_expression | XML_value_expression}
rest_of_sql_select

The following sections define each of the high-level components
of a Connect for SQL/XML query:

High-level Component See...

SQL_value_expression “SQL_value_expression” on page 142

XML_value_expression “XML_value_expression” on page 142

rest_of_sql_select “rest_of_sql99_select” on page 151
DataDirect Connect for SQL/XML User’s Guide

142 Chapter 4 Syntax of SQL/XML Queries
SQL_value_expression
SQL_value_expression is all level 1 alternatives for a value
expression, including the optional AS clause, as defined in the
document ISO/IEC 9075-2.

XML_value_expression
The syntax for XML_value_expression is:

XML_value_expression ::= value_expression_primary |
XML_value_function

where:

value_expression_primary is a primitive value expression, such as a
column reference, a variable reference, a parameter reference, and a
literal. The complete definition can be found in the document ISO/IEC
9075-2. Also, value_expression_primary can be the SQL/XML
operator XMLAGG. This operator is described in the following
section.

XML_value_function is one of the following SQL/XML operators:
XMLCONCAT, XMLELEMENT, or XMLFOREST. These operators are
described next.

XMLAGG

XMLAGG produces a forest of XML elements from a collection of
XML elements. XMLAGG accepts a single XML value expression as
its argument, and produces a forest of elements by collecting the
XML values that are returned from multiple rows and
concatenating the values to make one value. XMLAGG
concatenates the values returned from one column of multiple
DataDirect Connect for SQL/XML User’s Guide

XML_value_expression 143
rows, unlike XMLCONCAT, which concatenates the values
returned from multiple columns in the same row.

If a returned value is NULL, it is ignored in the result. If all the
returned values are NULL, the result is NULL.

Subqueries in SQL/XML are allowed to return only one row;
therefore, to return more than one row of values in a SQL/XML
subquery, you must use XMLAGG.

Syntax XMLAGG ::= XMLAGG (XML_value_expression [ORDER BY sort_list])

where:

See “XML_value_expression” on page 142 for a definition of
XML_value_expression.

sort_list is all alternatives for a sort list as defined in the
document ISO/IEC 9075-2.

Example 1 The following example produces a list of all employees in the
company by producing an element for each employee, ordering
the list by the last name, and concatenating the result. The result
set will have one column and one row.

SELECT
XMLAGG (XMLELEMENT (Name "emp", e.LastName)

ORDER BY e.LastName) AS "Employee List"
FROM Employees e

Result Set:

Employee List

<emp>Allen</emp><emp>Ayers</emp><emp>Cover</emp>
...
<emp>Westbrook</emp><emp>Williams</emp>
DataDirect Connect for SQL/XML User’s Guide

144 Chapter 4 Syntax of SQL/XML Queries
Example 2 The following example demonstrates using XMLAGG in a
subquery.

SELECT
XMLELEMENT(NAME "emp", e.LastName,
XMLELEMENT(Name "projects",

(SELECT
XMLAGG(XMLELEMENT(NAME "project, p.ProjID))

FROM Projects p
WHERE EXISTS (
SELECT * FROM Assignments a
WHERE a.EmpId=e.EmpId and a.ProjId=p.ProjId))))
AS "Employees"

FROM Employees e

Result Set:

Employees

<emp>Ayers
<projects>
<project>3</project>
<project>6</project>

</emp>

...

<emp>Marshall
<projects>
<project>1</project>
<project>5</project>

</emp>

...
DataDirect Connect for SQL/XML User’s Guide

XML_value_expression 145
Example 3 The following example uses a Group By clause to group all tasks
assigned to each employee and employee project.

SELECT
XMLELEMENT (NAME "Employee_Tasks_by_Project",
XMLATTRIBUTES (a.EmpId, a.ProjId AS "Project"),
XMLAGG (XMLELEMENT (NAME "Task", a.Task)))

AS "Employee Task List"
FROM Assignments a GROUP BY a.EmpId, a.ProjId

Result Set:

Employee Task List

<Employee_Tasks_by_Project EmpId="1" Project="1"
<Task>Analysis</Task>
<Task>Documentation</Task>
<Task>Planning</Task>
<Task>Testing</Task>

</Employee_Tasks_by_Project>
<Employee_Tasks_by_Project EmpId="1" Project="5"
<Task>Analysis</Task>
<Task>Documentation</Task>

</Employee_Tasks_by_Project>
<Employee_Tasks_by_Project EmpId="2" Project="3"
<Task>Analysis</Task>
<Task>Development</Task>

</Employee_Tasks_by_Project>
DataDirect Connect for SQL/XML User’s Guide

146 Chapter 4 Syntax of SQL/XML Queries
XMLCONCAT

XMLCONCAT produces a forest of elements by concatenating a
list of XML values. XMLCONCAT accepts a list of XML value
expressions as its arguments, and produces a forest of elements
by concatenating the XML values that are returned from the
same row to make one value. XMLCONCAT performs a similar
operation as XMLFOREST, except that XMLCONCAT expressions
must evaluate to type XML.

If a returned value is NULL, it is ignored in the result. If all the
returned values are NULL, the result is NULL.

Syntax XMLCONCAT ::= XMLCONCAT (XML_value_expression {,
XML_value_expression})

See “XML_value_expression” on page 142 for a definition of
XML_value_expression.

Example 1 The following example produces an XML element for the first
and last names, concatenates the result, and creates a
one-column result set:

SELECT
XMLCONCAT (
XMLELEMENT (NAME "first", e.FirstName),
XMLELEMENT (NAME "last", e.LastName)) AS "Result"

FROM Employees e

Result Set:

Result

<FirstName>Marc</FirstName><LastName>Marshall</LastName>

...

<FirstName>Richard</FirstName><LastName>Gamble</LastName>
DataDirect Connect for SQL/XML User’s Guide

XML_value_expression 147
Example 2 The following example produces an XML element for the first
and last names, concatenates the result, and creates a
two-column result set:

SELECT e.EmpId,
XMLCONCAT (
XMLELEMENT (NAME "first", e.FirstName),
XMLELEMENT (NAME "last", e.LastName)) AS "Result"

FROM Employees e

Result Set:

XMLELEMENT

XMLELEMENT is an operator that returns an XML element given
an XML element name, an optional list of attributes, and an
optional list of values as the content of the new element.

Syntax XMLELEMENT ::= XMLELEMENT (NAME xml_element_name
[XMLATTRIBUTES (value_expression [AS attribute_name] [{,
value_expression [AS attribute_name]}])
[{, SQL_value_expression | XML_value_expression}])

where:

xml_element_name is any valid XML element name. This value
must be within double quotes.

XMLATTRIBUTES creates a list of XML attributes for the enclosing
XML element.

attribute_name is any valid XML attribute name. This value must
be within double quotes.

EmpId Result

1 <FirstName>Marc</FirstName><LastName>Marshall</LastName>

...

20 <FirstName>Richard</FirstName><LastName>Gamble</LastName>
DataDirect Connect for SQL/XML User’s Guide

148 Chapter 4 Syntax of SQL/XML Queries
value_expression is all level 1 alternatives for a value expression
as defined in the document ISO/IEC 9075-2.

See “SQL_value_expression” on page 142 for a definition of
SQL_value_expression.

See “XML_value_expression” on page 142 for a definition of
XML_value_expression.

Example 1 The following example creates the Employee element with a
subelement named name. All values in the LastName column of
the Employees table are returned.

SELECT
XMLELEMENT(NAME "Employee",
XMLELEMENT(NAME "name", e.LastName)) AS "Employee List"

FROM Employees e

 Result Set:

Employee List

<Employee>
<name>Marshall></name>

</Employee>

<Employee>
<name>Ayers</name>

</Employee>

<Employee>
<name>Simpson</name>

</Employee>

...
DataDirect Connect for SQL/XML User’s Guide

XML_value_expression 149
Example 2 The following example demonstrates defining an XML attribute
within an XML element.

SELECT
XMLELEMENT(NAME "Employee",
XMLATTRIBUTES(e.EmpId, e.LastName as "name"))

FROM Employees e

Result Set:

XMLFOREST

XMLFOREST produces a forest of XML elements from a given list
of arguments. XMLFOREST accepts a list of SQL value expressions
as its arguments, and produces an XML element from each value
returned. XMLFOREST uses the name of the column as the name
of the XML element, unless otherwise specified in an optional AS
clause, and uses the value of the SQL value expression as the
content of the XML element.

If a value expression evaluates to NULL, then no element is
created for that expression. This is unlike XMLELEMENT, where
an empty element is created if a value expression evaluates to
NULL.

Syntax XMLFOREST ::= XMLFOREST
(value_expression [AS forest_element_name]
[{, value_expression [AS forest_element_name]}])

Result

<Employee EmpId="1" name="Marshall"/>

<Employee EmpId="2" name="Ayers"/>

...

<Employee EmpId="20" name="Gamble"/>
DataDirect Connect for SQL/XML User’s Guide

150 Chapter 4 Syntax of SQL/XML Queries
where:

value_expression is all level 1 alternatives for a value expression
as defined in the document ISO/IEC 9075-2.

forest_element_name is any valid SQL identifier as defined in the
document ISO/IEC 9075-2.

Example The following example produces four elements (EmpID,
FirstName, LastName, and Start) from the value expressions
e.EmpID, e.FirstName, e.LastName, and e.StartDate, concatenates
the elements produced for each employee, and produces one
row for each employee in the result set.

SELECT
XMLFOREST (
e.EmpId,
e.FirstName,
e.LastName,
e.StartDate AS "Start") AS "EmployeeInformation"

FROM Employees e

Result Set:

EmployeeInformation

<EmpId>1</EmpId><FirstName>Marc</FirstName><LastName>Mars
hall</LastName><Start>1994-09-01</Start>

...

<EmpId>20</EmpId><FirstName>Richard</FirstName><LastName>
Gamble</LastName><Start>1996-10-01</Start>
DataDirect Connect for SQL/XML User’s Guide

rest_of_sql99_select 151
rest_of_sql99_select
This section of a SQL/XML query allows you to specify the
database table from which the data is retrieved and the
conditions by which the data is retrieved. The From clause
defines the database tables and other optional SQL clauses, such
as the Where clause, define the conditions.

Syntax rest_of_sql99_select ::= from_clause [where_clause]
[having_clause] [group_by_clause]

These clauses are defined in the document ISO/IEC 9075-2.

Executing SQL/XML Queries
The SQL/XML JDBC driver processes the SQL/XML query and
sends one or multiple SQL statements through to the database
to retrieve the result set.

NOTE: As database vendors begin implementing SQL/XML
extensions to SQL, the SQL/XML JDBC driver may not need to
process the SQL/XML query before sending it to the database.
Whether the driver processes the SQL/XML query in the future
will depend on performance advantages.

See Chapter 7, “Using the SQL/XML JDBC Driver and JDBC API
Extensions” on page 191 for information about this driver and
using SQL/XML queries in your Java application.
DataDirect Connect for SQL/XML User’s Guide

152 Chapter 4 Syntax of SQL/XML Queries
DataDirect Connect for SQL/XML User’s Guide

153
5 Syntax of jXTransformer
Queries

This chapter describes the syntax of jXTransformer queries. The
following conventions are used to document the jXTransformer
query syntax:

� Bold type indicates keywords and tokens that must be
entered as part of the query.

� Italic type indicates variables.

� Square brackets [] surround optional items.

� A vertical rule | indicates an OR separator to delineate items.

� Curly brackets { } surround items that can repeat zero or
more times.

The following jXTransformer syntax shows the high-level
components of a jXTransformer query.

jxtr_query ::= [xml_document (xml_document_info,] select
xml_constructor {, xml_constructor} rest_of_sql99_select
{; query} [)]

The following sections define each of the high-level components
of a jXTransformer query:

High-level Component See...

xml_document “xml_document” on page 154

xml_document_info “xml_document_info” on page 154

xml_constructor “xml_constructor” on page 158

rest_of_sql99_select “rest_of_sql99_select” on page 169

query “Query” on page 170
DataDirect Connect for SQL/XML User’s Guide

154 Chapter 5 Syntax of jXTransformer Queries
xml_document
xml_document indicates that a complete XML document will be
created by the jXTransformer query, instead of an XML document
fragment. A complete XML document contains an XML root
element. If you do not specify this constructor in your
jXTransformer query, a document fragment will be created. The
xml_document constructor is followed by xml_document_info,
which is described next.

xml_document_info
The xml_document_info section of a jXTransformer query allows
you to perform the following tasks:

� Define an XML root element, which creates a complete XML
document as opposed to an XML document fragment. Within
the XML root element, you can define one or multiple XML
attributes, one or multiple XML namespaces, or one or more
of either.

� Enter one or multiple comments in the XML document
header. This is an optional component of the
xml_document_info section.

� Specify one or multiple sets of processing instructions. This is
an optional component of the xml_document_info section.

� Reference one private or public external DTD. This is an
optional component of the xml_document_info section.
DataDirect Connect for SQL/XML User’s Guide

xml_document_info 155
Syntax xml_document_info ::= [xml_comment('comment') |
xml_pi('target', 'instruction') |
xml_external_dtd(['public_id',] 'system_uri')
{, xml_comment('comment') |
, xml_pi('target', 'instruction') |
, xml_external_dtd(['public_id',] 'system_uri') }]

xml_element ('root_element_name' [,
xml_attribute ('attribute_name','attribute_value') |
xml_namespace (['prefix',] 'uri')]
{, xml_attribute ('attribute_name','attribute_value') |
, xml_namespace (['prefix',] 'uri') }])

where:

xml_comment adds an XML comment to the document header of
the resulting XML document.

comment is any valid string constant value as defined in the
SQL specification, except for the optional
introducer character_set_specification.

xml_pi adds an XML processing instruction to the XML
document. Processing instructions allow you to pass one or
multiple processing instructions to applications so that the
application can use the resulting XML without requiring that
extra steps be performed.

target is any valid processing instruction name. It identifies
the processing instruction to the application. Applications
can only process the targets they recognize. An example of a
target is xml-stylesheet. The target must be within single
quotes.

instruction is any valid XML processing instruction, for
example, 'type="text/xsl"'. The instruction must be within
single quotes.
DataDirect Connect for SQL/XML User’s Guide

156 Chapter 5 Syntax of jXTransformer Queries
xml_external_dtd creates a reference to an external private or
public DTD.

public_id, if specified, creates a reference to a public external
DTD. This parameter must contain the public identifier for the
DTD that is being referenced.

system_uri is a System URI that identifies the DTD being
referenced. If this parameter is specified, in addition to the
public_id parameter, the DTD being referenced is a public
external DTD; otherwise, the DTD being referenced is a
private external DTD.

xml_element, in this instance, is an XML root element. A root
element is required for xml_document.

xml_root_element_name is any valid XML root element name.
This value must be within single quotes and is the only
required parameter for xml_element as the root element.

xml_attribute creates an XML attribute for the XML root
element.

xml_attribute_name is any valid XML attribute name. This
value must be within single quotes.

xml_attribute_value is any constant value for the XML
attribute. This value must be within single quotes.

xml_namespace creates an XML namespace definition for the
enclosing XML element.

prefix is the namespace prefix that will be used to qualify
elements or attributes with the namespace URI as
specified in the uri parameter. This value must be within
single quotes and is optional. If you do not specify a
prefix, the default namespace definition will be created.

uri is the URI that identifies the namespace being defined.
This value must be within single quotes and is required.
DataDirect Connect for SQL/XML User’s Guide

xml_document_info 157
Example The following example creates a complete XML document that
includes document-level jXTransformer constructs such as
processing instructions, comments, and a root element with
optional namespace and attribute declarations.

xml_document(
xml_comment('Example XML result'),
xml_pi('xml-stylesheet', 'type="text/xsl"

href="file://myxsl.xsl"'),
xml_element('exns:example',

xml_attribute('rootatt1', 'example'),
xml_namespace('http://www.jxtrdemo/default'),
xml_namespace('exns', 'http://www.jxtrdemo/example'),

SELECT
xml_element('empinfo',

xml_attribute('exns:id', e.EmpId),
xml_attribute('exns:name', e.LastName))

FROM Employees e WHERE e.EmpId < 6))

XML Result:

<!--Example XML result-->
<?xml-stylesheet type="text/xsl" href="file://myxsl.xsl" ?>
<exns:example

rootatt1='example'
xmlns:"http://www.jxtrdemo/default"
xmlns:exns="http://www.jxtrdemo/example">
<empinfo exns:id='1' exns:name='Marshall' />
<empinfo exns:id='2' exns:name='Ayers' />
<empinfo exns:id='3' exns:name='Simpson' />
<empinfo exns:id='4' exns:name='O'Donnel' />
<empinfo exns:id='5' exns:name='Jenkins' />

</exns:example>
DataDirect Connect for SQL/XML User’s Guide

158 Chapter 5 Syntax of jXTransformer Queries
xml_constructor
The xml_constructor section of a jXTransformer query allows you
to perform the following tasks:

� Create XML elements (except for a root element), attributes,
CDATA sections, and namespace definitions.

� Retrieve data that you do not want included in the resulting
XML document. See “xml_hide” on page 167 for a complete
explanation.

Syntax xml_constructor ::= xml_element | xml_attribute |
xml_cdata | xml_namespace | xml_hide | select_expression

xml_element

The most simple form of xml_element is used to set the value of
an XML element to the value of a database column. For example:

xml_element ('name', e.LastName)

More advanced forms of xml_element can be used to:

� Define XML attributes, XML CDATA, or XML namespaces
within the XML element. For example:

xml_element('Employees_Info',
xml_attribute('ID', e.EmpID),...

� Define XML subelements within an XML element. For
example:

xml_element('Employees_Info',
xml_attribute('ID', e.EmpID),
xml_element('name',

xml_element('first', e.FirstName),
xml_element('last', e.LastName)))

� Nest one or more queries within the XML element.
DataDirect Connect for SQL/XML User’s Guide

xml_constructor 159
Syntax xml_element ::= xml_element[_key] ('xml_element_name',
xml_constructor | constant | (query) | select_expression
{, xml_constructor |, constant |, (query) |
, select_expression})

where:

xml_element creates an XML element.

xml_element_key creates an XML element similar to xml_element,
but, in addition, xml_element_key indicates that the column
selected from the database is the key or part of a multi-value key
that uniquely identifies each row retrieved by the query.
Specifying xml_element_key allows the underlying
jXTransformer query to optimize processing.

xml_element_name is any valid XML element name. This value
must be within single quotes.

xml_constructor is any of the following constructors
described in this section: xml_element, xml_attribute,
xml_cdata, xml_namespace, or xml_hide.

constant is a string constant value as defined in the SQL
specification.

query is any valid jXTransformer query without
xml_document_info. Queries can be nested. Nested queries
must be surrounded by parentheses (). When you use nested
queries, you must use an explicit key, specified through one,
or a combination of, xml_attribute_key, xml_element_key,
and xml_hide_key; otherwise, Connect for SQL/XML creates an
implicit key by making all the columns specified in the parent
jXTransformer query part of the key, in which case, the query
results could be incorrect.

select_expression is a valid SQL Select list expression, except
for the optional AS clause, for example, a simple table
column name such as e.lastname. In addition, it can contain
DataDirect-supported JDBC scalar functions. See “Example 2”
on page 161 for an example of using JDBC scalar functions in
a jXTransformer query.
DataDirect Connect for SQL/XML User’s Guide

160 Chapter 5 Syntax of jXTransformer Queries
Example 1 The following example creates the Employees_Info XML element
with a subelement of name in an XML document. The name
subelement has two subelements named first and last. Only data
for employees whose hourly rate is 125 or higher is returned.

SELECT
xml_element('Employees_Info',

xml_element('name',
xml_element('first', e.FirstName),
xml_element('last', e.LastName)))

FROM Employees e WHERE e.HourlyRate >= 125

XML Result:

<Employees_Info>
<name>

<first>Betty</first>
<last>Jenkins</last>

</name>
</Employees_Info>
<Employees_Info>

<name>
<first>Mike</first>
<last>Johnson</last>

</name>
</Employees_Info>
<Employees_Info>

<name>
<first>Paul</first>
<last>Steward</last>

</name>
</Employees_Info>
<Employees_Info>

<name>
<first>Robert</first>
<last>Healy</last>

</name>
<Employees_Info>
DataDirect Connect for SQL/XML User’s Guide

xml_constructor 161
Example 2 The following example demonstrates using a nested query. The
explicit key definition is specified by xml_attribute_key in the
parent query. Notice that JDBC scalar functions are used in this
example.

SELECT
xml_element('employee',
xml_attribute_key('ID', e.EmpId),
xml_attribute('name',
{fn concat({fn concat(e.FirstName, ' ')},e.LastName)}),
(SELECT

xml_element('project',
xml_attribute('name',p.Name),
xml_attribute('task',a.Task))

FROM Projects p, Assignments a
WHERE p.ProjId=a.ProjId and a.EmpId=e.EmpId))

FROM Employees e WHERE e.EmpId < 3

XML Result:

<employee ID='1' name='Marc Marshall'>
<project name='Medusa' task='Analysis'></project>
<project name='Medusa' task='Documentation'></project>
<project name='Medusa' task='Planning'></project>
<project name='Medusa' task='Testing'></project>
<project name='Phoenix' task='Analysis'></project>
<project name='Phoenix' task='Documentation'></project>

</employee>
<employee ID='2' name='Brian Ayers'>

<project name='Hydra' task='Analysis'></project>
<project name='Hydra' task='Documentation'></project>
<project name='Python' task='Analysis'></project>
<project name='Python' task='Development'></project>

</employee>
DataDirect Connect for SQL/XML User’s Guide

162 Chapter 5 Syntax of jXTransformer Queries
xml_attribute
Syntax xml_attribute ::= xml_attribute ('xml_attribute_name',

select_expression | constant | sql99_select) |
xml_attribute_key ('xml_attribute_name', select_expression)

where:

xml_attribute creates an XML attribute for the enclosing XML
element.

xml_attribute_key creates an XML attribute similar to
xml_attribute, but, in addition, xml_attribute_key indicates that
the column selected from the database is the key or part of a
multi-value key that uniquely identifies each row retrieved by the
query. Specifying xml_attribute_key allows the underlying
jXTransformer query to optimize processing.

xml_attribute_name is any valid XML attribute name. This
value must be within single quotes and is required.

constant is a string constant value as defined in the SQL
specification.

select_expression is a valid SQL Select list expression, except
for the optional AS clause, for example, a simple table column
name such as e.lastname. The Select expression can select only
one column from the database. The Select expression value,
as retrieved from the database, provides the value for the
named attribute. In addition, select_expression can contain
DataDirect-supported JDBC scalar functions. See “Example 2”
on page 161 for an example of using JDBC scalar functions in
a jXTransformer query.

sql99_select is any valid SQL query (with the exceptions listed
in “Rules and Exceptions for jXTransformer Query Syntax” on
page 172). The SQL query can contain only one Select
expression. When you specify a SQL query, a space-separated
concatenation of the complete result set is created. Typically,
this is used to construct IDREFs values for an XML attribute.
See “Query” on page 170 for an example of using a SQL query
to provide the value for an XML attribute.
DataDirect Connect for SQL/XML User’s Guide

xml_constructor 163
Example The following example creates the Employees_Info XML element
with an XML attribute named ID and a subelement of name in
an XML document. This subelement has two subelements named
first and last. In this example, xml_attribute_key is used to
indicate that the table column that is selected is a key that
uniquely identifies each row retrieved by the query, thereby,
optimizing performance.

SELECT
xml_element('Employees_Info',

xml_attribute_key('ID', e.EmpId),
xml_element('name',

xml_element('first', e.FirstName),
xml_element('last', e.LastName)))

FROM Employees e WHERE e.EmpId in (12, 14)

XML Result:

<Employees_Info ID='12'>
<name>

<first>Paul</first>
<last>Steward</last>

</name>
</Employees_Info>
<Employees_Info ID='14'>

<name>
<first>John</first>
<last>Jenkins</last>

</name>
</Employees_Info>
DataDirect Connect for SQL/XML User’s Guide

164 Chapter 5 Syntax of jXTransformer Queries
xml_cdata
Syntax xml_cdata ::= xml_cdata (select_expression | constant)

where:

xml_cdata creates an XML CDATA section in the resulting XML
document that contains the value from the specified column or
the constant.

select_expression is a valid SQL Select expression, except for
the optional AS clause, for example, a simple table column
name such as e.lastname. In addition, select_expression can
contain DataDirect-supported JDBC scalar functions. See
“Example 2” on page 161 for an example of using JDBC scalar
functions in a jXTransformer query.

constant is a string constant value as defined in the SQL
specification.

Example The following example creates a CDATA section beneath the
Employees_Info element. The content for the CDATA section is
retrieved from the Resume column in the Employees table. A
CDATA section is used because the Resume column contains some
markup characters that must not be parsed.

SELECT
xml_element('Employees_Info',

xml_attribute_key('ID', e.EmpId),
xml_element('name',

xml_element('first', e.FirstName),
xml_element('last', e.LastName)),

xml_element ('HireDate',
xml_attribute ('start', e.StartDate),
xml_attribute ('end', e.EndDate)),

xml_cdata (e.Resume))
FROM Employees e WHERE e.EmpId in (12, 14)
DataDirect Connect for SQL/XML User’s Guide

xml_constructor 165
XML Result:

<Employees_Info ID='12'>
<name>

<first>Paul</first>
<last>Steward</last>

</name>
<HireDate start='1997-01-04 00:00:00.0' />
<![CDATA[<a href=
'http://www.xesdemo/resume/12.htm'>P.Steward]]>

</Employees_Info>
<Employees_Info ID='14'>

<name>
<first>John</first>
<last>Jenkins</last>

</name>
<HireDate start='1990-04-01 00:00:00.0'

end='1998-01-12 00:00:00.0' />
<![CDATA[<a href=
'http://www.xesdemo/resume/14.htm'>J.Jenkins]]>

</Employees_Info>

xml_namespace
Syntax xml_namespace ::= xml_namespace (['prefix',] 'uri')

where:

xml_namespace creates an XML namespace definition for the
enclosing XML element.

prefix is the namespace prefix that will be used to qualify
elements or attributes with the namespace URI as specified in
the uri parameter. This value must be within single quotes
and is optional. If you do not specify a prefix, the default
namespace is defined.

uri is the URI that identifies the namespace being defined.
This value must be within single quotes and is required.
DataDirect Connect for SQL/XML User’s Guide

166 Chapter 5 Syntax of jXTransformer Queries
Example The following example associates the namespace prefix emp with
the namespace URI http://mycomp.com/employees for the
Employees_Info element and its contents. Only the elements with
the emp prefix use the http://mycomp.com/employees
namespace; the other elements use the default namespace,
which is http://mycomp.com/default.

SELECT
xml_element('emp:Employees_Info',

xml_attribute_key('emp:ID', e.EmpId),
xml_namespace ('http://mycomp.com/default'),
xml_namespace ('emp', 'http://mycomp.com/employees'),
xml_element('emp:name',

xml_element('first', e.FirstName),
xml_element('last', e.LastName)))

FROM Employees e WHERE e.EmpId in (12, 14)

XML Result:

<emp:Employees_Info emp:ID='12'
xmlns="http://mycomp.com/default"
xmlns:emp="http://mycomp.com/employees">
<emp:name>

<first>Paul</first>
<last>Steward</last>

</emp:name>
</emp.Employees_Info>
<emp:Employees_Info emp:ID='14'>

xmlns="http://mycomp.com/default"
xmlns:emp="http://mycomp.com/employees">
<emp:name>

<first>John</first>
<last>Jenkins</last>

</emp:name>
</emp.Employees_Info>
DataDirect Connect for SQL/XML User’s Guide

xml_constructor 167
xml_hide
Syntax xml_hide ::= xml_hide[_key] (select_expression)

where:

xml_hide allows you to specify information to be retrieved from
the database that you do not want to include in the resulting
XML document.

xml_hide_key provides the same functionality as xml_hide, but in
addition, xml_hide_key indicates that the column selected from
the database is the key or part of a multi-value key that uniquely
identifies each row retrieved by the query. Specifying
xml_hide_key allows the underlying jXTransformer query to
optimize processing.

select_expression is a valid SQL Select list expression, except
for the optional AS clause, for example, a simple table
column name such as e.lastname.

Example The following example creates the Employees_Info XML element
and a subelement of name. This subelement has two
subelements named first and last. In this example, xml_hide_key
is used to retrieve the data in the e.EmpID column that uniquely
identifies each of the rows selected by the query, but is not
included in the XML results.

SELECT
xml_element('Employees_Info',

xml_hide_key(e.EmpId),
xml_element('name',

xml_element('first', e.FirstName),
xml_element('last', e.LastName)))

FROM Employees e WHERE e.EmpId=12
DataDirect Connect for SQL/XML User’s Guide

168 Chapter 5 Syntax of jXTransformer Queries
XML Result:

<Employees_Info>
<name>

<first>Paul</first>
<last>Steward</last>

</name>
</Employees_Info>

select_expression

You can define a jXTransformer query that is similar to a SQL
query. For example:

select t.a, t.b, t.c from tab t

This type of jXTransformer query lists in the XML document the
values of each database column selected. For example:

row1-value-of-a row1-value-of-b row1-value-of-c
row2-value-of-a row2-value-of-b row2-value-of-c ...
DataDirect Connect for SQL/XML User’s Guide

rest_of_sql99_select 169
rest_of_sql99_select
This section of a jXTransformer query allows you to specify the
database table from which the data is retrieved and the
conditions by which the data is retrieved. The From clause
defines the database tables and other optional SQL clauses, such
as the Where clause, define the conditions.

Syntax rest_of_sql99_select ::= from_clause [where_clause]
[having_clause] [group_by_clause]

These clauses are defined in the SQL specification.

IMPORTANT: The jXTransformer syntax requires that you use
unique table name aliases, for example:

FROM employees e

and

xml_element ('project', e.EmpId)
DataDirect Connect for SQL/XML User’s Guide

170 Chapter 5 Syntax of jXTransformer Queries
Query
This section of a jXTransformer query allows you to specify
multiple top-level queries. Additional top-level queries cannot
contain xml_document_info (see “xml_document_info” on
page 154). Multiple top-level queries result in the concatenation
of the results of all top-level queries.

Example The following example uses two top-level queries and uses a SQL
query to provide the value of an XML attribute. This example
selects employees that have benefits assigned to them. For each
of the selected employees, a list of benefit IDs is selected. The
second top-level query selects benefit information, provided at
least one employee has the benefit assigned to them. For each
benefit selected, a list of employees that have the benefit
assigned to them is selected.

SELECT
xml_element('employees',
xml_attribute_key('emp-id',
{fn concat('e-',{fn convert(e1.EmpId,VARCHAR)})}),

xml_attribute('emp-name',e1.LastName),
xml_attribute('emp-benefits',

SELECT
{fn concat('b-',

{fn convert(eb1.BenefitId,VARCHAR)})}
FROM EmpBenefits eb1 WHERE eb1.EmpId=e1.EmpId))

FROM Employees e1 WHERE exists
(SELECT * FROM EmpBenefits eb2 WHERE e1.EmpId=eb2.EmpId)

;
SELECT
xml_element('benefits',
xml_attribute_key('benefit-id',

{fn concat('b-',
{fn convert(b2.BenefitId,VARCHAR)})}),

xml_attribute('benefit-description',b2.Description),
xml_attribute('benefit-employees',
DataDirect Connect for SQL/XML User’s Guide

Query 171
SELECT
{fn concat('e-',

{fn convert(eb3.EmpId,VARCHAR)})}
FROM EmpBenefits eb3
WHERE eb3.BenefitId=b2.BenefitId))

FROM Benefits b2
WHERE exists
(SELECT * FROM EmpBenefits eb4
WHERE b2.BenefitId=eb4.BenefitId)

XML Result:

<employees emp-id="e-1" emp-name="Marshall"
emp-benefits="b-1 b-3" />

<employees emp-id="e-12" emp-name="Steward"
emp-benefits="b-3" />

<employees emp-id="e-2" emp-name="Allen"
emp-benefits="b-1 b-4" />

<benefits benefit-id="b-1" benefit-description="Bonus"
benefit-employees="e-1 e-2" />

<benefits benefit-id="b-3" benefit-description="Car"
benefit-employees="e-1 e-12" />

<benefits benefit-id="b-4" benefit-description="Commission"
benefit-employees="e-2" />
DataDirect Connect for SQL/XML User’s Guide

172 Chapter 5 Syntax of jXTransformer Queries
Rules and Exceptions for jXTransformer Query
Syntax

The jXTransformer query syntax adheres to the following rules
and exceptions:

� Does not support the relational set operators (UNION,
INTERSECT).

� Must contain unique tables aliases for all tables used in the
query.

� Allows the use of parameters (bind markers) where a constant
value is allowed in the SQL sections of the query. Parameters
are specified using a ? token, and you must provide values for
these parameters using the jXTransformer API.

� Supports aggregate functions. For Informix and Sybase,
jXTransformer queries that contain nested queries in which
both parent and child queries contain aggregate functions
cannot be processed using the sorted outer union algorithm.

� Supports the DISTINCT query modifier. If a parent query uses
DISTINCT, all child queries must also use DISTINCT; otherwise,
unexpected results may be returned.

Executing jXTransformer Queries
A jXTransformer query is executed using a JXTRQuery object,
which is an object defined in the jXTransformer API. See
Chapter 8, “Using the jXTransformer API” on page 207 for more
information about the jXTransformer API.
DataDirect Connect for SQL/XML User’s Guide

173
6 Syntax of jXTransformer Write
Statements

This chapter describes the syntax of jXTransformer Write
statements. jXTransformer write statements allow you to insert,
update, and delete data, as explained in the following list:

� jXTransformer Insert statements insert data from an XML
document into a relational database. New rows are created
with the new data.

� jXTransformer Update statements update data in a relational
database with data from an XML document.

� jXTransformer Delete statements delete data in a relational
database. The rows that are deleted are specified by a Where
clause in the jXTransformer Delete statement.

The following conventions are used to document the
jXTransformer syntax:

� Bold type indicates keywords and tokens that must be
entered as part of the write statement.

� Italic type indicates variables.

� Square brackets [] surround optional items.

� A vertical rule | indicates an OR separator to delineate items.

� Curly brackets { } surround items that can repeat zero or
more times.
DataDirect Connect for SQL/XML User’s Guide

174 Chapter 6 Syntax of jXTransformer Write Statements
Insert Statement
jXTransformer Insert statements insert rows into a relational
database based on column values extracted from an XML
document. When you define a jXTransformer Insert statement,
you specify:

1 The XML document from which to retrieve values to insert
into the database table. For example:

insert xml_document('emp.xml')

2 The database table and columns in which to insert the values.
For example:

into Employees (EmpId, FirstName, LastName, Title,
StartDate, HourlyRate, Resume)

3 The nodes in the XML document from which values will be
extracted. These locations are specified using XPath
expressions. For example:

xml_row_pattern('/insert/employee')

4 The XML element or attribute of the nodes specified in Step 3
from which to extract the values to insert in the database
table. For example:

values(xml_xpath('@ID', 'Integer'),
xml_xpath('@FirstName'),
xml_xpath('@LastName'),
xml_xpath('@Title'),
xml_xpath('@StartDate', 'Timestamp'),
xml_xpath('@HourlyRate', 'Integer'),
xml_xpath('resume[1]/text()')
)

DataDirect Connect for SQL/XML User’s Guide

Insert Statement 175
Syntax

The syntax of a jXTransformer Insert statement is as follows:

Syntax jxtr_insert ::= insert xml_document
(('reference_to_xml' | ?)[, (ignore_whitespace | ?)])
[xml_namespace (['prefix',] 'uri')
{,xml_namespace (['prefix',] 'uri')}]
{into table_name [(column_list)]
xml_row_pattern(('row_pattern_expression' | ?))
jxtr_query_expression

}

where:

insert xml_document defines the XML document from which
values are extracted and inserted into the database table. This
construct is required.

reference_to_xml is a reference to the XML document from
which the values for the Insert statement are being
extracted. The value is the location of the XML document in
URL format, for example, 'file://employee.xml'. This value
must be surrounded by single quotes.

? is a parameter marker. You must set the values for
parameter markers in your Java application using the
jXTransformer API.

ignore_whitespace is 0 or 1. This parameter is optional. If set
to 1 (the default), any leading or trailing whitespace that is
part of the value of a node is deleted. If set to 0, the
whitespace is not deleted. Whitespace is newline, carriage
return, spaces, and tabs.
DataDirect Connect for SQL/XML User’s Guide

176 Chapter 6 Syntax of jXTransformer Write Statements
xml_namespace defines a namespace (prefix/URI mapping) for all
XPath expressions used in the Insert statement. This construct is
optional.

prefix is the namespace prefix that is used to qualify
elements or attributes with the namespace URI as specified in
the uri parameter. This value must be within single quotes
and is optional. If you do not specify a prefix, the default
namespace for the XPath expression is defined.

uri is the URI that identifies the namespace for the XPath
expression to use. This value must be within single quotes and
is required when you are defining a namespace for the XPath
expression to use.

into defines the database table and columns in which to insert
values. This construct is required.

table_name is the name and path of a database table. Refer to
the SQL99 specification for more information.

column_list is an optional list of database table column
names, separated by commas. It specifies the name and order
of the columns that will store the values specified in
jxtr_query_expression. If you omit column_list,
jxtr_query_expression must provide values for all columns
defined in the database table and they must be in the same
order that the columns are defined in the table. Refer to the
SQL99 specification for more information.

xml_row_pattern identifies the nodes in the XML input document
from which values are extracted and inserted into the database
table. This construct is required.

row_pattern_expression is an absolute XPath expression that
returns a node set. The value must be surrounded by single
quotes, for example, '//employee'. For each node in the
returned node set, one row is inserted into the database
table. Refer to the XPath specification at
http://www.w3.org/TR/xpath for more information.
DataDirect Connect for SQL/XML User’s Guide

http://www.w3.org/TR/xpath

Insert Statement 177
jxtr_query_expression is any valid SQL99 query expression with
the difference that xml_xpath constructs can be used in the
SQL99 query expression where the SQL99 syntax allows
expressions. For example:

values (
xml_xpath('@ID', 'Integer'),
xml_xpath('@FirstName')

)

This construct is required.

The syntax for an xml_xpath construct is:

xml_xpath(('xpath_expression' | ?)
[[, ('java_sql_datatype' | ?) [, (scale | ?)]]
[, (mixed_content_index | ?)]])

where:

xml_xpath identifies the XML element or attribute in the XML
input document from which the value is extracted and inserted
into the database table. This construct is optional.

xpath_expression is any valid XPath expression that is
evaluated relative to each of the nodes returned from the
xml_row_pattern construct. The value must be surrounded by
single quotes, for example, '@ID'. These expressions, when
specified, define the column values being inserted into the
database. Refer to the XPath specification at
http://www.w3.org/TR/xpath for more information.

java_sql_datatype is one of the field string names or int
values from java.sql.Types. When using field string names,
the value must be surrounded by single quotes, for example,
'INTEGER'. If you do not specify a value, CHAR is used.

scale is an integer that specifies the number of digits after
the decimal point; it is only valid for DECIMAL and NUMERIC
java.sql.Types. For all other types, this value is ignored.

mixed_content_index is an integer that specifies the ordinal
position of one value in a set of returned values to use for
DataDirect Connect for SQL/XML User’s Guide

http://www.w3.org/TR/xpath

178 Chapter 6 Syntax of jXTransformer Write Statements
the Insert statement. The default is 0, which means to
concatenate all the returned values and use that
concatenated value for the Insert statement. Typically, you
need only specify a value for this argument when the element
referred to in the XPath expression has mixed content and
you want to insert only one value in the database table.

Example The following example inserts new rows into three tables:

� Employees table: EmpID, FirstName, LastName, Title,
StartDate, HourlyRate, and Resume columns

� EmpBenefits table: BenefitId, EmpId, Amount, and StartDate
columns

� Assignments table: ProjId, EmpId, and Task columns

The values for the columns are extracted from the XML document
emp.xml, shown next:

<?xml version="1.0" encoding="UTF-8"?>
<insert>
<employee ID="21" FirstName="Anne" LastName="Dodsworth"
Title="Miss" StartDate="2001-10-24" HourlyRate="115">
<resume><![CDATA[

A. Dodsworth]]></resume>

<benefits>
<benefit ID="1" Amount="1"
<benefit ID="2" Amount="175" StartDate="2001-11-01"/>

</benefits>
<projects>

<project ID="8">
<task>Analysis</task>
<task>Development</task>

</project>
<project ID="9">
<task>Analysis</task>

</project>
</projects>

</employee>
</insert>
DataDirect Connect for SQL/XML User’s Guide

Insert Statement 179
Insert statement:

insert xml_document('emp.xml', 1)
into Employees (EmpId, FirstName, LastName, Title,
StartDate, HourlyRate, Resume)
xml_row_pattern('/insert/employee')
values(xml_xpath('@ID', 'Integer'),

xml_xpath('@FirstName'),
xml_xpath('@LastName'),
xml_xpath('@Title'),
xml_xpath('@StartDate', 'Timestamp'),
xml_xpath('@HourlyRate', 'Integer'),
xml_xpath('resume[1]/text()')

)
into EmpBenefits (BenefitId, EmpId, Amount, StartDate)
xml_row_pattern('/insert/employee/benefits/benefit')
values(xml_xpath('@ID', 'Integer'),

xml_xpath('../../@ID', 'Integer'),
xml_xpath('@Amount', 'Integer'),
xml_xpath('@StartDate', 'Timestamp')

)
into Assignments (ProjId, EmpId, Task)
xml_row_pattern('/insert/employee/projects/project/task')

values(xml_xpath('../@ID', 'Integer'),
xml_xpath('../../../@ID', 'Integer'),
xml_xpath('text()')

)

Results:

One new row inserted into the Employees table:

EmpId LastName FirstName Title StartDate EndDate HourlyRate Resume

21 Dodsworth Anne Miss 2001-10-24 115 <a href=
'http://www.xesdemo/
resume21.htm'>
A.Dodsworth
DataDirect Connect for SQL/XML User’s Guide

180 Chapter 6 Syntax of jXTransformer Write Statements
Two new rows inserted into the EmpBenefits table:

Three new rows inserted into the Assignments table:

Update Statement
jXTransformer Update statements update column values in a
relational database with new column values extracted from an
XML document. When you define a JXTransformer Update
statement, you specify:

1 The XML document from which to retrieve new values to use
to update the database table. For example:

update xml_document('emp.xml')

2 The database table to update. For example:

Employees

3 The nodes in the XML document from which values will be
extracted. These locations are specified using XPath
expressions. For example:

xml_row_pattern('/update/employee')

4 The database column to update and the XML element or
attribute of the nodes specified in Step 3 from which to
extract the new value for the column. For example:

set HourlyRate = xml_xpath('@HourlyRate','Integer')

EmpId BenefitId StartDate EndDate Amount

21 1 2001-10-24 1

21 2 2001-22-01 175

EmpId ProjId Task StartDate EndDate TimeUsed EstimatedDuration

21 8 Analysis

21 8 Development

21 9 Analysis
DataDirect Connect for SQL/XML User’s Guide

Update Statement 181
5 The database columns to use to identify which rows to
update and the XML elements or attributes of the node from
which to retrieve the value that identifies the rows to
update. For example:

WHERE EmpId = xml_xpath('@ID','Integer')

NOTE: It is possible to have multiple parts in the Where
clause. For example:

WHERE EmpId = xml_xpath('@ID','Integer') and
StartDate < xml_xpath('@StartDate', 'Timestamp')

Syntax

The syntax of a jXTransformer Update statement is as follows:

Syntax jxtr_update ::= update xml_document
(('reference_to_xml' | ?)[, (ignore_whitespace | ?)])
[xml_namespace (['prefix',] 'uri')
{,xml_namespace (['prefix',] 'uri')}]
{table_name xml_row_pattern(
('row_pattern_expression' | ?))
{set jxtr_set_clause_list}
where jxtr_search_condition

}

where:

update xml_document defines the XML document from which
values are extracted and updated in the database table. This
construct is required.

reference_to_xml is a reference to the XML document from
which the values for the Update statement are being
extracted. The value is the location of the XML document in
URL format, for example, 'file://employee.xml'. This value
must be surrounded by single quotes.
DataDirect Connect for SQL/XML User’s Guide

182 Chapter 6 Syntax of jXTransformer Write Statements
? is a parameter marker. You must set the values for
parameter markers in your Java application using the
jXTransformer API.

ignore_whitespace is 0 or 1 and is optional. If set to 1 (the
default), any leading or trailing whitespace that is part of the
value of a node is deleted. If set to 0, the whitespace is not
deleted. Whitespace is newline, carriage return, spaces, and
tabs.

xml_namespace defines a namespace (prefix/URI mapping) for all
XPath expressions used in the Update statement. This construct is
optional.

prefix is the namespace prefix that is used to qualify
elements or attributes with the namespace URI as specified in
the uri parameter. This value must be within single quotes
and is optional. If you do not specify a prefix, the default
namespace for the XPath expression is defined.

uri is the URI that identifies the namespace for the XPath
expression to use. This value must be within single quotes and
is required when you are defining a namespace for the XPath
expression to use.

table_name is the name of a database table. This construct is
required. Refer to the SQL99 specification for more information.

xml_row_pattern defines the XML nodes from which values will
be used to update the database table. This construct is required.

row_pattern_expression is an absolute XPath expression that
returns a node set. The value must be surrounded by single
quotes, for example, '//employee'. Refer to the XPath
specification at http://www.w3.org/TR/xpath for more
information.

set defines the database columns to update and the XML
document nodes from which to retrieve the new value. This
construct is required.

jxtr_set_clause_list is any valid SQL99 Set clause list with
the addition that xml_xpath constructs can be used in the
DataDirect Connect for SQL/XML User’s Guide

http://www.w3.org/TR/xpath

Update Statement 183
SQL99 Set clause list where the SQL99 syntax allows
expressions. For example:

set HourlyRate = xml_xpath('@HourlyRate','Integer')

The syntax for an xml_xpath construct is:

xml_xpath(('xpath_expression' | ?)
[[, ('java_sql_datatype' | ?) [, (scale | ?)]]
[, (mixed_content_index | ?)]])

where:

xml_xpath defines the XML element or attribute from which
to retrieve the value to be used to update the database
table. This construct is optional.

xpath_expression is any valid XPath expression. The value
must be surrounded by single quotes, for example, '@ID'.
These expressions, when specified, define either the new
values to use to update the columns
(jxtr_set_clause_list) or the column values being
updated in the database (jxtr_search_condition). Refer
to the XPath specification at http://www.w3.org/TR/xpath
for more information.

java_sql_datatype is one of the field string names or int
values from java.sql.Types. When using field string
names, the value must be surrounded by single quotes,
for example, 'INTEGER'. If you do not specify a value,
CHAR is used.

scale is an integer that specifies the number of digits
after the decimal point; it is only valid for DECIMAL and
NUMERIC java.sql.Types. For all other types, this value is
ignored.

mixed_content_index is an integer that specifies the
ordinal position of one value in a set of returned values
to use for the Update statement. The default is 0, which
means to concatenate all of the returned values and use
that value for the Update statement. Typically, you need
DataDirect Connect for SQL/XML User’s Guide

http://www.w3.org/TR/xpath

184 Chapter 6 Syntax of jXTransformer Write Statements
only specify a value for this argument when the element
referred to in the XPath expression has mixed content and
you want to update only one value in the database table.

where defines the rows in the database table to update. This
construct is required.

jxtr_search_condition is any valid SQL99 search condition
with the addition that xml_xpath constructs can be used in
the SQL99 search condition where the SQL99 syntax allows
expressions. For example:

WHERE EmpId = xml_xpath('@ID','Integer')

Example The following example updates one row in one database table,
Employees.

The XML document emp.xml, shown next, specifies the column
value that the Update statement uses to identify which row in
the relational database table to update and the new value to use
for the column to be updated. The row with an EmpId of 21 is the
row to be updated, and the HourlyRate column is the column to
be updated to a value of 120.

<?xml version="1.0" encoding="UTF-8"?>
<update>
<employee ID="21" HourlyRate="120">
</employee>

</update>

Update statement:

Update xml_document('emp.xml')
Employees xml_row_pattern('/update/employee')
set HourlyRate = xml_xpath('@HourlyRate','Integer')
WHERE EmpId = xml_xpath('@ID','Integer')
DataDirect Connect for SQL/XML User’s Guide

Delete Statement 185
Delete Statement
jXTransformer Delete statements delete rows from a relational
database table based on column values extracted from an XML
document. When you define a jXTransformer Delete statement,
you specify:

1 The XML document from which to retrieve values that
identify the rows in the database table to delete. For
example:

delete xml_document('emp.xml')

2 The database table from which to delete rows. For example:

FROM Employees

3 The nodes of the XML document from which the values that
identify which rows to delete are extracted. These locations
are specified using XPath expressions. For example:

xml_row_pattern('/update/employee')

4 The database columns to use to identify the rows to delete
and the XML element or attribute of the nodes specified in
Step 3 from which to extract the value that identifies the
rows to delete. For example:

WHERE EmpId = xml_xpath('@ID','Integer')
DataDirect Connect for SQL/XML User’s Guide

186 Chapter 6 Syntax of jXTransformer Write Statements
Syntax

The syntax of a jXTransformer Delete statement is as follows:

jxtr_delete ::= delete xml_document
(('reference_to_xml' | ?)[, (ignore_whitespace | ?)])
[xml_namespace (['prefix',] 'uri')
{,xml_namespace (['prefix',] 'uri')}]
{from table_name
xml_row_pattern(('row_pattern_expression' | ?))
where jxtr_search_condition

}

where:

delete xml_document defines the XML document from which
values are extracted to identify which rows to delete from the
database table. This construct is required.

reference_to_xml is a reference to the XML document from
which the values for the Delete statement are being
extracted. The value is the location of the XML document in
URL format, for example, 'file://employee.xml'. This value
must be surrounded by single quotes.

? is a parameter marker. You must set the values for
parameter markers in your Java application using the
jXTransformer API.

ignore_whitespace is 0 or 1. This parameter is optional. If set
to 1 (the default), any leading or trailing whitespace that is
part of the value of a node is deleted. If set to 0, the
whitespace is not deleted. Whitespace is newline, carriage
return, spaces, and tabs.

xml_namespace defines a namespace (prefix/URI mapping) for all
XPath expressions used in the Delete statement.

prefix is the namespace prefix that will be used to qualify
elements or attributes with the namespace URI as specified in
the uri parameter. This value must be within single quotes
DataDirect Connect for SQL/XML User’s Guide

Delete Statement 187
and is optional. If you do not specify a prefix, the default
namespace for the XPath expression is defined.

uri is the URI that identifies the namespace for the XPath
expression to use. This value must be within single quotes
and is required when you are defining a namespace for the
XPath expression to use.

from defines the database table on which the delete operation
will take place. This construct is required.

table_name is a simple database table name or full pathname.
Refer to the SQL99 specification for more information.

xml_row_pattern defines the XML nodes from which values are
used to identify the row to delete in the database table.

row_pattern_expression is an absolute XPath expression that
returns a node set. The value must be surrounded by single
quotes, for example, '//employee'. Refer to the XPath
specification at http://www.w3.org/TR/xpath for more
information.

where defines the rows in the database table to delete. This
construct is required.

jxtr_search_condition is any valid SQL99 search condition
with the addition that xml_xpath constructs can be used in
the SQL99 search condition where the SQL99 syntax allows
expressions. For example:

WHERE EmpId = xml_xpath('@ID','Integer')

The syntax for the xml_xpath construct is:

xml_xpath(('xpath_expression' | ?)
[[, ('java_sql_datatype' | ?) [, (scale | ?)]]
[, (mixed_content_index | ?)]])

where:

xml_xpath defines the XML element or attribute from which
to retrieve the value to be used to identify the rows to delete
from the database table. This construct is optional.
DataDirect Connect for SQL/XML User’s Guide

http://www.w3.org/TR/xpath

188 Chapter 6 Syntax of jXTransformer Write Statements
xpath_expression is any valid XPath expression. The value
must be surrounded by single quotes, for example, '@ID'.
These expressions, when specified, define the column
values of the rows being deleted from the database. Refer
to the XPath specification at http://www.w3.org/TR/xpath
for more information.

java_sql_datatype is one of the field string names or int
values from java.sql.Types. When using field string names,
the value must be surrounded by single quotes, for
example, 'INTEGER'. If you do not specify a value, CHAR is
used.

scale is an integer that specifies the number of digits after
the decimal point; it is only valid for DECIMAL and
NUMERIC java.sql.Types. For all other types, this value is
ignored.

mixed_content_index is an integer that specifies the
ordinal position of one value in a set of returned values to
use for the Delete statement. The default is 0, which
means to concatenate all the returned values and use that
value for the Delete statement. Typically, you need only
specify a value for this argument when the element
referred to in the XPath expression has mixed content and
you want to use only one of the mixed content parts in
the Delete statement’s Where clause.

Example The following example deletes rows from three different tables—
Assignments, EmpBenefits, and Employees. The rows that are
deleted contain the value 21 in the EmpId column of these tables.
The example uses a parameter marker for the reference to the
XML document that is used in this delete transaction. The value
for this marker must be set in the Java application that executes
the jXTransformer Delete statement. Also, this example uses an
xml_namespace constructor to define a prefix and URI mapping
for all XPath expressions used in the Delete statement.
DataDirect Connect for SQL/XML User’s Guide

http://www.w3.org/TR/xpath

Executing jXTransformer Write Statements 189
The XML document delete.xml, shown next, specifies the column
value that the Delete statement uses to identify which rows in
the relational database table to delete.

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns:emp="http://www.jxtrdemo/delete">
<emp:employee ID="21"/>

</root>

Delete statement:

delete xml_document(?)
xml_namespace('emp','http://www.jxtrdemo/delete')
FROM Assignments
xml_row_pattern('/root/emp:employee')
WHERE EmpId = xml_xpath('@ID','Integer')

FROM EmpBenefits
xml_row_pattern('/root/emp:employee')
WHERE EmpId = xml_xpath('@ID','Integer')

FROM Employees
xml_row_pattern('/root/emp:employee')
WHERE EmpId = xml_xpath('@ID','Integer')

Executing jXTransformer Write Statements
jXTransformer Insert, Update, and Delete statements are
executed using a JXTRUpdate object, which is an object defined
in the jXTransformer API. See Chapter 8, “Using the
jXTransformer API” on page 207 for more information about
using the jXTransformer API.
DataDirect Connect for SQL/XML User’s Guide

190 Chapter 6 Syntax of jXTransformer Write Statements
DataDirect Connect for SQL/XML User’s Guide

191
7 Using the SQL/XML JDBC Driver
and JDBC API Extensions

This chapter describes the SQL/XML JDBC driver and the classes it
uses to process SQL/XML queries. It also provides information
about connecting to the database and using SQL/XML queries in
Java applications.

The SQL/XML JDBC driver translates SQL/XML statements into
database-specific statements that do not contain any XML
operators. The driver uses either a DataDirect Connect for JDBC
driver or the DataDirect SequeLink for JDBC driver to
communicate with the database.

Because the result of a SQL/XML operator is an XML-typed
column and because the current JDBC specification does not
support an XML data type, the SQL/XML JDBC driver introduces a
new type and associated Java class to represent and access
XML-Typed columns. This Java class is
com.ddtek.jdbc.jxtr.XMLType.

Driver and Data Source Classes
The driver class for the SQL/XML JDBC driver is:

com.ddtek.jdbc.jxtr.JXTRDriver

The data source class for the SQL/XML JDBC driver is:

com.ddtek.jdbc.jxtr.JXTRDataSource
DataDirect Connect for SQL/XML User’s Guide

192 Chapter 7 Using the SQL/XML JDBC Driver and JDBC API Extensions
SQL/XML JDBC Driver Data Source
Because a SQL/XML JDBC driver data source embeds a Connect
for JDBC data source or a SequeLink for JDBC data source,
constructing a SQL/XML data source
(com.ddtek.jdbc.jxtr.JXTRDataSource) requires you to pass a
pre-constructed data source to the SQL/XML data source
constructor.

Your Connect for SQL/XML installation contains examples that show
how to create and use Connect for SQL/XML data sources. These
examples are installed in the examples/src/examples/datasource
directory in your Connect for SQL/XML installation directory. You
can use these examples as templates for creating a SQL/XML data
source that meets your needs.

Connection URLs
The syntax of URLs for the SQL/XML JDBC driver is:

jdbc:datadirect:jxtr:db://hostname:port[;conn_properties]

where:

db is one of the following values: db2, informix, oracle, sqlserver,
sybase, or sequelink. The values db2, informix, oracle, sqlserver,
and sybase indicate that the SQL/XML JDBC driver uses an
underlying Connect for JDBC driver for a database connection. The
value sequelink indicates that the SQL/XML JDBC driver uses the
SequeLink JDBC driver for a database connection.

hostname is the TCP/IP address or TCP/IP host name of the server
to which you are connecting.

port is the number of the TCP/IP port.
DataDirect Connect for SQL/XML User’s Guide

Connection Properties 193
conn_properties is a semicolon-separated list of connection
properties for the SQL/XML JDBC driver and the DataDirect
Technologies JDBC driver you are using for your connection. See
“Connection Properties” on page 193 for information about
connection properties supported for the SQL/XML JDBC driver.
Refer to the Connect for JDBC or SequeLink documentation for
information about connection properties supported by each
DataDirect Technologies JDBC driver.

For example:

jdbc:datadirect:jxtr:db2://server1:50000;DatabaseName=SAMPLE;
PackageName=JDBCPKG;binaryEncoding=hex

or

jdbc:datadirect:jxtr:sequelink://189.23.5.132:19996;
databaseName=stores7;timeStampEncoding=iso8601

Connection Properties
The SQL/XML JDBC driver embeds either one Connect for JDBC
driver or the SequeLink JDBC driver. All connection properties
supported by these drivers also are supported by the SQL/XML
JDBC driver. Refer to the Connect for JDBC or SequeLink
documentation for information about supported connection
properties.

Table 7-1 lists connection properties that are specific to the
SQL/XML JDBC driver, and describes each property. The
properties have the form:

property=value

NOTE: All connection property names are case-sensitive. For
example, binaryencoding is different than binaryEncoding.
DataDirect Connect for SQL/XML User’s Guide

194 Chapter 7 Using the SQL/XML JDBC Driver and JDBC API Extensions
Table 7-1. SQL/XML JDBC Connection Properties

Property Description

binaryEncoding

OPTIONAL

binaryEncoding={base64 | hex}. Specifies the type of
binary-to-string conversion to use when retrieving binary
information from the database. The default value is base64.

nullReplacementValue

OPTIONAL

Sets the value to replace NULL values that are retrieved
from the database (for example, nullReplacementValue=no
value available). If no value is specified, NULL values are not
replaced by another value.

timestampEncoding

OPTIONAL

timestampEncoding={odbc | iso8601}. Specifies the type of
timestamp-to-string conversion to be used when
representing timestamp values in an XML document. The
default value is odbc, which uses the standard ODBC
encoding as specified in the ODBC specification.
Timestamps are converted to a string with the following
format mask: YYYY-MM-DD HH:MI:SS[.ffffff].

The value, iso8601, uses an ISO standard for the
timestamp-to-string conversion. The format mask used is
YYYY-MM-DDTHH:MI:SS[.ffffff].
DataDirect Connect for SQL/XML User’s Guide

Using Connect for SQL/XML Hints 195
Using Connect for SQL/XML Hints
Connect for SQL/XML supports some hints (options or
optimizations) that are not supported by the JDBC API. Hints are
set by adding comments to your SQL/XML query.

Table 7-2 lists Connect for SQL/XML hints that are supported in
SQL/XML queries.

Table 7-2. Connect for SQL/XML Hints

Hint Description

binary_encoding Specifies the type of binary-to-string conversion to use
when retrieving binary information from the database.
Valid values are hex and base64 (default).

key_expr Specifies a select expression that uniquely identifies each
of the rows retrieved from the database. Multi-part keys
are supported by specifying more than one key_expr
value pair in the hint (for example, key_expr=c.CustId;
key_expr=c.Name).

Because a SQL/XML query can contain nested queries,
you can specify multiple sets of keys by prefixing each of
the queries with a set of key_expr hints. See “Using
key_expr Hints” on page 40 for more information about
the key_expr hint.

null_replacement Sets the value to replace NULL values that are retrieved
from the database. If no value is specified, NULL values
are not replaced by another value.

rewrite_algorithm Specifies the way in which the SQL/XML JDBC driver
translates the SQL/XML query into one or more
statements that the underlying database supports. Valid
values are nested_loop and sorted_outer_join.

The default is sorted_outer_join.

See “Using rewrite_algorithm Hints” on page 41 for
more information about rewrite algorithms.
DataDirect Connect for SQL/XML User’s Guide

196 Chapter 7 Using the SQL/XML JDBC Driver and JDBC API Extensions
The following example shows how to specify SQL/XML hints in a
SQL/XML query.

/*{jxtr-hints timestamp_encoding=iso8601;null_replacement=not applicable; */
SELECT
XMLELEMENT(name empinfo,

XMLATTRIBUTES(e.EmpId as "id", e.FirstName as "first",
e.LastName as "last", e.StartDate as "start", e.EndDate as "end"))

FROM Employees e

For more examples of hints, see the examples shipped with the
product in the examples/src/examples/sqlxml directory in your
Connect for SQL/XML installation directory.

timestamp_encoding Specifies the type of timestamp-to-string conversion to be
used when retrieving timestamp data from the database.
Valid values are iso8601 and odbc.

The default is odbc.

Table 7-2. Connect for SQL/XML Hints (cont.)

Hint Description
DataDirect Connect for SQL/XML User’s Guide

com.ddtek.jdbc.jxtr Java Package 197
com.ddtek.jdbc.jxtr Java Package
In a JDBC programming environment, you use the
com.ddtek.jdbc.jxtr Java package included with Connect for
SQL/XML to perform the following tasks:

� Process the result set returned from a SQL/XML query

� Construct a SQL/XML data source

� Execute jXTransformer statements when using a SQL/XML
JDBC driver connection

The com.ddtek.jdbc.jxtr package contains:

� Two classes: XMLType and JXTRDataSource

� One interface: JXTRStatementFactory

See Chapter 8, “Using the jXTransformer API” on page 207 for
information about the jXTransformer API and the com.ddtek.jxtr
Java package.

XMLType Class

For SQL/XML queries that return XML data in the result set, your
Java application must use the getObject method on the XML
data and cast the retrieved object to
com.ddtek.jdbc.jxtr.XMLType. The XMLType class has different
methods to instantiate the actual XML document or document
fragment. These methods are:

� generateSAX
� getClob
� getDom
� getJDOM
� getString
� writeXML
DataDirect Connect for SQL/XML User’s Guide

198 Chapter 7 Using the SQL/XML JDBC Driver and JDBC API Extensions
All of these methods, except generateSAX and writeXML, require
the complete instantiation of the XML document or document
fragment on the client side. Depending on the size of the
generated XML, this can cause memory usage or performance
issues.

JXTRDataSource Class

Because a SQL/XML JDBC driver data source embeds either a
Connect for JDBC data source or a SequeLink for JDBC data source,
constructing a SQL/XML data source requires you to pass a
pre-constructed data source to the SQL/XML data source
constructor. You use the methods in the JXTRDataSource class to
accomplish this task. You also can set any of the connection
properties defined in Table 7-1, “SQL/XML JDBC Connection
Properties” on page 194 using this class.

JXTRStatementFactory Interface

The methods of this interface let you process jXTransformer
statements when you are using a SQL/XML JDBC driver
connection in a Java application.

For more information about the com.ddtek.jdbc.jxtr package, see
the Javadoc shipped with Connect for SQL/XML.
DataDirect Connect for SQL/XML User’s Guide

Connecting to the Database 199
Connecting to the Database
Once Connect for SQL/XML is installed and your application is
using the SQL/XML JDBC driver, you can connect from your
application to your database in either of the following ways:

� Using a connection URL through the JDBC Driver Manager as
described in this section.

� Using a JNDI data source. See “SQL/XML JDBC Driver Data
Source” on page 192 for more information about connecting
using JNDI data sources.

You can connect through the JDBC Driver Manager with the
DriverManager.getConnection method. This method uses a
string containing a URL.

The following list provides a summary of the steps required to
connect to the database using a connection URL. After this list,
each step is described in more detail.

1 Set your CLASSPATH to include the DataDirect Technologies
JDBC driver you are using for the connection and the jxtr.jar
file. The CLASSPATH is the search string your Java Virtual
Machine (JVM) uses to locate the jar files on your computer.

2 Register the driver.

3 Pass the driver’s connection URL.

4 Test the connection.

1. Setting the Classpath

The jar files that must be defined in your CLASSPATH variable
depend on whether you are using a Connect for JDBC driver or
the SequeLink for JDBC driver. If the files are not defined on your
DataDirect Connect for SQL/XML User’s Guide

200 Chapter 7 Using the SQL/XML JDBC Driver and JDBC API Extensions
CLASSPATH, you will receive the a class not found error when
trying to load the driver.

DataDirect Connect for JDBC Drivers

Set your system CLASSPATH to include the following entries,
where driver.jar is the driver jar file (for example, sqlserver.jar)
and install_dir is the path to your Connect for SQL/XML
installation directory:

install_dir/lib/base.jar
install_dir/lib/util.jar
install_dir/lib/driver.jar
install_dir/lib/jxtr.jar

Windows Example

CLASSPATH=
.;c:\CfSQLXML\lib\base.jar;c:\CfSQLXML\lib\util.jar;
c:\CfSQLXML\lib\sqlserver.jar;c:\CfSQLXML\lib\jxtr.jar

UNIX Example

CLASSPATH=.;/home/user1/CfSQLXML/lib/base.jar;/home/user1/
CfSQLXML/lib/util.jar;/home/user1/CfSQLXML/lib/
sqlserver.jar;/home/user1/CfSQLXML/lib/jxtr.jar

DataDirect SequeLink JDBC Driver

Set your system CLASSPATH to include the following entries
where install_dir is the path to your Connect for SQL/XML
installation directory:

install_dir/lib/sljc.jar
install_dir/lib/jxtr.jar

Windows Example

CLASSPATH=.;c:\CfSQLXML\lib\sljc.jar;c:\CfSQLXML\lib\
jxtr.jar
DataDirect Connect for SQL/XML User’s Guide

Connecting to the Database 201
UNIX Example

CLASSPATH=
.;/home/user1/CfSQLXML/lib/sljc.jar;/home/user1/CfSQLXML/
lib/jxtr.jar

2. Registering the Driver

Registering the SQL/XML JDBC driver tells the JDBC Driver
Manager which driver to load. One way to register the driver is
to explicitly load the driver class using the standard
Class.forName() method and call
DriverManager.getConnection().

The class of the SQL/XML JDBC driver is:

com.ddtek.jdbc.jxtr.JXTRDriver

For example:

Class.forName("com.ddtek.jdbc.jxtr.JXTRDriver");

3. Passing the Connection URL

After registering the SQL/XML JDBC driver, you can pass your
database connection information using a connection URL. For
example, to specify a connection URL for the SQL/XML JDBC
driver that uses the Connect for JDBC SQL Server driver:

Connection conn = DriverManager.getConnection
("jdbc:datadirect:jxtr:sqlserver://server1:1433;User=test;
Password=secret;binaryEncoding=hex");

See “Connection URLs” on page 192 for more information about
the connection URL used for the SQL/XML JDBC driver.
DataDirect Connect for SQL/XML User’s Guide

202 Chapter 7 Using the SQL/XML JDBC Driver and JDBC API Extensions
4. Testing the Connection

To test your connection to the database, you can use the
DataDirect Query Builder for SQL/XML, a tool provided with
Connect for SQL/XML for creating and modifying Connect for
SQL/XML queries. You can create your own Connect for SQL/XML
query for testing or use one of the example Connect for SQL/XML
queries in the examples/src/examples directory in the Connect for
SQL/XML installation directory. For instructions on using the
DataDirect Query Builder for SQL/XML to connect to the database,
see “Connecting to the Database” on page 116.

Using SQL/XML Queries in Java Applications
NOTE: To compile and run Java applications that use SQL/XML
queries, you must add the appropriate jar files to your classpath.
For information about the jar files you need to add, refer to the
DataDirect Connect for SQL/XML Installation Guide.

Typically, a Java application containing a SQL/XML query
performs the following tasks:

1 Connects to the database using the SQL/XML JDBC driver

2 Prepares the SQL/XML query in a String object

3 Executes the SQL/XML query

4 Retrieves data from the result set

5 Creates an XML document or document fragment (optional)

The following example shows a SQL/XML query coded in a Java
application. For more examples of SQL/XML queries that
demonstrate specific SQL/XML features and functions in a Java
application, refer to the example files in the
DataDirect Connect for SQL/XML User’s Guide

Using SQL/XML Queries in Java Applications 203
examples/src/example/sqlxml directory in the Connect for SQL/XML
installation directory.

/*
*
--
* Copyright(c) 2003 DataDirect Technologies. All rights reserved.
*
* This product includes Xerces, developed by the Apache Software
* Foundation (http://www.apache.org). Copyright (C) 1999-2000 The Apache
* Software Foundation. All rights reserved.
*
* This product includes Xalan, developed by the Apache Software
* Foundation (http://www.apache.org). Copyright (C) 1999-2000 The Apache
* Software Foundation. All rights reserved.
*
* This product includes JDOM, developed by the JDOM Project
* (http://jdom.org). Copyright (C) 2001 Brett McLaughlin & Jason Hunter.
* All rights reserved.
*
* Description:
*
* SQL/XML Example4:
* Demonstrates the following hints for SQL/XML queries
* (a) null replacement hint.
* (b) timestamp encoding hint.
*
* The example can be invoked either through the Example class or by invoking
* the main in this class.
*
* See the accompanying readme file for more information on the
* provided examples.
*
*
--
*/
package examples.sqlxml;

import java.io.OutputStreamWriter;
import java.sql.*;
DataDirect Connect for SQL/XML User’s Guide

204 Chapter 7 Using the SQL/XML JDBC Driver and JDBC API Extensions
import com.ddtek.jdbc.jxtr.*;
import examples.*;

public class SQLXMLExample4 extends Example
{

/**
* Executes the 'SQL/XML Example4' example
*/

public void execute() throws Exception
{
// Output example description
System.out.println("=================================");
System.out.println("= SQL/XML Example4 demonstrates =");
System.out.println("=================================");
System.out.println(" the following hints for SQL/XML queries.");
System.out.println(" (a) null replacement hint.");
System.out.println(" (b) timestamp encoding hint.");

// Load properties from the resource
loadProperties();

// Create the SQL/XML JDBC connection
connectWithConnectForSQLXML();

// Build SQL/XML query
StringBuffer sqlXml = new StringBuffer();
sqlXml.append ("--{jxtr-hints null_replacement=NA;key_expr=

e.EmpId;timestamp_encoding=odbc ");
sqlXml.append (lineSeparator);
sqlXml.append ("select ");
sqlXml.append (" xmlelement (NAME \"employee\", ");
sqlXml.append (" xmlattributes(e.EmpId as \"id\"), ");
sqlXml.append (" xmlelement(NAME \"names\", ");
sqlXml.append (" xmlelement(NAME \"first\", e.FirstName), ");
sqlXml.append (" xmlelement(NAME \"last\", e.LastName)), ");
sqlXml.append (" xmlelement(NAME \"hire-dates\", ");
sqlXml.append (" xmlattributes(e.StartDate as \"start\",e.EndDate

as \"end\") ");
sqlXml.append (")) as SQLXMLCOL1 ");
sqlXml.append ("from Employees e where e.EmpId = 12 ");
DataDirect Connect for SQL/XML User’s Guide

Using SQL/XML Queries in Java Applications 205
// Output result header
System.out.println("---------------------------------------");
System.out.println("Query result (via getString on XMLType)");
System.out.println("---------------------------------------");

// Execute the SQL/XML query
resultSet = stmt.executeQuery(sqlXml.toString());

// Retrieve data from the resultset
while(resultSet.next())
{

XMLType xmlType = (XMLType)resultSet.getObject(1);
System.out.println(xmlType.getString());

}
resultSet.close();

// Close SQL/XML JDBC connection
disconnect();

}

/**
* Main method.
*/

public static void main (String[] args) throws Exception
{
Example thisDemo = new SQLXMLExample4();
thisDemo.execute();

}
}

DataDirect Connect for SQL/XML User’s Guide

206 Chapter 7 Using the SQL/XML JDBC Driver and JDBC API Extensions
DataDirect Connect for SQL/XML User’s Guide

207
8 Using the jXTransformer API

In a JDBC programming environment, you use the jXTransformer
API to perform the following tasks:

� Execute jXTransformer queries to return results as XML
documents or document fragments, or result sets of XML
values. 8This API can return an XML document or XML
document fragment in any of the supported formats: DOM
level 2, JDOM, character stream, or SAX2.

� Execute jXTransformer write statements (Insert, Update, or
Delete) to write data to a relational database from an XML
document and return a n update count of the rows inserted,
updated, or deleted.

This chapter describes the jXTransformer API and the classes it
uses to process jXTransformer queries and write statements. It
also provides information about connecting to the database and
about using jXTransformer queries and write statements in a
Java application.

See Chapter 7, “Using the SQL/XML JDBC Driver and JDBC API
Extensions” on page 191 for information about the JDBC API
extension classes and methods used to execute SQL/XML queries,
about connecting to the database, and about using SQL/XML
queries in a Java application.
DataDirect Connect for SQL/XML User’s Guide

208 Chapter 8 Using the jXTransformer API
jXTransformer API Classes
Table 8-1 lists and defines the jXTransformer API classes in the
com.ddtek.jxtr package that can be used to create and execute
jXTransformer queries and jXTransformer write statements.

Table 8-1. jXTransformer API Classes

Class Description

com.ddtek.jxtr.JXTRColInfo Implements methods that allow you to
work with XML that is returned from a
jXTransformer query as a result set.

com.ddtek.jxtr.JXTRException Implements a Java exception object that is
thrown if an unexpected occurrence is
encountered during the processing of a
jXTransformer method.

com.ddtek.jxtr.JXTRQuery Implements the methods required to:

� Transform the results from a
jXTransformer query into any of the
supported formats: DOM level 2,
JDOM, character stream, or SAX2

� Transform the XML results from a
jXTransformer query into a result set

� Generate a DTD or schema based on
the jXTransformer query that describes
the XML structure

� Add document-level processing
instructions and comments

� Add a reference to a public or private
external DTD or an externally stored
XML schema

See “JXTRQuery and
JXTRResultSetWrapper Classes” on
page 211 for more information.
DataDirect Connect for SQL/XML User’s Guide

jXTransformer API Classes 209
com.ddtek.jxtr.JXTRResultSetWrapper Implements the methods required to
execute a SQL query and generate an
element-centric or attribute-centric XML
document. This class wraps XML elements
or attributes around the row and column
data that is retrieved from the database.
Use this class when you do not want to
define the hierarchical structure of an
XML document.

See “JXTRQuery and
JXTRResultSetWrapper Classes” on
page 211 for more information.

com.ddtek.jxtr.JXTRSaxInputSource Implements the methods that extend the
SAX2 InputSource interface and is typically
used with a JXTRSaxReader object.

com.ddtek.jxtr.JXTRSaxReader Implements the methods required to
implement a SAX2 XMLReader interface
and is used with a JXTRResultSetWrapper
or JXTRQuery object.

com.ddtek.jxtr.JXTRSingleTableUpdate Implements the methods required to
execute a SQL Insert, Update, or Delete
statement based on one or multiple sets
of parameter marker values retrieved
from an input XML document.

See “JXTRUpdate and
JXTRSingleTableUpdate Classes” on
page 213 for more information.

com.ddtek.jxtr.JXTRSingleTableUpdateExceptio
n

Implements a Java exception object that is
thrown if an unexpected occurrence is
encountered during the processing of a
SQL Insert, Update, or Delete statement.

com.ddtek.jxtr.JXTRStatement Implements the methods required to
determine if a jXTransformer statement is
a jXTransformer query statement or a
jXTransformer Insert, Update, or Delete
statement.

Table 8-1. jXTransformer API Classes (cont.)

Class Description
DataDirect Connect for SQL/XML User’s Guide

210 Chapter 8 Using the jXTransformer API
com.ddtek.jxtr.JXTRUpdate Implements the methods required to:

� Execute a jXTransformer Insert,
Update, or Delete statement

� Specify the format of the XML
document from which the data will be
retrieved

� Specify values for parameter markers

See “JXTRUpdate and
JXTRSingleTableUpdate Classes” on
page 213 for more information.

com.ddtek.jxtr.JXTRUpdateException Implements a Java exception object that is
thrown if an unexpected occurrence is
encountered during the processing of a
jXTransformer Insert, Update, or Delete
statement.

com.ddtek.jxtr.JXTRWarning Extends JXTRException and implements a
Java throwable object that is created if a
warning condition is encountered during
the processing of a jXTransformer
method. The object that is thrown can
reference other exceptions.

Table 8-1. jXTransformer API Classes (cont.)

Class Description
DataDirect Connect for SQL/XML User’s Guide

jXTransformer API Classes 211
JXTRQuery and JXTRResultSetWrapper
Classes

Table 8-2 lists some common tasks that you can perform using
the methods of the JXTRQuery and JXTRResultSetWrapper
classes. These two classes are the most frequently used
jXTransformer API classes when you are working with
jXTransformer queries.

Table 8-2. Tasks Performed by the JXTRQuery and
JXTRResultSetWrapper Classes

Task Method

Add document-level comments addDocumentComment

Add document-level processing
instructions

addDocumentPI

Add root attributes addRootAttribute

Add a namespace definition to a root
element

addRootNamespace

Execute a query and return the XML as a
DOM level 2 document object

executeDOM

Execute a query and create the XML
under the specified DOM level 2 node

executeDOM

Execute a query and return the XML as a
JDOM document

executeJDOM

Execute a query and create the XML
under the specified JDOM element

executeJDOM

Execute a query and create the XML as a
result set. Some of the columns of this
result set can contain XML data type
values.

executeQuery

Execute a query and invoke the SAX2
callbacks as registered with the specified
XML reader

executeSAX
DataDirect Connect for SQL/XML User’s Guide

212 Chapter 8 Using the jXTransformer API
Execute a query and write the XML as a
character stream to the specified writer,
which uses either UTF-8 encoding or
encoding you specify

executeWriter

Generate a DTD describing the structure
of the query result and write the DTD on
the specified Writer object

generateDTD

Generate one or multiple XML schemas
describing the structure of the query
result and optionally writes the schemas
on the specified Writer object

generateXMLSchema

Set values for parameters setBigDecimal
setBoolean
setByte
setBytes
setDatabaseExtension
setDate
setDouble
setFloat
setInt
setLong
setNull
setObject
setShort
setString
setTime
setTimestamp

Set configuration options setBinaryEncoding
setNullReplacementValue
setTimestampEncoding

Set the root tag name for the resulting
XML

setRootTag

Set a private or public external DTD
definition

setExternalDTD

Table 8-2. Tasks Performed by the JXTRQuery and
JXTRResultSetWrapper Classes (cont.)

Task Method
DataDirect Connect for SQL/XML User’s Guide

jXTransformer API Classes 213
For more information about each jXTransformer API class in the
com.ddtek.jxtr package, see the Javadoc shipped with Connect
for SQL/XML.

JXTRUpdate and
JXTRSingleTableUpdate Classes

Table 8-3 lists some common tasks that you can perform using
the methods of the JXTRUpdate and JXTRSingleTableUpdate
classes. These classes are the most frequently used jXTransformer
API classes when you are working with jXTransformer write
statements.

JXTRUpdate Class

Set how order by expressions are
interpreted

setOrderByOrdinalBehavior

Set whether an empty element is created
when a NULL value is retrieved from the
database

setEmptyCreateBehavior

Table 8-2. Tasks Performed by the JXTRQuery and
JXTRResultSetWrapper Classes (cont.)

Task Method

Table 8-3. Tasks Performed by the JXTRUpdate Class

Task Method

Execute a jXTransformer Insert, Update, or
Delete statement and return an update
count

executeUpdate
DataDirect Connect for SQL/XML User’s Guide

214 Chapter 8 Using the jXTransformer API
For more information about each jXTransformer API class in the
com.ddtek.jxtr package, see the Javadoc shipped with Connect for
SQL/XML.

Read the XML input from a DOM level 2
object

setDOM

Read the XML input from a JDOM object setJDOM

Read the XML input from a character
stream

setReader

Read the XML input from SAX2 object setSAX

Set values for parameters setBigDecimal
setBoolean
setByte
setBytes
setDate
setDouble
setFloat
setInt
setLong
setNull
setObject
setShort
setString
setTime
setTimestamp

Set configuration options setBatchSize
setBinaryEncoding
setNullReplacementValu
e
setTimestampEncoding

Table 8-3. Tasks Performed by the JXTRUpdate Class (cont.)

Task Method
DataDirect Connect for SQL/XML User’s Guide

jXTransformer API Classes 215
JXTRSingleTableUpdate Class

The JXTRSingleTableUpdate class performs the tasks described in
Table 8-4.

Table 8-4. Tasks of the JXTRSingleTableUpdate Class

Task Method

Execute the SQL Insert, Update, or Delete
statement and return an update count

executeUpdate

Provide the XML input in one of the
supported formats: URL, DOM Level 2
document or node, JDOM document or
node, character stream, or SAX2

setXMLDocument

Set the namespace definitions used in the
XPath expressions

setXMLNamespaces

Set the XPath expression that will be used
as the XML row pattern to identify the
data to be extracted from the XML
document

setXMLRowPattern

Set the XPath expressions used to extract
the values from the XML document

setXMLXPath

Set values for parameters setBigDecimal
setBoolean
setByte
setBytes
setDate
setDouble
setFloat
setInt
setLong
setNull
setObject
setShort
setString
setTime
setTimestamp
DataDirect Connect for SQL/XML User’s Guide

216 Chapter 8 Using the jXTransformer API
For more information about each jXTransformer API class in the
com.ddtek.jxtr package, see the Javadoc shipped with Connect for
SQL/XML.

Connecting to the Database
Once Connect for SQL/XML is installed and your application is using
the jXTransformer API, you can connect from your application to
your database in either of the following ways:

� Using a connection URL through the JDBC Driver Manager as
described in this section.

� Using a JNDI data source. For information about using JNDI
data sources to connect, refer to either the DataDirect
Connect for JDBC User’s Guide and Reference or the
DataDirect SequeLink Developer’s Reference, depending on
the DataDirect Technologies JDBC driver you are using.

You can connect through the JDBC Driver Manager with the
DriverManager.getConnection method. This method takes one
parameter, a string that contains a URL.

Set configuration options setBatchSize
setBinaryEncoding
setNullReplacementValu
e
setTimestampEncoding

Table 8-4. Tasks of the JXTRSingleTableUpdate Class (cont.)

Task Method
DataDirect Connect for SQL/XML User’s Guide

Connecting to the Database 217
The following list provides a summary of the steps you take to
connect to the database. After this list, each step is described in
more detail.

1 Set your CLASSPATH to include the DataDirect Technologies
JDBC driver you are using for the connection and the jxtr.jar
file. The CLASSPATH is the search string your Java Virtual
Machine (JVM) uses to locate the jar files on your computer.

2 Register the driver.

3 Pass the driver’s connection URL.

4 Test the connection.

1. Setting the Classpath

The jar files that must be defined in your CLASSPATH variable
depend on whether you are using a Connect for JDBC driver or
the SequeLink for JDBC driver. If the files are not defined on your
CLASSPATH, you will receive the class not found error when
trying to load the driver.

DataDirect Connect for JDBC Drivers

Set your system CLASSPATH to include the following entries,
where driver.jar is the driver jar file (for example, sqlserver.jar)
and install_dir is the path to your Connect for SQL/XML
installation directory:

install_dir/lib/base.jar
install_dir/lib/util.jar
install_dir/lib/jxtr.jar
install_dir/lib/driver.jar
DataDirect Connect for SQL/XML User’s Guide

218 Chapter 8 Using the jXTransformer API
Windows Example

CLASSPATH=
.;c:\CfSQLXML\lib\base.jar;c:\CfSQLXML\lib\util.jar;
c:\CfSQLXML\lib\jxtr.jar;c:\CfSQLXML\lib\sqlserver.jar

UNIX Example

CLASSPATH=.;/home/user1/CfSQLXML/lib/base.jar;/home/user1/
CfSQLXML/lib/util.jar;/home/user1/CfSQLXML/lib/jxtr.jar;/ho
me/user1/CfSQLXML/lib/sqlserver.jar

DataDirect SequeLink JDBC Driver

Set your system CLASSPATH to include the following entries
where install_dir is the path to your Connect for SQL/XML
installation directory:

install_dir/lib/sljc.jar
install_dir/lib/jxtr.jar

Windows Example

CLASSPATH=
.;c:\CfSQLXML\lib\sljc.jar;c:\CfSQLXML\lib\jxtr.jar

UNIX Example

CLASSPATH=
.;/home/user1/CfSQLXML/lib/sljc.jar;/home/user1/CfSQLXML/
lib/jxtr.jar

2. Registering the Driver

Registering the driver tells the JDBC Driver Manager which driver
to load. One way to register a DataDirect Technologies JDBC
DataDirect Connect for SQL/XML User’s Guide

Connecting to the Database 219
driver is to explicitly load the driver class using the standard
Class.forName() method and call
DriverManager.getConnection().

DataDirect Connect for JDBC Drivers

See the following list for the class names of each Connect for JDBC
driver:

� com.ddtek.jdbc.db2.DB2Driver
� com.ddtek.jdbc.informix.InformixDriver
� com.ddtek.jdbc.oracle.OracleDriver
� com.ddtek.jdbc.sqlserver.SQLServerDriver
� com.ddtek.jdbc.sybase.SybaseDriver

For example:

Class.forName("com.ddtek.jdbc.sqlserver.SQLServerDriver");

DataDirect SequeLink JDBC Driver

The class name of the SequeLink JDBC Driver is
com.ddtek.jdbc.sequelink.SequeLinkDriver.

For example:

Class.forName(“com.ddtek.jdbc.sequelink.SequeLinkDriver”);

For information about alternative methods of registering the
SequeLink JDBC Driver, refer to the DataDirect SequeLink
Developer’s Reference.

3. Passing the Connection URL

After registering the driver, you can pass your database
connection information in the form of a connection URL.
DataDirect Connect for SQL/XML User’s Guide

220 Chapter 8 Using the jXTransformer API
DataDirect Connect for JDBC Drivers

See the following URL formats for each Connect for JDBC driver.
Use them as templates to create your own connection URLs,
substituting the appropriate values specific to your database.

DB2 UDB1

jdbc:datadirect:db2://server_name:50000;DatabaseName=your_database;
PackageName=your_packagename

DB2 OS/390 and iSeries1

jdbc:datadirect:db2://server_name:50000;Location=db2_location;
CollectionId=your_collectionname;PackageName=your_packagename

Informix
jdbc:datadirect:informix://server_name:2003;InformixServer=your_server;
DatabaseName=your_database

Oracle
jdbc:datadirect:oracle://server_name:1521

SQL Server 2

jdbc:datadirect:sqlserver://server_name:1433

Sybase
jdbc:datadirect:sybase://server_name:5000

1 Refer to the DB2 driver chapter of the DataDirect Connect for JDBC
User’s Guide and Reference before configuring your initial connection.
2 For instructions on connecting to named instances, refer to the
SQL Server driver chapter of the DataDirect Connect for JDBC User’s
Guide and Reference.
DataDirect Connect for SQL/XML User’s Guide

Connecting to the Database 221
For example, to specify a connection URL for SQL Server that
includes the user ID and password:

Connection conn = DriverManager.getConnection
("jdbc:datadirect:sqlserver://server1:1433;User=test;Password=secret");

NOTES:

� The server_name is an IP address or a host name, assuming
that your network resolves host names to IP addresses. You
can test this by using the ping command to access the host
name and verifying that you receive a reply with the correct
IP address.

� The numeric value after the server name is the port number
on which the database is listening. The values listed here are
sample defaults. You should determine the port number that
your database is using and substitute that value.

Refer to the DataDirect Connect for JDBC User’s Guide and
Reference for a list of connection properties for each driver.

DataDirect SequeLink for JDBC Driver

The connection URL format is:

jdbc:sequelink://hostname:port[;key=value]...

NOTES:

� hostname is the TCP/IP address or TCP/IP host name of the
server to which you are connecting.

� port is the TCP/IP port on which the SequeLink server is
listening. A default installation of SequeLink Server uses the
port 19996.

� key=value specifies connection properties. Refer to the
DataDirect SequeLink Developer’s Reference for a list of valid
connection properties for the SequeLink JDBC driver.
DataDirect Connect for SQL/XML User’s Guide

222 Chapter 8 Using the jXTransformer API
The following examples show some typical SequeLink JDBC driver
connection URLs:

jdbc:sequelink://sequelinkhost:19996;

jdbc:sequelink://189.23.5.25:19996;user=john;
password=whatever

jdbc:sequelink://189.23.5.132:19996;databaseName=stores7

jdbc:sequelink://189.23.5.68:19996;databaseName=pubs;
HUser=john;HPassword=whatever

jdbc:sequelink://sequelinkhost:4006;databaseName=pubs;
DBUser=john;DBPassword=whatever

4. Testing the Connection

To test your connection to the database, you can use the
DataDirect Query Builder for SQL/XML, a tool provided with
Connect for SQL/XML for creating and modifying Connect for
SQL/XML queries. You can create your own Connect for SQL/XML
query for testing or use one of the example Connect for SQL/XML
queries in the examples/src/examples/jxtrapi directory in the
Connect for SQL/XML installation directory. See “Connecting to the
Database” on page 116 for instructions on using the DataDirect
Query Builder for SQL/XML to connect to the database.
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries and Write Statements in a Java Application 223
Using jXTransformer Queries and Write
Statements in a Java Application

NOTE: To compile and run Java applications that use
jXTransformer queries and write statements, you must add the
appropriate jar files to your classpath. For information about the
jar files you need to add, refer to the DataDirect Connect for
SQL/XML Installation Guide.

Typically, a Java application containing a jXTransformer query or
write statement performs the following tasks:

1 Connects to the database using the JDBC API.

2 Prepares the jXTransformer query or write statement in a
String object.

3 Creates a JXTRQuery or JXTRUpdate object, passing in the
JDBC connection and the jXTransformer query or write
statement.

4 Sets options that are available to the jXTransformer query or
write statement.

5 Optionally, sets parameters for the query or write statement.

6 Uses one of the execute methods to execute the query or
write statement. In the case of a jXTransformer query, the
method used to execute the jXTransformer query determines
the format of the resulting XML (DOM, JDOM, SAX2 event
stream, or Writer) or result set. In the case of a jXTransformer
write statement, the method also returns an update count of
rows inserted, updated, or deleted.

The following examples show a jXTransformer query and a
jXTransformer write statement in a Java application.
DataDirect Connect for SQL/XML User’s Guide

224 Chapter 8 Using the jXTransformer API
Example A: jXTransformer Query
The following example shows a jXTransformer query in a Java
application. For more examples of jXTransformer queries that
demonstrate specific features and functions in a Java application,
refer to the examples_readme.txt file in the examples directory in
your Connect for SQL/XML installation directory.

/*
*---
* Copyright(c) 2003 DataDirect Technologies. All rights reserved.
*
* This product includes Xerces, developed by the Apache Software
* Foundation (http://www.apache.org). Copyright (C) 1999-2000 The Apache
* Software Foundation. All rights reserved.
*
* This product includes Xalan, developed by the Apache Software
* Foundation (http://www.apache.org). Copyright (C) 1999-2000 The Apache
* Software Foundation. All rights reserved.
*
* This product includes JDOM, developed by the JDOM Project
* (http://jdom.org). Copyright (C) 2001 Brett McLaughlin & Jason Hunter.
* All rights reserved.
*
* Description:
*
* JXTRExample1:
* Demonstrates
* (a) Basic XML document fragment construction features.
* (b) Writing the XML result to a writer created from System.out.
*
* The example can be invoked either through the Example class or by invoking
* the main in this class.
*
* See the accompanying readme file for more information on the
* provided examples.
*
* --
*/
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries and Write Statements in a Java Application 225
package examples.jxtrapi;

import java.io.OutputStreamWriter;
import java.sql.*;

import com.ddtek.jxtr.*;
import examples.*;

public class JXTRExample1 extends Example
{

/**
* Executes the 'JXTRExample1' example
*/

public void execute() throws Exception
{
// Output example description
System.out.println("==============================");
System.out.println("= JXTR Example1 demonstrates =");
System.out.println("==============================");
System.out.println(" (a) Basic XML document fragment construction.");
System.out.println(" (b) Writing the XML to a writer created from

System.out.");

// Load properties from the resource
loadProperties();

// Create JDBC connection
connectWithStandardJDBC();

// Build JXTR query
StringBuffer jxtrQ = new StringBuffer();
jxtrQ.append ("select ");
jxtrQ.append (" xml_element ('employee', ");
jxtrQ.append (" xml_attribute('ID', e.EmpId), ");
jxtrQ.append (" xml_element('names', ");
jxtrQ.append (" xml_element('first', e.FirstName), ");
jxtrQ.append (" xml_element('last', e.LastName)), ");
jxtrQ.append (" xml_element('hire-dates', ");
jxtrQ.append (" xml_attribute('start', e.StartDate), ");
jxtrQ.append (" xml_attribute('end', e.EndDate)), ");
DataDirect Connect for SQL/XML User’s Guide

226 Chapter 8 Using the jXTransformer API
jxtrQ.append (" xml_cdata(e.Resume)) ");
jxtrQ.append ("from Employees e where e.EmpId in (12, 14) ");

// Construct new JXTRQuery object
JXTRQuery jxtrQuery = new JXTRQuery (conn, new String (jxtrQ));

// Output result header
System.out.println("------------------------------------");
System.out.println("Query result (without implicit root)");
System.out.println("------------------------------------");

// Execute
OutputStreamWriter systemOutWriter = new OutputStreamWriter (System.out

);
boolean generateImplicitRoot=false;
jxtrQuery.executeWriter (systemOutWriter, generateImplicitRoot,

systemOutWriter.getEncoding (), 2);

// Output result header
System.out.println("---------------------------------");
System.out.println("Query result (with implicit root)");
System.out.println("---------------------------------");

// Execute
generateImplicitRoot=true;
jxtrQuery.executeWriter (systemOutWriter, generateImplicitRoot,

systemOutWriter.getEncoding (), 2);

// Close JDBC connection
disconnect();

}

/**
* Main method.
*/

public static void main (String[] args) throws Exception
{
Example thisDemo = new JXTRExample1();
thisDemo.execute();

}

DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries and Write Statements in a Java Application 227
}

Example B: jXTransformer Write
Statement
The following example shows a jXTransformer write statement
in a Java application. For more examples of jXTransformer write
statements that demonstrate specific features and functions in a
Java application, refer to the examples_readme.txt file in the
examples directory in your Connect for SQL/XML installation
directory.

/*
*---
* Copyright(c) 2003 DataDirect Technologies. All rights reserved.
*
* This product includes Xerces, developed by the Apache Software
* Foundation (http://www.apache.org). Copyright (C) 1999-2003 The Apache
* Software Foundation. All rights reserved.
*
* This product includes Xalan, developed by the Apache Software
* Foundation (http://www.apache.org). Copyright (C) 1999-2003 The Apache
* Software Foundation. All rights reserved.
*
* This product includes JDOM, developed by the JDOM Project
* (http://jdom.org). Copyright (C) 2003 Brett McLaughlin & Jason Hunter.
* All rights reserved.
*
* Description:
*
* JXTRExample9:
* Demonstrates
* (a) Basic insert from an XML document into multiple database tables.
* (b) Writing the number of inserted rows to System.out.
*

DataDirect Connect for SQL/XML User’s Guide

228 Chapter 8 Using the jXTransformer API
* The example can be invoked either through the Example class or by invoking
* the main in this class.
*
* See the accompanying readme file for more information on the
* provided examples.
*
*---
*/

package examples.jxtrapi;

import java.io.OutputStreamWriter;
import java.sql.*;

import com.ddtek.jxtr.*;
import examples.*;

public class JXTRExample9 extends Example
{

/**
* Executes the 'JXTRExample9' example
*/

public void execute() throws Exception
{

// Output example description
System.out.println("==============================");
System.out.println("= JXTR Example9 demonstrates =");
System.out.println("==============================");
System.out.println(" (a) Basic insert from an XML document into

multiple database tables.");
System.out.println(" (b) Writing the number of inserted rows to

System.out.");

// Load properties from the resource
loadProperties();

// Create JDBC connection
connectWithStandardJDBC();
DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries and Write Statements in a Java Application 229
// Turn off autocommit
conn.setAutoCommit (false);

// Set table names
String[] table = new String[] {"Employees", "EmpBenefits",

"Assignments"};

// Build JXTR query
StringBuffer jxtrU = new StringBuffer();
jxtrU.append ("insert xml_document('data/Insert.xml', 1) ");
jxtrU.append (" into " + table[0] + "(EmpId, FirstName, LastName,

Title, StartDate, HourlyRate, Resume) ");
jxtrU.append (" xml_row_pattern('/root/employee') ");
jxtrU.append (" values(xml_xpath('@ID', 'Integer'), ");
jxtrU.append (" xml_xpath('@FirstName'), ");
jxtrU.append (" xml_xpath('@LastName'), ");
jxtrU.append (" xml_xpath('@Title'), ");
if (dateOrTimestamp == java.sql.Types.DATE)

jxtrU.append (" xml_xpath('@StartDate', 'Date'), ");
else

jxtrU.append (" xml_xpath('@StartDate', 'Timestamp'), ");
jxtrU.append (" xml_xpath('@HourlyRate', 'Integer'), ");
jxtrU.append (" xml_xpath('resume[1]/text()') ");
jxtrU.append (") ");
jxtrU.append (" into " + table[1] + "(BenefitId, EmpId, Amount,

StartDate) ");
jxtrU.append ("

xml_row_pattern('/root/employee/benefits/benefit') ");
jxtrU.append (" values(xml_xpath('@ID', 'Integer'), ");
jxtrU.append (" xml_xpath('../../@ID', 'Integer'), ");
jxtrU.append (" xml_xpath('@Amount', 'Integer'), ");
if (dateOrTimestamp == java.sql.Types.DATE)

jxtrU.append (" xml_xpath('@StartDate', 'Date') ");
else

jxtrU.append (" xml_xpath('@StartDate', 'Timestamp') ");
jxtrU.append (") ");
jxtrU.append (" into " + table[2] + "(ProjId, EmpId, Task) ");
jxtrU.append ("

xml_row_pattern('/root/employee/projects/project/task') ");
jxtrU.append (" values(xml_xpath('../@ID', 'Integer'), ");
jxtrU.append (" xml_xpath('../../../@ID', 'Integer'), ");
DataDirect Connect for SQL/XML User’s Guide

230 Chapter 8 Using the jXTransformer API
jxtrU.append (" xml_xpath('text()') ");
jxtrU.append (") ");

// Construct new JXTRUpdate object
JXTRUpdate jxtrUpdate = new JXTRUpdate (conn, new String (jxtrU)

);

// XML document contains ISO8601 timestamps.
jxtrUpdate.setTimestampEncoding(JXTRUpdate.TIMESTAMP_AS_ISO8601);

// Execute
int[][] insertCount = null;
try
{

insertCount = jxtrUpdate.executeUpdate();
}
catch (Exception ex)
{

System.out.println ("!!! Insert failed !!!");
if (ex instanceof JXTRUpdateException)
{

// Get failed count.
insertCount = ((JXTRUpdateException)ex).getUpdateCount();

}
// Rollback changes
conn.rollback();
// Throw again.
throw ex;

}
finally
{

// Write change count to System.out
if (insertCount == null)
{

System.out.println("--------------------------");
System.out.println("No insert count available.");
System.out.println("--------------------------");

}
else
{

DataDirect Connect for SQL/XML User’s Guide

Using jXTransformer Queries and Write Statements in a Java Application 231
// Output count header
System.out.println("------------");
System.out.println("Insert count");
System.out.println("------------");
// Write total change count per table to System.out.
for (int i = 0; i < insertCount.length; i++)
{

int count = 0;
for (int j = 0; j < insertCount[i].length; j++)
{

count += insertCount[i][j];
}
System.out.println (count + " row(s) were inserted into

table " + table[i]);
}

}
}

// Commit changes
conn.commit();

// Close JDBC connection
disconnect();

}

/**
* Main method.
*/

public static void main (String[] args) throws Exception
{

Example thisDemo = new JXTRExample9();
thisDemo.execute();

}

}

DataDirect Connect for SQL/XML User’s Guide

232 Chapter 8 Using the jXTransformer API
DataDirect Connect for SQL/XML User’s Guide

233
9 Tutorial: Using SQL/XML
Queries

This chapter contains a step-by-step tutorial that shows you how
to create a SQL/XML query using the DataDirect Query Builder
for SQL/XML (the Builder). It also shows you how to embed that
query in a Java application and use Connect for SQL/XML hints to
provide processing options that are not supported through the
standard SQL/XML query syntax.

This tutorial steps you through the process of constructing the
following SQL/XML query.

SELECT
XMLELEMENT (NAME "employee",

XMLATTRIBUTES(e.EmpId as "id"),
XMLELEMENT(NAME "names",

XMLELEMENT(NAME "first", e.FirstName),
XMLELEMENT(NAME "last", e.LastName)),

XMLELEMENT(NAME "hire-dates",
XMLATTRIBUTES(e.StartDate as "start",
e.EndDate as "end")

)) as SQLXMLCOL1
FROM Employees e WHERE e.EmpId = 12

NOTE: The preceding SQL/XML query example can be found in
the SQLXMLExample4.java file in the
examples/src/examples/sqlxml directory in your DataDirect
Connect for SQL/XML installation directory. For information on
populating your database with test data and using this example,
refer to the examples_readme.txt file in the examples directory.
DataDirect Connect for SQL/XML User’s Guide

234 Chapter 9 Tutorial: Using SQL/XML Queries
Our SQL/XML query example generates a result set that looks
like this:

This tutorial uses this SQL/XML query example to demonstrate
how to accomplish the following tasks:

� Create result sets that can contain XML.

� Use the following Connect for SQL/XML hints to specify
processing options that are not available in the SQL/XML
syntax:

• null_replacement is a hint that replaces NULL values
retrieved from the database with a specified value. In our
example, we replace any NULL value that is encountered
with the letters "NA."

• timestamp_encoding is a hint that specifies the type of
timestamp-to-string conversion to be used, either iso8601
or odbc, when timestamp information is retrieved from
the database.

• key_expr is a hint that specifies a key or part of a
multi-value key. Keys uniquely identify rows in the
database selected by the base SQL query. In our example,
the key is specified in the Builder and is translated into a
key_expr hint.

See “Using Connect for SQL/XML Hints” on page 195 for
information about using Connect for SQL/XML hints.

SQLXMLCOL1

<employee id='12'>
<names>
<first>Paul</first>
<last>Steward</last>

</names>
<hire-dates start='1997-01-04 00:00:00.0'
end='NA'></hire-dates>

</employee>
DataDirect Connect for SQL/XML User’s Guide

Creating the Builder Project 235
Complete the tasks described in the next sections to create the
SQL/XML query in our example. These tasks include:

� “Creating the Builder Project” on page 235

� “Constructing the SQL/XML Query in the Builder” on
page 237

� “Using a SQL/XML Query in a Java Application” on page 249

Creating the Builder Project
1 Start the Builder. How you start the Builder depends on your

platform:

• On Windows: Run the builder.bat file located in the
Connect for SQL/XML installation directory.

• On UNIX: Run the builder.sh shell script located in the
Connect for SQL/XML installation directory.

During a normal installation, the builder.bat file and
builder.sh script are automatically customized to include the
path to your JDK. If the installer was unable to detect a
required JDK or you want to change the JDK to be used,
refer to the DataDirect Connect for SQL/XML Installation
Guide for instructions on configuring the startup file for the
Builder.
DataDirect Connect for SQL/XML User’s Guide

236 Chapter 9 Tutorial: Using SQL/XML Queries
2 Open a new Builder project for the SQL/XML query by
selecting File / New Project. The New Project dialog box
appears.

3 From the drop-down list, select SQL/XML.

4 Click OK. An untitled project node appears in the Tree view of
the SQL/XML Statement window.

5 Save the Builder project by selecting File / Save Project As and
specifying example4.cfb as the filename of the project. Notice
that the project node is renamed to example4. As you work
with this example, you can save your changes to the project
file at any time by selecting File / Save Project.
DataDirect Connect for SQL/XML User’s Guide

Constructing the SQL/XML Query in the Builder 237
Constructing the SQL/XML Query in the
Builder

1 First, create a Base SQL Query for the SQL/XML query. The
Base SQL Query is required. It helps define the data to be
retrieved and facilitates the process of constructing the
query. To create a Base SQL Query, right-click the project
node, and select Insert / Base SQL Query Node. The Base SQL
Query Node dialog box appears.

TIP: When
specifying table
names, you must
use unique table
aliases (for
example,
Employees e).

2 Type the following Base SQL Query for our SQL/XML query:

SELECT
e.EmpId,
e.FirstName,
e.LastName,
e.StartDate,
e.EndDate

FROM Employees e WHERE e.EmpId = 12

The Base SQL Query accomplishes the following tasks:

� Selects columns in the query containing data to retrieve
� Specifies the tables from which to retrieve data
� Optionally, specifies filters on the Select statement
DataDirect Connect for SQL/XML User’s Guide

238 Chapter 9 Tutorial: Using SQL/XML Queries
Notice that the Where clause in our example specifies a filter
on the Select statement of the SQL query.

3 Click OK. The Builder checks the Base SQL Query for syntax.
The Base SQL Query node appears in the project tree.

Now that you have defined which data to retrieve from the
database for the SQL/XML query, you can define the XML
structure, including the hierarchical relationships of the data.

Examine the SQL/XML query in our example. You need to
create an XML element that contains employee information
for an employee based on their employee ID, including first
and last name, as well as the start and end hire dates for that
employee.

SELECT
XMLELEMENT (NAME "employee",

XMLATTRIBUTES(e.EmpId as "id"),
XMLELEMENT(NAME "names",

XMLELEMENT(NAME "first", e.FirstName),
XMLELEMENT(NAME "last", e.LastName)),

XMLELEMENT(NAME "hire-dates",
XMLATTRIBUTES(e.StartDate as "start",
e.EndDate as "end")
DataDirect Connect for SQL/XML User’s Guide

Constructing the SQL/XML Query in the Builder 239
)) as SQLXMLCOL1
FROM Employees e WHERE e.EmpId = 12

Notice that the element named employee in the SQL/XML
query is a parent to the following attributes and elements:

� An attribute named id that retrieves the employee ID (a
key) from the database column e.EmpId in the database
table Employees with an alias of e.

� An element named names that contains two subelements
that retrieve the first and last names of the employee
from the database columns e.Firstname and e.LastName
in the database table Employees with an alias of e.

� An element named hire-dates that contains two
attributes that retrieve the start hire date and end hire
date in the database table Employees with an alias of e.

4 Right-click the Base SQL Query node, and select Insert /
Element / Empty. The Element Node dialog box appears.

5 In the Name field, type employee.
DataDirect Connect for SQL/XML User’s Guide

240 Chapter 9 Tutorial: Using SQL/XML Queries
6 Click OK. The ELEMENT node appears in the project tree.

TIP: Because keys
uniquely identify
rows in the
database, we
recommend that
you use keys when
possible to
facilitate the
performance of
data retrieval.

7 Now, add an attribute key named id that will retrieve the
employee ID from the database column e.EmpId. Because this
attribute key will be a child of the element named employee,
right-click the ELEMENT node named employee, and select
Insert / Attribute node / As Select Expression. The Attribute
Node dialog box appears.

8 In the Name field, type id.

9 The database column e.EmpId is already specified in the Select
Expression drop-down list, so there is no need to select it.

10 Select the Is Key? checkbox.
DataDirect Connect for SQL/XML User’s Guide

Constructing the SQL/XML Query in the Builder 241
11 Click OK. The ATTRIBUTE KEY node appears in the project
tree.

12 Add an element named names that will contain the elements
named first and last. Because this element is a child to the
element named employee, right-click the ELEMENT node
named employees, and select Insert / Element Node / Empty.
The Element Node dialog box appears.

13 In the Name field, type names.
DataDirect Connect for SQL/XML User’s Guide

242 Chapter 9 Tutorial: Using SQL/XML Queries
14 Click OK. The ELEMENT node appears in the project tree.

15 Add an element named first that will retrieve the first name
of the employee from the database column e.FirstName.
Because this element is a child to the element named names,
right-click the ELEMENT node named names and select Insert /
Element Node / as Select Expression. The Element Node
dialog box appears.

16 In the Name field, type first.

17 From the Select Expression drop-down list, select e.FirstName.
DataDirect Connect for SQL/XML User’s Guide

Constructing the SQL/XML Query in the Builder 243
18 Click OK. The ELEMENT node appears in the project tree.

19 Add an element named last that will retrieve the last name
of the employee from the database column e.LastName.
Because this element is a child to the element named names,
right-click the ELEMENT node named names and select
Insert / Element Node / as Select Expression. The Element
Node dialog box appears.

20 In the Name field, type last.

21 From the Select Expression drop-down list, select e.LastName.
DataDirect Connect for SQL/XML User’s Guide

244 Chapter 9 Tutorial: Using SQL/XML Queries
22 Click OK. The ELEMENT node appears in the project tree.

23 Add an element named hire-dates that will contain the
attributes named start and end. Because this element is a
child to the element named employee, right-click the
ELEMENT node named employees, and select Insert /
Element Node / Empty. The Element Node dialog box appears.

24 In the Name field, type hire-dates.
DataDirect Connect for SQL/XML User’s Guide

Constructing the SQL/XML Query in the Builder 245
25 Click OK. The ELEMENT node appears in the project tree.

26 Add an attribute named start that will retrieve the start hire
date of the employee from the database column e.StartDate.
Because this attribute is a child to the element named
hire-dates, right-click the ELEMENT node named hire-dates,
and select Insert / Attribute Node / as Select Expression. The
Attribute Node dialog box appears.

27 In the Name field, type start.

28 From the Select Expression drop-down list, select e.StartDate.
DataDirect Connect for SQL/XML User’s Guide

246 Chapter 9 Tutorial: Using SQL/XML Queries
29 Click OK. The ATTRIBUTE node appears in the project tree.

30 Add an attribute named end that will retrieve the end hire
date of the employee from the database column e.EndDate.
Because this attribute is a child to the element named
hire-dates, right-click the ELEMENT node named hire-dates,
and select Insert / Attribute Node / as Select Expression. The
Attribute Node dialog box appears.

31 In the Name field, type end.

32 From the Select Expression drop-down list, select e.EndDate.
DataDirect Connect for SQL/XML User’s Guide

Constructing the SQL/XML Query in the Builder 247
33 Click OK. The ATTRIBUTE node appears in the project tree.

You have completed the part of the query that specifies which
data to retrieve and defines the XML structure of the data in the
result set.
DataDirect Connect for SQL/XML User’s Guide

248 Chapter 9 Tutorial: Using SQL/XML Queries
If you want to see what the SQL/XML query looks like using the
SQL/XML syntax, switch to Text view in the Builder by selecting
the Text View tab. If the SQL/XML query you created is correct
syntactically, the Builder allows you to switch from Tree view to
Text view or the reverse.

Notice that the key designation we made in our example when
we created the ATTRIBUTE node named id has been translated to
the Connect for SQL/XML hint:

--{jxtr-hints key_expr=e.EmpId

See “Using a SQL/XML Query in a Java Application” on page 249
to learn how to specify other Connect for SQL/XML hints and how
to code a SQL/XML query in a Java application.
DataDirect Connect for SQL/XML User’s Guide

Using the SQL/XML Query in a Java Application 249
Using the SQL/XML Query in a Java
Application

You can cut and paste the SQL/XML query from the Text view of
the Builder into a Java application.

The code example in this section can be found in the
SQLXMLExample4.java file in the examples/src/examples/sqlxml
directory in your Connect for SQL/XML installation directory.

The following code example performs the following tasks:

� Imports the necessary Java classes.

� Creates a connection to the database with the Connect for
SQL/XML JDBC driver.

� Embeds the SQL/XML query you created in the preceding
sections. Notice that each line of the query begins with:

sqlxml.append ("

and ends with:

");

Also, notice that quotes in a Java string constant must be
preceded by the Java escape character \, for example:

sqlXml.append (" xmlelement(NAME \"hire-dates\", ");
sqlXml.append (" xmlattributes(e.StartDate as
\"start\",e.EndDate as \"end\") ");

TIP: Connect for

SQL/XML hints can
also be typed in
the Text view of
the Builder.

� Provides Connect for SQL/XML hints that specify processing
options that are not available in the SQL/XML syntax. For
example:

sqlXml.append ("--{jxtr-hints null_replacement=
NA;key_expr=e.EmpId;timestamp_encoding=odbc ");
DataDirect Connect for SQL/XML User’s Guide

250 Chapter 9 Tutorial: Using SQL/XML Queries
The preceding code specifies the following hints:

• null_replacement replaces NULL values retrieved from the
database with the letters "NA".

• timestamp_encoding specifies that the odbc
timestamp-to-string conversion be used.

• key_expr specifies that the database column e.EmpId be
used to uniquely identify the row in the database.

� Sends a description of the query result to System.out.

� Executes the SQL/XML query.

� Sends the result set to System.out.

� Closes the connection to the database with the Connect for
SQL/XML JDBC driver and declares the main method.

package examples.sqlxml;

import java.io.OutputStreamWriter;
import java.sql.*;

import com.ddtek.jdbc.jxtr.*;
import examples.*;

public class SQLXMLExample4 extends Example
{

/**
* Executes the 'SQL/XML Example4' example
*/

public void execute() throws Exception
{

// Output example description
System.out.println("=================================");
System.out.println("= SQL/XML Example4 demonstrates =");
System.out.println("=================================");
System.out.println(" (a) Specifying null replacement hint.");
System.out.println(" (b) Specifying timestamp encoding hint.");
DataDirect Connect for SQL/XML User’s Guide

Using the SQL/XML Query in a Java Application 251
// Load properties from the resource
loadProperties();

// Create the Connect for SQL/XML JDBC connection
connectWithConnectForSQLXML();

// Build SQL/XML query
StringBuffer sqlXml = new StringBuffer();
sqlXml.append ("--{jxtr-hints null_replacement=NA;key_expr=

e.EmpId;timestamp_encoding=odbc ");
sqlXml.append (lineSeparator);
sqlXml.append ("select ");
sqlXml.append (" xmlelement (NAME \"employee\", ");
sqlXml.append (" xmlattributes(e.EmpId as \"id\"), ");
sqlXml.append (" xmlelement(NAME \"names\", ");
sqlXml.append (" xmlelement(NAME \"first\", e.FirstName), ");
sqlXml.append (" xmlelement(NAME \"last\", e.LastName)), ");
sqlXml.append (" xmlelement(NAME \"hire-dates\", ");
sqlXml.append (" xmlattributes(e.StartDate as

\"start\",e.EndDate as \"end\") ");
sqlXml.append (")) as SQLXMLCOL1 ");
sqlXml.append ("from Employees e where e.EmpId = 12 ");

// Output result header
System.out.println("---------------------------------------");
System.out.println("Query result (via getString on XMLType)");
System.out.println("---------------------------------------");

// Execute the SQL/XML query
resultSet = stmt.executeQuery(sqlXml.toString());

// Retrieve data from the resultset
while (resultSet.next())
{

XMLType xmlType = (XMLType)resultSet.getObject(1);
System.out.println(xmlType.getString());

}
resultSet.close();

// Close Connect for SQL/XML JDBC connection
disconnect();
DataDirect Connect for SQL/XML User’s Guide

252 Chapter 9 Tutorial: Using SQL/XML Queries
}

/**
* Main method.
*/

public static void main (String[] args) throws Exception
{

Example thisDemo = new SQLXMLExample4();
thisDemo.execute();

}

}

DataDirect Connect for SQL/XML User’s Guide

253
10 Tutorial: Using jXTransformer
Queries

This chapter contains a step-by-step tutorial that shows you how to
create a jXTransformer query using the DataDirect Query Builder
for SQL/XML (the Builder). It also shows you how to embed the query
in a Java using the jXTransformer API.

This tutorial steps you through the process of constructing the
following jXTransformer query, which logically can be divided
into two parts: the first part specifies document-level constructs
and the second part specifies the data to be retrieved and
defines the structure of the XML document.

xml_document(
xml_comment('jxtr Example4 - Part 1'),
xml_external_dtd('example4.dtd'),
xml_pi('xml-stylesheet', 'type="text/xsl"
href="file://example4.xsl"'),
xml_element('exns:example4',

xml_attribute('rootatt1','example4'),
xml_namespace('http://www.jxtrdemo/default'),
xml_namespace('exns','http://www.jxtrdemo/example4'),
SELECT

xml_element('empinfo',
xml_attribute_key('exns:id',e.EmpId),
xml_attribute('exns:name',e.LastName),
(SELECT

xml_element('project',
xml_attribute('name',p.Name),
xml_attribute('task',a.Task))

FROM Projects p, Assignments a
WHERE p.ProjId=a.ProjId and a.EmpId=e.EmpId))

FROM Employees e WHERE e.EmpId between ? and ?))

Specifies
document-level
constructs

Specifies data
to be retrieved
and defines the
structure of
the XML
document
DataDirect Connect for SQL/XML User’s Guide

254 Chapter 10 Tutorial: Using jXTransformer Queries
NOTE: The preceding jXTransformer query example can be found
in the JXTRExample4.java file in the
examples/src/examples/jxtrapi directory in your Connect for
SQL/XML installation directory. For information on populating your
database with test data and using this example, refer to the
examples_readme.txt file in the examples directory.

Our jXTransformer query example generates an XML document
that looks like this:

<!--jxtr Example4-->
<!DOCTYPE exns:example4 SYSTEM "example4.dtd">
<?xml-stylesheet type="test/xsl" href="file://example4.xsl"?>
<exns:example4
rootatt1='example4'
xmlns="http://www.jxtrdemo/default"
xmlns=exns="http://www.jxtrdemo/example4">

<empinfo exns:id='1' name='Marshall'>
<project name='Medusa' task='Analysis'></project>
<project name='Medusa' task='Documentation'></project>
<project name='Medusa' task='Planning'></project>
<project name='Medusa' task='Testing'></project>
<project name='Phoenix' task='Analysis'></project>
<project name='Phoenix' task='Documentation'></project>

</empinfo>
<empinfo exns:id='2' exns:name='Ayers'>

<project name='Hydra' task='Analysis'></project>
<project name='Hydra' task='Documentation'></project>
<project name='Python' task='Analysis'></project>
<project name='Python' task='Development'></project>

</empinfo>
<empinfo exns:id='3' exns:name='Simpson'>

<project name='Pegasus' task='Analysis'></project>
<project name='Pegasus' task='Testing'></project>

</empinfo>
<empinfo exns:id='4' exns:name='O'Donnel'>

<project name='Centaur' task='Analysis'></project>
<project name='Centaur' task='Documentation'></project>
<project name='Centaur' task='Planning'></project>

</empinfo>
DataDirect Connect for SQL/XML User’s Guide

255
<empinfo exns:id='5' exns:name='Jenkins'>
<project name='Centaur' task='Analysis'></project>
<project name='Centaur' task='Testing'></project>

</empinfo>
</exns:example4>

This tutorial uses this jXTransformer query example to
demonstrate how to accomplish the following tasks:

� Create XML documents that contain document-level
processing instructions, comments, namespaces, an external
DTD reference, and a root element. First, the tutorial will
show you how to create document-level constructs by
specifying them within the query. Later, it will show how to
specify them using the jXTransformer API. The advantage of
setting document-level constructs through the jXTransformer
API is that you can make changes to them without editing
the query.

� Use keys to facilitate performance of data retrieval. Keys
uniquely identify each row selected by the base SQL query.

� Use a nested query within a jXTransformer query. In our
jXTransformer query example, the following part of the
jXTransformer query example is a nested query:

(SELECT
xml_element('project',

xml_attribute('name',p.Name),
xml_attribute('task',a.Task))

FROM Projects p, Assignments a
WHERE p.ProjId=a.ProjId and a.EmpId=e.EmpId))

For the purposes of this tutorial, we refer to the nested query
as the child query and the query that contains the nested
query as the parent query.

� Use parameter markers in the jXTransformer query and set
the values for those markers using the jXTransformer API.
Setting values for parameter markers can be done only
through the jXTransformer API.
DataDirect Connect for SQL/XML User’s Guide

256 Chapter 10 Tutorial: Using jXTransformer Queries
� Generate a DTD that describes the XML that results from the
jXTransformer query using the jXTransformer API.

Complete the tasks described in the next sections to create the
jXTransformer query in our example. These tasks include:

� “Creating the Builder Project” on page 256

� “Constructing the Parent Query in the Builder” on page 259

� “Constructing the Child Query in the Builder” on page 266

� “Specifying Document-Level Constructs in the jXTransformer
Query” on page 273

� “Using a jXTransformer Query in a Java Application” on
page 286

Creating the Builder Project
1 Start the Builder. How you start the Builder depends on your

platform:

• On Windows: Run the builder.bat file located in the
Connect for SQL/XML installation directory.

• On UNIX: Run the builder.sh shell script located in the
Connect for SQL/XML installation directory.

During a normal installation, the builder.bat file and
builder.sh script are automatically customized to include the
path to your JDK. If the installer was unable to detect a
required JDK or you want to change the JDK to be used, refer
to the DataDirect Connect for SQL/XML Installation Guide for
instructions on configuring the startup file for the Builder.
DataDirect Connect for SQL/XML User’s Guide

Creating the Builder Project 257
2 Open a new Builder project for the jXTransformer query by
selecting File / New Project. The New Project dialog box
appears.

3 From the drop-down list, select jXTransformer.

4 Click OK. An untitled project node appears in the Tree view
of the jXTransformer Statement window.

5 Save the jXTransformer query project by selecting File / Save
Project As and specifying example4.jxb as the filename of the
project. Notice that the project node is renamed to
example4. As you work with this example, you can save your
changes to the project file at any time by selecting File / Save
Project.
DataDirect Connect for SQL/XML User’s Guide

258 Chapter 10 Tutorial: Using jXTransformer Queries
Our jXTransformer query example contains a nested, or child,
query as shown in the following example.

As you build the query in the example, you will construct the
parent query first. Then, you will construct the child query.

NOTE: Typically, you would construct the part of the query that
represents the structure of the XML document first, and then,
insert document-level constructs in the query. If you prefer,
however, you can insert document-level constructs first (see
“Specifying Document-Level Constructs in the jXTransformer
Query” on page 273 for instructions). Or, you can set the
document-level constructs in the jXTransformer API (see “Using a
jXTransformer Query in a Java Application” on page 286 for
instructions).

SELECT
xml_element('empinfo',

xml_attribute_key('exns:id',e.EmpId),
xml_attribute('exns:name',e.LastName),
(SELECT

xml_element('project',
xml_attribute('name',p.Name),
xml_attribute('task',a.Task))

FROM Projects p, Assignments a
WHERE p.ProjId=a.ProjId and a.EmpId=e.EmpId))

FROM Employees e WHERE e.EmpId between ? and ?

Parent
query

Child
query
DataDirect Connect for SQL/XML User’s Guide

Constructing the Parent Query in the Builder 259
Constructing the Parent Query in the Builder
1 First, create a Base SQL Query for the parent query. The Base

SQL Query is required and helps define the data to be
retrieved. It also facilitates the process of constructing the
query. To create a Base SQL Query, right-click the project
node and select Insert / Base SQL Query Node. The Base SQL
Query Node dialog box appears.

2 Type the following Base SQL Query for the parent query:

SELECT
e.EmpId,
e.LastName

FROM Employees e WHERE e.EmpId between ? and ?

The Base SQL Query accomplishes the following tasks:

� Selects columns in the parent query containing data to
retrieve

� Specifies tables from which to retrieve data

� Optionally, specifies filters on the Select statement

Notice that the Where clause in our example specifies a filter
on the Select statement of the parent query and contains
DataDirect Connect for SQL/XML User’s Guide

260 Chapter 10 Tutorial: Using jXTransformer Queries
parameter markers. Parameter markers are placeholders for
values, represented by question marks (?). Later, this tutorial
will show you how to set the values of the parameter markers
using the jXTransformer API. See “Using a jXTransformer
Query in a Java Application” on page 286 for instructions.

3 Click OK. The Builder checks the Base SQL Query for syntax.
The Base SQL Query node appears in the project tree.

Now that you have defined which data to retrieve from the
database for the parent query, you can define the XML
structure, including the hierarchical relationships of the data.
DataDirect Connect for SQL/XML User’s Guide

Constructing the Parent Query in the Builder 261
So, examine the parent query in our example. You need to
create an XML element that contains related employee
information, including employee ID, last name of the
employee, and basic project information for that employee.

Notice that the element named empinfo in the parent query
is a parent to the following attributes and nested query:

TIP: When
specifying table
names, you must
use unique table
aliases (for
example,
Employees e).

� An attribute named exns:id that retrieves the employee
ID (a key) from the database column e.EmpId in the
database table Employees with an alias of e.

� An attribute named exns:name that retrieves the last
name of the employee from the database column
e.LastName in the database table Employees with an alias
of e.

NOTE: In our query example, the attribute names exns:id
and exns:name include a namespace prefix (exns) which is
preceded by a colon(:). The namespace in our example is
specified using a jXTransformer document-level construct.
See “Specifying Document-Level Constructs in the
jXTransformer Query” on page 273 and “Using a
jXTransformer Query in a Java Application” on page 286
for instructions.

� A nested query that retrieves basic project information
for the employee, such as the name of the project and
the task the employee worked on for that project, from

SELECT
xml_element('empinfo',

xml_attribute_key('exns:id',e.EmpId),
xml_attribute('exns:name',e.LastName),
(SELECT

xml_element('project',
xml_attribute('name',p.Name),
xml_attribute('task',a.Task))

FROM Projects p, Assignments a
WHERE p.ProjId=a.ProjId and a.EmpId=e.EmpId))

FROM Employees e WHERE e.EmpId between ? and ?

Parent
query

Child
query
DataDirect Connect for SQL/XML User’s Guide

262 Chapter 10 Tutorial: Using jXTransformer Queries
two different database tables, Projects with an alias of p
and Assignments with an alias of a.

(SELECT
xml_element('project',

xml_attribute('name',p.Name),
xml_attribute('task',a.Task))

FROM Projects p, Assignments a
WHERE p.ProjId=a.ProjId and a.EmpId=e.EmpId))

Notice that the Where clause in the nested query creates a
link between the database tables, Projects and
Assignments and Assignments and Employees.

4 Because the element only contains child constructs, you can
create an ELEMENT node named empinfo with an empty
value. Right-click the Base SQL Query node, and select Insert /
Element / Empty. The Element Node dialog box appears.

5 In the Name field, type empinfo.
DataDirect Connect for SQL/XML User’s Guide

Constructing the Parent Query in the Builder 263
6 Click OK. The ELEMENT node appears in the project tree.

TIP: Because keys
uniquely identify
rows in the
database, we
recommend that
you use keys when
possible to
facilitate the
performance of
data retrieval.

7 Now, add an attribute key named exns:id that will retrieve
the employee ID from the database column e.EmpId. Because
this attribute key will be a child of the element named
empinfo, right-click the ELEMENT node named empinfo.
Select Insert / Attribute node / As Select Expression. The
Attribute Node dialog box appears.

8 In the Name field, type exns:id.

9 The database column e.EmpId is already specified in the
Select Expression drop-down list, so there is no need to
select it.
DataDirect Connect for SQL/XML User’s Guide

264 Chapter 10 Tutorial: Using jXTransformer Queries
10 Select the Is Key? checkbox.

11 Click OK. The ATTRIBUTE KEY node appears in the project
tree.

12 Next, add an attribute named exns:name that will retrieve the
last name of the employee from the database column
e.LastName. Because this attribute will be a child of the
element named empinfo, right-click the ELEMENT node
named empinfo. Select Insert / Attribute node / As Select
Expression. The Attribute Node dialog box appears.

13 In the Name field, type exns:name.

14 From the Select Expression drop-down list, select e.LastName.
DataDirect Connect for SQL/XML User’s Guide

Constructing the Parent Query in the Builder 265
15 Click OK. The ATTRIBUTE node appears in the project tree.

Now, you have constructed the parent query and can construct
the nested child query as described in the next section.
DataDirect Connect for SQL/XML User’s Guide

266 Chapter 10 Tutorial: Using jXTransformer Queries
Constructing the Child Query in the Builder
1 To construct the child query, create another Base SQL Query

that is a child of the element named empinfo. To do this,
right-click the ELEMENT node named empinfo. Select Insert /
Base SQL Query. The Base SQL Query Node dialog box
appears.

2 Type the following Base SQL Query for the child query:

SELECT
p.Name,
a.Task

FROM Projects p, Assignments a
WHERE p.ProjId=a.ProjId and a.EmpId=e.EmpId

Remember that the Base SQL Query accomplishes the
following tasks:

� Selects columns in the parent query containing data to
retrieve

� Specifies tables from which to retrieve data

� Optionally, specifies filters on the Select statement
DataDirect Connect for SQL/XML User’s Guide

Constructing the Child Query in the Builder 267
3 Click OK. The Builder checks the Base SQL Query for syntax.
The Base SQL Query node appears in the project tree.

Now that you have defined which data to retrieve from the
database for the child query, you can now define the XML
structure, including the hierarchical relationships of the data.

Examine the child query in our example as shown in the
following code. You need to create an element that contains
basic project information for the employee, including the
name of the project and the task the employee worked on
for that project.

(SELECT
xml_element('project',

xml_attribute('name',p.Name),
xml_attribute('task',a.Task))

FROM Projects p, Assignments a
WHERE p.ProjId=a.ProjId and a.EmpId=e.EmpId))
DataDirect Connect for SQL/XML User’s Guide

268 Chapter 10 Tutorial: Using jXTransformer Queries
Notice that the element named project is a parent to the
following attributes:

� An attribute named name that retrieves the name of the
project the employee worked on from the database
column p.Name in the database table Projects with an
alias of p

� An attribute named task that retrieves the task the
employee worked on from the database column a.Task in
the database table Assignments with an alias of a

4 Because the element only contains child constructs, you can
create an ELEMENT node named project with an empty value.
To do this, right-click the Base SQL Query node, and select
Insert / Element Node / Empty. The Element Node dialog box
appears.

5 In the Name field, type project.
DataDirect Connect for SQL/XML User’s Guide

Constructing the Child Query in the Builder 269
6 Click OK. The ELEMENT node appears in the project tree.

7 Now, add an attribute named name that will retrieve the
name of the project from the database column p.Name.
Because this attribute will be a child of the element named
project, right-click the ELEMENT node named project. Select
Insert / Attribute node / As Select Expression. The Attribute
Node dialog box appears.

8 In the Name field, type name.

9 The database column p.Name is already selected in the Select
Expression drop-down list, so there is no need to select it.
DataDirect Connect for SQL/XML User’s Guide

270 Chapter 10 Tutorial: Using jXTransformer Queries
10 Click OK. The ATTRIBUTE node appears in the project tree.

11 Next, add an attribute named task that retrieves the tasks the
employee worked on from the database column a.Task.
Because this attribute will be a child of the element named
project, right-click the ELEMENT node named project. Select
Insert / Attribute Node / As Select Expression. The Attribute
Node dialog box appears.

12 In the Name field, type task.

13 In the Select Expression drop-down list, select a.Task.
DataDirect Connect for SQL/XML User’s Guide

Constructing the Child Query in the Builder 271
14 Click OK. The ATTRIBUTE node appears in the project tree.

15 Save the jXTransformer query by selecting File / Save Project.

You have completed the part of the query that specifies which
data will be retrieved and defines the XML structure of the
resulting XML document.
DataDirect Connect for SQL/XML User’s Guide

272 Chapter 10 Tutorial: Using jXTransformer Queries
If you want to see what the jXTransformer query looks like using
the jXTransformer syntax, switch to Text view in the Builder by
selecting the Text View tab. If the jXTransformer query you
created is correct syntactically, the Builder allows you to switch
from Tree view to Text view or the reverse.

To learn how to specify document-level constructs within the
query, you can continue with the next section. Or, you can specify
document-level constructs within the Java application (see “Using
a jXTransformer Query in a Java Application” on page 286 for
instructions).
DataDirect Connect for SQL/XML User’s Guide

Specifying Document-Level Constructs in the jXTransformer Query 273
Specifying Document-Level Constructs in the
jXTransformer Query

If the Builder project you created for the jXTransformer query in
the previous section is not already open, open it by selecting
File / Open Project. Navigate to the project file named
example4.jxb and select it. The project appears either in Text
view or Tree view, depending on the Builder view in which it was
last saved. If the project appears in Text view, switch to Tree view
by selecting the Tree View tab on the jXTransformer Statement
window.

DataDirect Connect for SQL/XML User’s Guide

274 Chapter 10 Tutorial: Using jXTransformer Queries
Adding the Root Element
1 Insert a root element by selecting Insert / Document Header. A

ROOT ELEMENT node is created in the project tree with a
default root element name of jxtr-result.

2 Because we will name the root element exns:example4,
right-click the ROOT ELEMENT node and select Edit. The Root
Element Node dialog box appears with jxtr-result in the Name
field.

3 Highlight jxtr-result In the Name field, and type
exns:example4.
DataDirect Connect for SQL/XML User’s Guide

Specifying Document-Level Constructs in the jXTransformer Query 275
4 Click OK. The name of the ROOT ELEMENT node in the
project tree is changed to exns:example4.

Notice that the root element contains an attribute named
rootatt1and two namespace definitions. The first namespace
definition defines the default namespace; the second defines
a namespace with a prefix ID of exns.
DataDirect Connect for SQL/XML User’s Guide

276 Chapter 10 Tutorial: Using jXTransformer Queries
Adding an Attribute to the Root
Element
1 Add an attribute named rootatt1 to the root element. Select

the ROOT ELEMENT node, and select Insert / Attribute Node /
as Constant. The Attribute Node dialog box appears.

2 In the Name field, type rootatt1.

3 In the Value field, type example4.

4 Click OK. The ATTRIBUTE node appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

Specifying Document-Level Constructs in the jXTransformer Query 277
Add Namespaces to the Root Element
1 Define the default namespace associated with the root

element. Select the ROOT ELEMENT node, and select Insert /
Namespace Node. The Namespace Node dialog box appears.

2 Because we are defining the default namespace, there is no
prefix. Leave the Prefix field blank.

3 In the Namespace URI, type http://www.jxtrdemo/default.

4 Click OK. The NAMESPACE node appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

278 Chapter 10 Tutorial: Using jXTransformer Queries
5 Next, define a namespace associated with the root element
with a prefix ID of exns. Select the ROOT ELEMENT node, and
select Insert / Namespace Node. The Namespace Node dialog
box appears.

6 In the Prefix field, type exns.

7 In the Namespace URI field, type
http://www.jxtrdemo/example4.

8 Click OK. The NAMESPACE node appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

Specifying Document-Level Constructs in the jXTransformer Query 279
Adding a Comment
1 Next, add a comment to the document header. Select the

project node, and select Insert / Comment. The Comment
Node dialog box appears.

2 In the Comment field, type jxtr Example4.

3 Click OK. The COMMENT node appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

280 Chapter 10 Tutorial: Using jXTransformer Queries
Adding a Reference to an External DTD
1 Add a reference to an external DTD named example4.dtd.

Select the project node, and select Insert / External DTD. The
External DTD Node dialog box appears.

2 Because you are specifying a private external DTD, leave the
Public Identifier field blank.

3 In the URI field, type example4.dtd.

4 Click OK. The EXTERNAL DTD node appears in the project tree.
DataDirect Connect for SQL/XML User’s Guide

Specifying Document-Level Constructs in the jXTransformer Query 281
Adding a Processing Instruction
1 Add a processing instruction that specifies an XSL stylesheet

named example4.xsl. Select the project node, and select
Insert / Processing Instruction. The Processing Instruction
Node dialog box appears.

2 In the Processing Instruction Target field, type
xml-stylesheet.

3 In the Processing Instruction field, type "text/xsl" href=
"file://example4.xsl".
DataDirect Connect for SQL/XML User’s Guide

282 Chapter 10 Tutorial: Using jXTransformer Queries
4 Click OK. The PROCESSING INSTRUCTION node appears in the
project tree.

Executing the jXTransformer Query

You have now specified all the document-level constructs in our
jXTransformer query example within the query. If you want to see
what the XML results would look like, you can execute the query
using the Builder.

NOTE: To execute the query and return valid results, you must
have created the demo database tables as explained in the
README in the examples directory in your Connect for SQL/XML
installation directory.
DataDirect Connect for SQL/XML User’s Guide

Specifying Document-Level Constructs in the jXTransformer Query 283
To execute the jXTransformer query:

1 Select Project / Execute Statement. If you are not connected
to the database, you must make a JDBC connection. The
Open JDBC Connection dialog box appears.

The Connection URL option is selected by default. If you
want to connect to the database using:

� JDBC connection URL, see “Connecting Using JDBC
Connection URLs” on page 118

� JDBC data source, see “Connecting Using JDBC Data
Sources” on page 119

Then, continue with the next step.
DataDirect Connect for SQL/XML User’s Guide

284 Chapter 10 Tutorial: Using jXTransformer Queries
2 Because the jXTransformer query contains parameter markers,
the Query Parameters dialog box appears, prompting you for
the parameter values.

In the first Value field, type 1 and in the second Value field,
type 5. Then, click OK.

 The Execute Statement window appears.
DataDirect Connect for SQL/XML User’s Guide

Specifying Document-Level Constructs in the jXTransformer Query 285
3 Click OK to execute the query. The query results appear in a
separate window.

Continue with the next section to learn how to code the
jXTransformer query in a Java application.
DataDirect Connect for SQL/XML User’s Guide

286 Chapter 10 Tutorial: Using jXTransformer Queries
Using a jXTransformer Query in a Java
Application

You can cut and paste the jXTransformer query from the Text
view of the Builder into a Java application. For more information
about how to use a query in a Java application, refer to the
following examples:

� “Example A: Document-Level Constructs in the jXTransformer
Query” on page 286 demonstrates how to embed a
jXTransformer query that contains document-level constructs
in a Java application.

� “Example B: Document-Level Constructs in the jXTransformer
API” on page 291 demonstrates how to code the same
document-level constructs using the jXTransformer API
instead of coding them in the query. The advantage of setting
document-level constructs through the jXTransformer API is
that you can make changes to them without editing the
query.

Example A: Document-Level Constructs
in the jXTransformer Query

The code example in this section can be found in the
JXTRExample4.java file in the examples/src/examples/jxtrapi
directory in your Connect for SQL/XML installation directory.

The following code example performs the following tasks:

� Imports the necessary Java classes.

� Sends a description of the example to System.out.

� Loads the necessary Java properties and creates a JDBC
connection.
DataDirect Connect for SQL/XML User’s Guide

Using a jXTransformer Query in a Java Application 287
� Embeds the jXTransformer query that you created in the
preceding sections. Notice that the query itself specifies the
document-level constructs and that each line of the query
begins with:

jxtrQ.append ("

and ends with:

");

Also, notice that quotes in a Java string constant must be
preceded by the Java escape character \, for example:

jxtrQ.append (" xml_pi('xml-stylesheet', ");
jxtrQ.append (" 'type=\"text/xsl\"

href=\"file://example4.xsl\"'), ");

� Constructs a new jXTransformer query object named
JXTRQuery based on the specified JDBC connection,
jXTransformer query, and rewrite algorithm.

� Sets the values for the parameter markers that are
represented by question marks in the Where clause of the
jXTransformer query by calling the jXTransformer method
setInt. The format of the jXTransformer setInt method of the
JXTRQuery class is:

setInt (paramIx, paramValue)

where paramIx identifies the parameter and paramValue sets
the value of the parameter. So, you can see that in our
example:

JXTRQuery.setInt (1, 1);

sets the value of the first parameter marker to 1, and:

JXTRQuery.setInt (2, 5);

sets the value of the second parameter marker to 5.
DataDirect Connect for SQL/XML User’s Guide

288 Chapter 10 Tutorial: Using jXTransformer Queries
TIP: You also can
generate a DTD
that describes the
resulting XML
using the Builder.

� Generates a DTD describing the resulting XML named
example4.dtd by calling the jXTransformer generateDTD
method of the JXTRQuery class.

� Sends the resulting XML document to System.out.

� Closes the JDBC connection and declares the main method.

import java.io.OutputStreamWriter;
import java.sql.*;

import com.ddtek.jxtr.*;
import examples.*;

public class JXTRExample4 extends Example
{

/**
* Executes the 'JXTRExample4' example
*/

public void execute() throws Exception
{

// Output example description
System.out.println("==============================");
System.out.println("= JXTR Example4 demonstrates =");
System.out.println("==============================");
System.out.println(" (a) Creating XML documents that contain

document level processing instructions,");
System.out.println(" comments, namespaces, an external DTD

reference and a root element with attributes.");
System.out.println(" (b) Use of a bind marker in a jxtr statement."

);
System.out.println(" (c) Create a DTD describing the XML that

results from executing the jxtr query.");

// Load properties from the resource
loadProperties();

// Create JDBC connection
connectWithStandardJDBC();
DataDirect Connect for SQL/XML User’s Guide

Using a jXTransformer Query in a Java Application 289
// Build jxtr query
StringBuffer jxtrQ = new StringBuffer();
jxtrQ.append ("xml_document(");
jxtrQ.append (" xml_comment('jxtr Example4'), ");
jxtrQ.append (" xml_external_dtd('example4.dtd'), ");
jxtrQ.append (" xml_pi('xml-stylesheet', ");
jxtrQ.append (" 'type=\"text/xsl\" href=

\"file://example4.xsl\"'), ");
jxtrQ.append (" xml_element('exns:example4', ");
jxtrQ.append (" xml_attribute('rootatt1','example4'), ");
jxtrQ.append (" xml_namespace('http://www.jxtrdemo/default'),

");
jxtrQ.append ("

xml_namespace('exns','http://www.jxtrdemo/example4'), ");
jxtrQ.append (" select ");
jxtrQ.append (" xml_element('empinfo', ");
jxtrQ.append (" xml_attribute('exns:id',e.EmpId), ");
jxtrQ.append (" xml_attribute('exns:name',e.LastName)) ");
jxtrQ.append (" from Employees e where e.EmpId between ? and ?))

");

// Construct new JXTRQuery object
JXTRQuery JXTRQuery = new JXTRQuery (conn, new String (jxtrQ));
// Set bind marker value
JXTRQuery.setInt (1, 1);
JXTRQuery.setInt (2, 5);

// Create dtd
java.io.FileWriter dtdFile = new java.io.FileWriter ("example4.dtd"

);
JXTRQuery.generateDTD (dtdFile);
dtdFile.close();

// Output result header
System.out.println("------------");
System.out.println("Query result");
System.out.println("------------");
DataDirect Connect for SQL/XML User’s Guide

290 Chapter 10 Tutorial: Using jXTransformer Queries
// Execute
OutputStreamWriter systemOutWriter = new OutputStreamWriter (

System.out);
boolean outputDocHeader = true;
JXTRQuery.executeWriter (systemOutWriter, outputDocHeader,

systemOutWriter.getEncoding (), 2);

// Close JDBC connection
disconnect();

}

/**
* Main method.
*/

public static void main (String[] args) throws Exception
{

Example thisDemo = new JXTRExample4();
thisDemo.execute();

}

}

DataDirect Connect for SQL/XML User’s Guide

Using a jXTransformer Query in a Java Application 291
Example B: Document-Level Constructs
in the jXTransformer API

The following code example can be found in the
JXTRExample5.java file in the examples/src/examples/jxtrapi
directory in your Connect for SQL/XML installation directory.

The following code example performs the following tasks:

� Imports the necessary Java classes.

� Sends a description of the example to System.out.

� Loads the necessary Java properties and creates a JDBC
connection.

� Embeds a version of the jXTransformer query that does not
contain the document-level constructs in the jXTransformer
query. Instead, they are specified using the jXTransformer
API. Again, notice that each line of the query begins with:

jxtrQ.append ("

and ends with

");

� Constructs a new jXTransformer query object named
JXTRQuery based on the specified JDBC connection,
jXTransformer query, and rewrite algorithm.

� Specifies the document-level constructs through the
jXTransformer API by calling the following methods:

• addDocumentComment adds the XML comment
<!--jxtr Example5--> in the document header.

• setExternalDTD creates a reference to an external DTD
named example4.dtd. Notice that this DTD was
generated by calling the jXTransformer generateDTD
method. See “Example A: Document-Level Constructs in
DataDirect Connect for SQL/XML User’s Guide

292 Chapter 10 Tutorial: Using jXTransformer Queries
the jXTransformer Query” on page 286 to see how this
method was specified.

• addDocumentPI specifies that a stylesheet named
example4.xsl be used to format the resulting XML
document.

• setRootTag creates a root element named exns:example5.

• addRootAttribute creates an attribute associated with the
root element exns:example5 that has a value of example5.

• addRootNameSpace creates a default namespace named
http://www.jxtrdemo/default. Then, the
addRootNameSpace method is repeated to define a
namespace named http://www.jxtrdemo/example5 with
the prefix exns.

� Sets the values for the parameter markers that are
represented by question marks in the Where clause of our
child query. For this second version of the query, the following
code:

JXTRQuery.setInt (1, 6);

sets the value of the first parameter marker to 6, and:

JXTRQuery.setInt (2, 10);

sets the value of the second parameter marker to 10.

� Sends the resulting XML document to System.out.

� Closes the JDBC connection and declares the main method.

import java.io.OutputStreamWriter;
import java.sql.*;

import com.ddtek.jxtr.*;
import examples.*;

public class JXTRExample5 extends Example
DataDirect Connect for SQL/XML User’s Guide

Using a jXTransformer Query in a Java Application 293
{

/**
* Executes the 'JXTRExample5' example
*/

public void execute() throws Exception
{

// Output example description
System.out.println("==============================");
System.out.println("= JXTR Example5 demonstrates =");
System.out.println("==============================");
System.out.println(" (a) Creating XML documents that contain

document level processing instructions,");
System.out.println(" comments, namespaces, an external DTD

reference and a root element with attributes.");
System.out.println(" (b) How to accomplish this through the jxtr

API.");
System.out.println(" (c) Use of a bind marker in a jxtr statement."

);

// Load properties from the resource
loadProperties();

// Create JDBC connection
connectWithStandardJDBC();

// Build jxtr query
StringBuffer jxtrQ = new StringBuffer();
jxtrQ.append ("select ");
jxtrQ.append (" xml_element('empinfo', ");
jxtrQ.append (" xml_attribute('exns:id',e.EmpId), ");
jxtrQ.append (" xml_attribute('exns:name',e.LastName)) ");
jxtrQ.append ("from Employees e where e.EmpId between ? and ? ");

// Construct new JXTRQuery object
JXTRQuery JXTRQuery = new JXTRQuery (conn, new String (jxtrQ));
// Set document level comment,dtd reference and pi
JXTRQuery.addDocumentComment ("jxtr Example5");
JXTRQuery.setExternalDTD ("example5.dtd");
JXTRQuery.addDocumentPI ("xml-stylesheet", "type=\"text/xsl\" href=

\"file://example5.xsl\"");
DataDirect Connect for SQL/XML User’s Guide

294 Chapter 10 Tutorial: Using jXTransformer Queries
// Set root element name, root attribute and namespaces
JXTRQuery.setRootTag ("exns:example5");
JXTRQuery.addRootAttribute ("rootatt1", "example5");
JXTRQuery.addRootNameSpace ("http://www.jxtrdemo/default");
JXTRQuery.addRootNameSpace ("exns", "http://www.jxtrdemo/example5"

);
// Set bind marker value
JXTRQuery.setInt (1, 6);
JXTRQuery.setInt (2, 10);

// Output result header
System.out.println("------------");
System.out.println("Query result");
System.out.println("------------");

// Execute
OutputStreamWriter systemOutWriter = new OutputStreamWriter (

System.out);
boolean outputDocHeader = true;
JXTRQuery.executeWriter (systemOutWriter, outputDocHeader,

systemOutWriter.getEncoding (), 2);

// Close JDBC connection
disconnect();

}

/**
* Main method.
*/

public static void main (String[] args) throws Exception
{

Example thisDemo = new JXTRExample5();
thisDemo.execute();

}

}

DataDirect Connect for SQL/XML User’s Guide

295
A JDBC Data Types

Table A-1 lists the JDBC data types supported by Connect for
SQL/XML and the XML representations to which they are
converted by the Connect for SQL/XML JDBC driver (when SQL/XML
queries are used) or the DataDirect JDBC driver (when
jXTransformer queries are used).

When jXTransformer write statements are used, the inverse
relationship of JDBC data types to XML representations shown in
Table A-1 is used. For example, for jXTransformer queries, a JDBC
data type of numeric is converted to a string representation of
number; for jXTransformer write statements, an XML
representation of number is converted to the JDBC data type
numeric.

Table A-1. Supported JDBC Data Type Conversions to XML
Representations

JDBC Data Type XML Representation

Char As-is

Varchar As-is

Longvarchar As-is

Numeric String representation of number

Decimal String representation of number

Bit 0 or 1

Tinyint String representation of number

Smallint String representation of number

Integer String representation of number

Bigint String representation of number

Real String representation of number

Float String representation of number
DataDirect Connect for SQL/XML User’s Guide

296 Appendix A JDBC Data Types
Double String representation of number

Binary String containing base64 or hexadecimal
encoded binary value

Varbinary String containing base64 or hexadecimal
encoded binary value

Longvarbinary String containing base64 or hexadecimal
encoded binary value

Date YYY-MM-DD

Time HH:MI:SS

Timestamp YYYY-MM-DD HH:MI:SS.Fractional_part
(ODBC)

or

YYYY-MM-DDTHH: MI:SS.Fractional_part
(ISO8601)

Clob As-is

Blob String containing base64 or hexadecimal
encoded binary value

Table A-1. Supported JDBC Data Type Conversions to XML
Representations (Continued)

JDBC Data Type XML Representation
DataDirect Connect for SQL/XML User’s Guide

297
B jXTransformer Query and
Statement Processing

This appendix provides additional information that you need to
know about how Connect for SQL/XML processes jXTransformer
query and write statements.

Handling of JDBC PreparedStatement Objects
By default, Connect for SQL/XML automatically closes all JDBC
preparedStatement objects that have been created to execute a
jXTransformer query or write statement after the jXTransformer
statement is executed.

NOTE: This does not apply to JXTRQuery or
JXTRResultSetWrapper objects for which the JDBC statement
type is set to JDBC_STAT using the setPreferredJDBCStatType
method in the JXTRQueryBase class.

After invoking
JXTRBase.setPreparedStatementCloseBehavior(false), the JDBC
preparedStatement objects remain open after execution and are
reused when the jXTransformer statement is re-executed. In that
case, an explicit call must be made to close all JDBC
preparedStatement objects and release their associated
resources.
DataDirect Connect for SQL/XML User’s Guide

298 Appendix B jXTransformer Query and Statement Processing
Using Namespaces in XPath Expressions for
jXTransformer Write Statements

When using namespaces in an XPath expression, you must map
the namespace prefixes to URIs so that matches in the input XML
document (which may use other prefixes for the same URIs) can
be made correctly. You can map namespace prefixes to URIs using
either of the following methods:

� Specifying the jXTransformer xml_namespace constructor (see
Chapter 6, “Syntax of jXTransformer Write Statements” on
page 173 for more information)

� Specifying the setXMLNamespaces method in the
JXTRSingleUpdateStatement class

Using NULL Replacement Values for
jXTransformer Write Statements

When an xml_xpath expression does not return text content, by
default, the jXTransformer API interprets the value as a NULL
value. If you want to change this behavior, use the
setNullReplacementValue method in the JXTRBase class. When
this method is used, the specified value is used instead of a NULL
value.
DataDirect Connect for SQL/XML User’s Guide

299
Glossary

Connect for

SQL/XML hint
A processing instruction for SQL/XML queries that is handled through a
hint to the Connect for SQL/XML JDBC driver.

Connect for

SQL/XML JDBC
Driver

The Connect for SQL/XML driver that executes SQL/XML queries. This
driver uses the JDBC API.

DataDirect Query
Builder for SQL/XML

A GUI tool that helps you create and modify Connect for SQL/XML queries
without having to know details about the SQL/XML or jXTransformer
syntax. You can also use the Builder to test your Connect for SQL/XML
queries and jXTransformer write statements before you use them in
your application.

DataDirect Query
Builder for SQL/XML
project

A file with either the extension .cfb (for SQL/XML queries) or .jxb (for
jXTransformer queries or write statements) that can be opened and
saved by the DataDirect Query Builder for SQL/XML. One or multiple
SQL/XML or jXTransformer queries comprises a Builder project.

DTD (Document
Type Definition)

The statement of rules for an XML document that specify which XML
elements and attributes are allowed in the document.

DOM (Document
Object Model)

A specification for how objects in XML are represented. The DOM
defines what attributes are associated with each XML object, and how
the objects and attributes can be manipulated.

JAXP A Java API that supports processing of XML documents using DOM,
SAX, and XSLT.

JDOM A Java API for manipulating XML documents.

jXTransformer
query

A query specified in the jXTransformer query syntax. jXTransformer
queries return XML results in the form of an XML document or directly
to your Java application. jXTransformer queries are executed through
the proprietary jXTransformer API.

jXTransformer
write statements

Insert, Update, and Delete statements specified in the jXTransformer
write statement syntax. jXTransformer write statements allow you to
update data from an XML document into a relational database and ar
executed through the proprietary jXTransformer API.
DataDirect Connect for SQL/XML User’s Guide

300 Glossary
mixed content Content for an XML element that is mixed, that is, contains character
data or character data with child elements.

namespace A unique identifier that is used to group a set of XML names (elements
or attributes).

processing
instruction

A method of sending instructions to computer applications.

root element In XML, the element that is the single top-level tag. In a jXTransformer
query, if you omit the root element, an XML document fragment is
created instead of a complete XML document.

SAX The Simple API for XML is a standard interface for event-based XML
parsing.

schema A pattern that defines the elements, their attributes, and the
relationships between different elements.

SQL/XML JDBC
driver

See Connect for SQL/XML JDBC driver.

SQL/XML query SQL/XML queries return JDBC result sets that can contain XML values.
SQL/XML queries are executed through the Connect for SQL/XML JDBC
driver (the SQL/XML JDBC driver), which uses the JDBC API.

URI (Uniform
Resource
Identifier)

A character string that identifies the type and location of an Internet
resource.

XML attribute A property associated with an XML element that is a named
characteristic of that element.

XML element A section of an XML document that is defined by start- and end-tags.

XPath A language that describes a way to locate and process items in XML
documents by using an addressing syntax based on a path through the
document's logical structure or hierarchy.
DataDirect Connect for SQL/XML User’s Guide

301
Index

A

attribute-centric XML from jXTransformer
query 53

B
binary_encoding hint 195
binaryEncoding connection property 194
Builder

browsing the database 125
closing a project 79
connecting to the database 116
creating new project 77
creating queries in Tree view

See jXTransformer query or SQL/XML
query

customizing 72
Database Browser

JDBC filter 127
using 125

debug logging 75
DTD, generating 133
executing parameter markers, specifying

during execution 122
executing queries or statements

See jXTransformer query, SQL/XML
query, or jXTransformer write
statement

GUI appearance, changing 74
importing a query or statement into 115
JDBC filter in Database Browser 127
jXTransformer query, creating in Tree view

See jXTransformer query
named drivers, specifying 73

new project, creating 77
NULL parameter markers 122
opening

a project 79
DTDs 129
XML documents 131

parameter markers, specifying during
execution 122

project
closing 79
creating new 77
opening 79

query, creating in Text view
See jXTransformer query or SQL/XML

query
SQL/XML query, creating in Tree view

See SQL/XML query
starting 72
syntax, checking in 116
text editor, changing 75
Text view

about 62
using 63

Tree view
about 62
using 63

Web browser setting 75
working with 62
XML

documents, opening 131
DTDs, opening 129
schema, generating 135
DataDirect Connect for SQL/XML User’s Guide

302 Index
C
choosing

rewrite algorithm
for jXTransformer query 56
for SQL/XML query 41

XML
document structure for jXTransformer

query 53
input format for jXTransformer write

statement 58
output format for jXTransformer

query 55
CLASSPATH, setting 199, 217
com.ddtek.jdbc.jxtr Java package 197
com.ddtek.jxtr Java package 208
Connect for JDBC drivers

CLASSPATH entries 200, 217
connection URL 220
registering 219

Connect for SQL/XML
data sources 192
hints

binary_encoding 195
key_expr 195
null_replacement 195
rewrite_algorithm 195
timestamp_encoding 196
using 195

Java packages 39
connecting to the database

in Builder 116
using jXTransformer API 216
using SQL/XML JDBC driver 199

connection properties
binaryEncoding 194
for Connect for JDBC driver 193
for SequeLink JDBC driver 193
for SQL/XML JDBC driver 193
nullReplacementValue 194
timestampEncoding 194

connection URL
Connect for JDBC drivers 220
SequeLink JDBC driver 221
SQL/XML JDBC driver 192

contacting Technical Support 16
conventions used in this book 14
creating

complete XML documents 50
hierarchical XML documents 43
ID/IDREFS links in a jXTransformer

query 48
XML

document fragments 50
in result sets 52, 55

customizing the Builder 72

D
data source class, SQL/XML JDBC driver 191
data sources, Connect for SQL/XML 192
data types, JDBC to XML 295
Database Browser in Builder 125
DataDirect Query Builder for SQL/XML

See Builder.
debug logging in Builder 75
DOM 29, 55, 58
driver class

Connect for JDBC drivers 219
SequeLink JDBC driver 219
SQL/XML JDBC driver 191

DTD, generating from jXTransformer
query 52

E
element-centric XML from jXTransformer

query 53
example

jXTransformer query 27
jXTransformer query in application 224
DataDirect Connect for SQL/XML User’s Guide

Index 303
jXTransformer write statement 33
jXTransformer write statement in

application 227
SQL/XML query 24

executing
jXTransformer query

using Builder 120
using JXTRQuery 172

jXTransformer write statement
using JXTRUpdate 189
using the Builder 137

SQL/XML query
using Builder 120
using SQL/XML JDBC driver 151

G
generating

DTD or XML schema from a query 52
XML from a SQL query 53

glossary 299

H
handling of JDBC preparedStatement

objects 297
hiding data in a jXTransformer query 47
hierarchical XML documents

creating 43
structure, choosing 53

hints
for Connect for SQL/XML, using 195
in SQL/XML queries in Builder 66

I
ID/IDREFS links in jXTransformer queries,

creating 48
ISO/IEC 9075-2 93, 142, 143, 148, 150, 151

J
Java applications

preparedStatement objects 297
using

jXTransformer query in 26, 223
jXTransformer write statement

in 32, 223
SQL/XML query in 23, 202

Java package
com.ddtek.jdbc.jxtr 197
com.ddtek.jxtr 208

JAXP 29
JDBC API extensions 191, 197
JDBC data types 295
JDBC scalar functions in jXTransformer

query 29, 159
JDOM 29, 55, 58, 59
jXTransformer API

classes 208
connecting to the database 216
DOM 55, 58
executeDOM 55
executeJDOM 55
executeQuery 52, 55
executeSAX 55
executeWriter 55
handling of JDBC preparedStatement

objects 297
JDOM 55, 58, 59
JXTRBase 298
JXTRColInfo 52
JXTRQuery

algorithm used in translation 56
creating result sets 52
DataDirect Connect for SQL/XML User’s Guide

304 Index
executing 172
hierarchical XML 53
in JDBC applications 223
overview 53, 208
tasks performed 211
using with JDBC preparedStatement

objects 297
XML output format 55

JXTRQueryBase 297
JXTRResultSetWrapper

description 54, 209
methods 55
preparedStatements 297
tasks 211

JXTRSaxInputSource 209
JXTRSaxReader 209
JXTRSingleTableUpdate 58, 209, 213
JXTRSingleTableUpdateException 209
JXTRSingleUpdateStatement 298
JXTRStatement 209
JXTRUpdate 58, 210, 213, 223
JXTRUpdateException 210
processing 297
Reader object 58
SAX 55, 59
setDOM 58
setJDOM 58, 59
setNullReplacementValue 298
setReader 58
setSAX 59
setXMLNamespaces 298
using 207
writer object 55

jXTransformer query
base SQL query in Builder

about 71
creating 101

Builder project nodes
about 68
working with 70

CDATA sections in Builder, creating 108
choosing

rewrite algorithm 56
XML document structure 53

comments in Builder, specifying 97
complete XML documents in Builder,

creating 97
constant value, assigning to an XML

element in Builder 112
creating

in Tree view of the Builder 96
result sets from 52

deleting Builder project nodes 113
Distinct clauses in 56
document fragments, creating 50
document header, turning on in Builder 97
DTD

generating from a query 52
specifying external in Builder 100

example 27
example, nested 44
executing

in Builder 120
using JXTRQuery 172
with result set wrapper in Builder 123

external DTDs, specifying in Builder 100
generating

DTD from a query 133
XML schema from query 135

hiding data
about 47
in Builder 107

ID/IDREFS, creating 48
importing a query or statement into

Builder 115
Java applications, using in 26, 223
JDBC preparedStatement objects 297
keys, using 45
modifying

Builder project nodes 112
in Text view in Builder 114
in Tree view in Builder 96

moving Builder project nodes 113
multiple queries 48
namespaces, specifying in Builder 110
nested queries

and rewrite algorithm 56
example 44, 255
DataDirect Connect for SQL/XML User’s Guide

Index 305
explicit key 45, 46
hierarchical XML 53
linking data 43
order of data 56

processing instructions, specifying in
Builder 98

result sets, creating 52, 55
rewrite algorithms, choosing 56
root element

creating 97
specifying in Builder 97

Select expression, assigning to an XML
element in Builder 111

syntax 153
tutorial 253
using in an application 26, 223
XML

attributes, creating in Builder 104
document fragments in Builder,

creating 97
document structure, choosing 53
elements, creating in Builder 102
output format, choosing 55
result sets, creating 52, 55
schema, generating from a query 52

XML document structure, choosing 53
jXTransformer write statement

about 31
Delete statement 185
example 33
executing

using JXTRUpdate 189
using the Builder 137

input format, choosing 58
Insert statement 174
Java applications, using in 32, 223
JDBC preparedStatement objects 297
processing of 57
syntax 173
Update statement 180
using in an application 32, 223

K
key_expr hint 195
keys

using in a jXTransformer query 45
using in a SQL/XML query 40

M
multiple jXTransformer queries 48

N

named drivers, specifying in Builder 73
namespaces, using in XPath expressions 298
nested jXTransformer queries

aggregate functions 56
example 44, 255
explicit key 45, 46
hierarchical XML 53
linking data 43
order of data 56

nested SQL/XML queries
aggregate functions 41
order of data 41

NULL parameter markers in Builder 122
null_replacement hint 195
nullReplacementValue connection

property 194

P
parameter markers

in jXTransformer query 255
in jXTransformer write statement 186
specifying during execution in Builder 122
support for 29
DataDirect Connect for SQL/XML User’s Guide

306 Index
processing, jXTransformer query or
statement 297

R
Reader object 58
result sets, creating from a jXTransformer

query 52
rewrite algorithms

choosing during execution in Builder 124
jXTransformer query

for XML explicit 56
nested loop 56
outer union 56
sorted outer union 56

rewrite_algorithm hint for SQL/XML
queries 195

SQL/XML query
nested loop 41
sorted outer union 41

rewrite_algorithm hint 195
root element, creating for jXTransformer

query in Builder 97

S
SAX 29, 59
scalar functions in a jXTransformer query 159
SequeLink JDBC driver

CLASSPATH entries 200, 218
connection URL 221
registering 219

SQL
query, generating XML documents

from 53
Select expressions 29

SQL/XML data source 192
SQL/XML JDBC driver

connecting to the database 199
connection properties 193

connection URL 192
data source class 191
driver class 191

SQL/XML query
base SQL query in Builder

about 71
creating 80

binary-to-string conversion 195
Builder project nodes

deleting 95
modifying 94
moving 94
using 65
working with 70

constant value, assigning to an XML
element 88

creating
in Text view of the Builder 114
in Tree view of the Builder 80

example 24
executing

in Builder 120
using SQL/XML JDBC driver 151

hints in Builder 66
importing a query or statement into

Builder 115
ISO/IEC 9075-2 142, 143, 148, 150, 151
Java applications, using in 23, 202
keys

specifying 40
using 40

modifying
in Text view of the Builder 114
in Tree view of the Builder 80

nested 41
nested, order of data 41
NULL value replacement 195
rewrite algorithms 41, 195
Select expression, assigning to an XML

element 87
SQL_value_expression 142
syntax 141
syntax, checking in Builder 116
timestamp-to-string conversion 196
DataDirect Connect for SQL/XML User’s Guide

Index 307
tutorial 233
using in an application 23, 202
XML

attributes, creating 84
elements, creating 82
schema, generating from query 135

XML_value_expression 142
starting the Builder 72
SupportLink 16
syntax

checking in Builder 116
jXTransformer query 153
jXTransformer write statement 173
SQL/XML query 141

T
Technical Support, contacting 16
testing JDBC connection 202, 222
timestamp_encoding hint 196
timestampEncoding connection

property 194
tutorial

using jXTransformer queries 253
using SQL/XML queries 233

U
update counts 33, 120, 140
using

Connect for SQL/XML hints 195
jXTransformer API 207
jXTransformer query

in an application 26
tutorial 253

jXTransformer write statement in an
application 32

keys
in a jXTransformer query 45
in a SQL/XML query 40

nested jXTransformer queries 44
SQL/XML query

in an application 23
tutorial 233

Tree and Text views of the Builder 63

W
Web browser setting in Builder 75
working with

Builder 62
Builder project tree nodes 70

writer object 29, 55

X
XML

document structure, choosing
element-centric 53
hierarchical 53

DOM 55, 58
hierarchical documents 43
JDBC data type conversions to XML 295
JDOM 55, 58, 59
jXTransformer query

attribute-centric documents 53
document fragments, creating 50
document structure, choosing 53
element-centric document from

jXTransformer query 53
hierarchical documents 53
output format, choosing 55

jXTransformer write statement
input format, choosing 58

output format for jXTransformer query,
choosing 55

output options 58
Reader object 58
SAX 55, 59
schema, generating from a query 52
DataDirect Connect for SQL/XML User’s Guide

308 Index
SQL query, generating from 53
writer object 55

xml_attribute 48, 69, 156, 162
xml_attribute_key 45, 70, 162
xml_cdata 69, 164
xml_comment 68, 155
xml_document 154
xml_element

as a root element 156
setting the value of 158
XML element, creating 159

xml_element_key 45, 69, 159
xml_external_dtd 68, 156
xml_hide 47, 69, 167
xml_hide_key 45, 47, 70, 167
xml_namespace 69, 156, 165, 298
xml_pi 68, 155
xml_row_pattern 57
xml_xpath 57, 298
XMLAGG 67
XMLATTRIBUTES 66
XMLCONCAT 66
XMLELEMENT 66
XMLFOREST 67
XPath

processing XPath expressions in a
jXTransformer write statement 57

support 29
using namespaces in 298
DataDirect Connect for SQL/XML User’s Guide

	Table of Contents
	Preface
	What Is DataDirect Connect for SQL/XML?
	Using This Book
	Conventions Used in This Book
	About DataDirect Documentation
	Contacting Technical Support

	1 Connect for SQL/XML Overview
	Types of Connect for SQL/XML Queries
	SQL/XML Queries
	jXTransformer Queries
	SQL/XML or jXTransformer?

	jXTransformer Write Statements
	Architecture of jXTransformer Write Statements in Java Applications
	jXTransformer Write Statement Example

	DataDirect Query Builder for SQL/XML
	Connecting to the Database

	2 Understanding Connect for SQL/XML
	Using the Java Packages
	Using Both SQL/XML and jXTransformer Statements in a Java Application
	Using SQL/XML Queries
	Using key_expr Hints
	Using rewrite_algorithm Hints
	Creating Result Sets From SQL Queries

	Using jXTransformer Queries
	Creating Hierarchical XML Documents
	Using Keys
	Hiding Information
	Creating ID/IDREFS Links
	Creating XML Document Fragments
	Creating XML in Result Sets
	Generating DTDs and Schemas
	Choosing an XML Document Structure
	Choosing an XML Output Format
	Choosing a Rewrite Algorithm

	Using jXTransformer Write Statements
	jXTransformer Write Statement Processing Overview
	Disabling Autocommit Mode
	Choosing an XML Input Format

	3 Creating Connect for SQL/XML Queries Using the Builder
	Working with the Builder
	Using Tree and Text Views
	Using Project Tree Nodes
	Working with Project Tree Nodes
	Using Base SQL Query Nodes

	Starting the Builder
	Customizing the Builder
	Changing the GUI’s General Appearance
	Changing the Text Editor

	Creating a Builder Project
	Opening a Builder Project
	Closing a Builder Project
	Creating and Modifying SQL/XML Queries in Tree View
	Creating Base SQL Query Nodes
	Creating XML Elements
	Creating XML Attributes
	Assigning Select Expression Values to ELEMENT Nodes
	Assigning Constant Values to ELEMENT Nodes
	Creating a Forest of XML Elements
	Modifying Nodes
	Moving Nodes
	Deleting Nodes

	Creating and Modifying jXTransformer Queries in Tree View
	Turning on the Document Header
	Specifying Comments
	Specifying Processing Instructions
	Specifying an External DTD
	Creating Base SQL Query Nodes
	Creating XML Elements
	Creating XML Attributes
	Specifying Hide Information
	Creating XML CDATA Sections
	Specifying XML Namespaces
	Assigning Select Expression Values to ELEMENT Nodes
	Assigning Constant Values to ELEMENT Nodes
	Modifying Nodes
	Moving Nodes
	Deleting Nodes

	Creating and Modifying SQL/XML and jXTransformer Statements in Text�View
	Importing a Query or Statement
	Checking Query or Statement Syntax
	Connecting to the Database
	Connecting Using JDBC Connection URLs
	Connecting Using JDBC Data Sources

	Executing a Query or Statement
	Browsing the Database
	Using the Database Browser
	Customizing JDBC Filter Settings

	Opening an XML DTD
	Opening an XML Document
	Generating DTDs and XML Schemas
	Generating a DTD
	Generating an XML Schema

	Executing jXTransformer Write Statements

	4 Syntax of SQL/XML Queries
	SQL_value_expression
	XML_value_expression
	XMLAGG
	XMLCONCAT
	XMLELEMENT
	XMLFOREST

	rest_of_sql99_select
	Executing SQL/XML Queries

	5 Syntax of jXTransformer Queries
	xml_document
	xml_document_info
	xml_constructor
	xml_element
	xml_attribute
	xml_cdata
	xml_namespace
	xml_hide
	select_expression

	rest_of_sql99_select
	Query
	Rules and Exceptions for jXTransformer Query Syntax
	Executing jXTransformer Queries

	6 Syntax of jXTransformer Write Statements
	Insert Statement
	Update Statement
	Delete Statement
	Executing jXTransformer Write Statements

	7 Using the SQL/XML JDBC Driver and JDBC API Extensions
	Driver and Data Source Classes
	SQL/XML JDBC Driver Data Source
	Connection URLs
	Connection Properties
	Using Connect for SQL/XML Hints
	com.ddtek.jdbc.jxtr Java Package
	XMLType Class
	JXTRDataSource Class

	Connecting to the Database
	Using SQL/XML Queries in Java Applications

	8 Using the jXTransformer API
	jXTransformer API Classes
	JXTRQuery and JXTRResultSetWrapper Classes
	JXTRUpdate and JXTRSingleTableUpdate Classes

	Connecting to the Database
	Using jXTransformer Queries and Write Statements in a Java Application
	Example A: jXTransformer Query
	Example B: jXTransformer Write Statement

	9 Tutorial: Using SQL/XML Queries
	Creating the Builder Project
	Constructing the SQL/XML Query in the Builder
	Using the SQL/XML Query in a Java Application

	10 Tutorial: Using jXTransformer Queries
	Creating the Builder Project
	Constructing the Parent Query in the Builder
	Constructing the Child Query in the Builder
	Specifying Document-Level Constructs in the jXTransformer Query
	Adding the Root Element
	Adding an Attribute to the Root Element
	Add Namespaces to the Root Element
	Adding a Comment
	Adding a Reference to an External DTD
	Adding a Processing Instruction
	Executing the jXTransformer Query

	Using a jXTransformer Query in a Java Application
	Example A: Document-Level Constructs in the jXTransformer Query
	Example B:�Document-Level Constructs in the jXTransformer API

	A JDBC Data Types
	B jXTransformer Query and Statement Processing
	Handling of JDBC PreparedStatement Objects
	Using Namespaces in XPath Expressions for jXTransformer Write Statements
	Using NULL Replacement Values for jXTransformer Write Statements

	Glossary
	Index

