
October 2010

Stylus Studio® 2011
User Guide

© 2010 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in
these materials to specific platforms supported are subject to change.

Actional, Apama, Apama (and Design), Artix, Business Empowerment, DataDirect (and design), DataDirect
Connect, DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, DataDirect
XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment Center, Fathom, FUSE
Mediation Router, FUSE Message Broker, FUSE Services Framework, IntelliStream, IONA, IONA (and
design), Making Software Work Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect,
POSSENET, Powered by Progress, PowerTier, Progress, Progress DataXtend, Progress Dynamics, Progress
Business Empowerment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Developers Network, Progress Sonic,
ProVision, PS Select, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB,
SonicMQ, Sonic Orchestration Server, SonicSynergy, SpeedScript, Stylus Studio, Technical Empowerment,
WebSpeed, Xcalia (and design), and Your Software, Our Technology-Experience the Connection are
registered trademarks of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S.
and/or other countries. AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event
Modeler, Apama Event Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box,
BusinessEdge, Business Making Progress, Cache-Forward, DataDirect Spy, DataDirect SupportLink,
FUSE, Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress ESP Event Manager,
Progress ESP Event Modeler, Progress Event Engine, Progress RFID, Progress Software Business Making
Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events,
Shadow z/Presentation, Shadow Studio, SmartBrowser, SmartComponent, SmartDataBrowser,
SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel,
SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process Manager, Sonic
Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic
Workbench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress are
trademarks or service marks of Progress Software Corporation and/or its subsidiaries or affiliates in the U.S.
and other countries. Java and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. Any other trademarks contained herein are the property
of their respective owners.

Third Party Acknowledgments:

Progress Stylus Studio 2011 incorporates Decisionsoft Pathan version 2.0. Such technology is subject to the
following terms and conditions: The DecisionSoft Open Source Licence. This licence is based on the BSD
Licence template. Copyright © 2001 DecisionSoft Limited. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions
are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. * Neither the name of DecisionSoft Limited nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission. THIS

SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Progress Stylus Studio 2011 incorporates Info-Zip Unzip version 5.4.1.Such technology is subject to the
following terms and conditions: This is version 2004-May-22 of the Info-ZIP copyright and license. The
definitive version of this document should be available at ftp://ftp.info-zip.org/pub/infozip/license.html
indefinitely. Copyright (c) 1990-2004 Info-ZIP. All rights reserved. For the purposes of this copyright and
license, "Info-ZIP" is defined as the following set of individuals: Mark Adler, John Bush, Karl Davis, Harald
Denker, Jean-Michel Dubois, Jean-loup Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase,
Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, David Kirschbaum, Johnny Lee, Onno van der
Linden, Igor Mandrichenko, Steve P. Miller, Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs,
Kai Uwe Rommel, Steve Salisbury, Dave Smith, Christian Spieler, Antoine Verheijen, Paul von Behren,
Rich Wales, Mike White. This software is provided "as is," without warranty of any kind, express or
implied. In no event shall Info-ZIP or its contributors be held liable for any direct, indirect, incidental,
special or consequential damages arising out of the use of or inability to use this software. Permission is
granted to anyone to use this software for any purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions: *Redistributions of source code must retain the
above copyright notice, definition, disclaimer, and this list of conditions. *Redistributions in binary form
(compiled executables) must reproduce the above copyright notice, definition, disclaimer, and this list of
conditions in documentation and/or other materials provided with the distribution. The sole exception to this
condition is redistribution of a standard UnZipSFX binary (including SFXWiz) as part of a self-extracting
archive; that is permitted without inclusion of this license, as long as the normal SFX banner has not been
removed from the binary or disabled. *Altered versions--including, but not limited to, ports to new operating
systems, existing ports with new graphical interfaces, and dynamic, shared, or static library versions--must
be plainly marked as such and must not be misrepresented as being the original source. Such altered versions
also must not be misrepresented as being Info-ZIP releases--including, but not limited to, labeling of the
altered versions with the names "Info-ZIP" (or any variation thereof, including, but not limited to, different
capitalizations), "Pocket UnZip," "WiZ" or "MacZip" without the explicit permission of Info-ZIP. Such
altered versions are further prohibited from misrepresentative use of the Zip-Bugs or Info-ZIP e-mail
addresses or of the Info-ZIP URL(s). Info-ZIP retains the right to use the names "Info-ZIP," "Zip," "UnZip,"
"UnZipSFX," "WiZ," "Pocket UnZip," "Pocket Zip," and "MacZip" for its own source and binary releases.

Progress Stylus Studio 2011 incorporates James Clark Trang version 2003-06-19 and James Clark Jing
version 2003-06-19. PSC has made no modifications to the code. Such technologies are subject to the
following terms and conditions: This software is developed by Thai Open Source Software Center Ltd.
Copyright © 2001-2003 Thai Open Source Software Center Ltd. All rights reserved. Redistribution and use

in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: *Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. *Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution. *Neither the name of the Thai Open Source Software Center Ltd
nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Stylus Studio 2011 incorporates Anti Grain Geometry, AGG version 2.4 6/2006. PSC has made no
modifications to the code. Such technology is subject to the following terms and conditions: Anti-Grain
Geometry - Version 2.4. Copyright (C) 2002-2005 Maxim Shemanarev (McSeem). Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions
are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. 3. The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Please mention the
authors in any work derived from Anti-Grain Geometry.

Progress Stylus Studio 2011 incorporates IBM ICU Library version 4.0. PSC has made no modifications to
the code. Such technology is subject to the following terms and conditions: ICU License - ICU 1.8.1 and
later. COPYRIGHT AND PERMISSION NOTICE. Copyright © 1995-2008 International Business
Machines Corporation and others. All rights reserved. Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do

so, provided that the above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice appear in supporting
documentation. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE. Except as contained in this notice, the name of a copyright
holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization of the copyright holder. All trademarks and registered
trademarks mentioned herein are the property of their respective owners.

Progress Stylus Studio 2011 incorporates Princeton University SCOWL english dictionaries. PSC has made
no modifications to the code. Such technology is subject to the following terms and conditions: The
collective work is Copyright 2000-2004 by Kevin Atkinson as well as any of the copyrights mentioned
below: Copyright 2000-2004 by Kevin Atkinson. Permission to use, copy, modify, distribute and sell these
word lists, the associated scripts, the output created from the scripts, and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice appears in all copies and that
both that copyright notice and this permission notice appear in supporting documentation. Kevin Atkinson
makes no representations about the suitability of this array for any purpose. It is provided "as is" without
express or implied warranty. Alan Beale <biljir@pobox.com> also deserves special credit as he has, in
addition to providing the 12Dicts package and being a major contributor to the ENABLE word list, given me
an incredible amount of feedback and created a number of special lists (those found in the Supplement) in
order to help improve the overall quality of SCOWL. The 10 level includes the 1000 most common English
words (according to the Moby (TM) Words II [MWords] package), a subset of the 1000 most common
words on the Internet (again, according to Moby Words II), and frequently class 16 from Brian Kelk's "UK
English Wordlist with Frequency Classification". The MWords package was explicitly placed in the public
domain: The Moby lexicon project is complete and has been place into the public domain. Use, sell, rework,
excerpt and use in any way on any platform. Placing this material on internal or public servers is also
encouraged. The compiler is not aware of any export restrictions so freely distribute world-wide. You can
verify the public domain status by contacting Grady Ward, 3449 Martha Ct., Arcata, CA 95521-4884,
grady@netcom.com. grady@northcoast.com. The "UK English Wordlist With Frequency Classification" is
also in the Public Domain: Date: Sat, 08 Jul 2000 20:27:21 +0100 From: Brian Kelk
<Brian.Kelk@cl.cam.ac.uk> > I was wondering what the copyright status of your "UK English > Wordlist
With Frequency Classification" word list as it seems to > be lacking any copyright notice. There were many
many sources in total, but any text marked "copyright" was avoided. Locally-written documentation was one
source. An earlier version of the list resided in a filespace called PUBLIC on the University mainframe,
because it was considered public domain. Date: Tue, 11 Jul 2000 19:31:34 +0100 > So are you saying your
word list is also in the public domain? That is the intention. The 20 level includes frequency classes 7-15
from Brian's word list. The 35 level includes frequency classes 2-6 and words appearing in at least 11 of 12
dictionaries as indicated in the 12Dicts package. All words from the 12Dicts package have had likely
inflections added via my inflection database. The 12Dicts package and Supplement is in the Public Domain.

The WordNet database, which was used in the creation of the Inflections database, is under the following
copyright: This software and database is being provided to you, the LICENSEE, by Princeton University
under the following license. By obtaining, using and/or copying this software and database, you agree that
you have read, understood, and will comply with these terms and conditions.: Permission to use, copy,
modify and distribute this software and database and its documentation for any purpose and without fee or
royalty is hereby granted, provided that you agree to comply with the following copyright notice and
statements, including the disclaimer, and that the same appear on ALL copies of the software, database and
documentation, including modifications that you make for internal use or for distribution. WordNet 1.6
Copyright 1997 by Princeton University. All rights reserved. THIS SOFTWARE AND DATABASE IS
PROVIDED "AS IS" AND PRINCETON UNIVERSITY MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PRINCETON UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES OF
MERCHANTBILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE
LICENSED SOFTWARE, DATABASE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. The name of Princeton
University or Princeton may not be used in advertising or publicity pertaining to distribution of the software
and/or database. Title to copyright in this software, database and any associated documentation shall at all
times remain with Princeton University and LICENSEE agrees to preserve same. The 40 level includes
words from Alan's 3esl list found in version 4.0 of his 12dicts package. Like his other stuff the 3esl list is
also in the public domain. The 50 level includes Brian's frequency class 1, words words appearing in at least
5 of 12 of the dictionaries as indicated in the 12Dicts package, and uppercase words in at least 4 of the
previous 12 dictionaries. A decent number of proper names is also included: The top 1000 male, female, and
Last names from the 1990 Census report; a list of names sent to me by Alan Beale; and a few names that I
added myself. Finally a small list of abbreviations not commonly found in other word lists is included. The
name files form the Census report is a government document which I don't think can be copyrighted. The
file special-jargon.50 uses common.lst and word.lst from the "Unofficial Jargon File Word Lists" which is
derived from "The Jargon File". All of which is in the Public Domain. This file also contain a few extra
UNIX terms which are found in the file "unix-terms" in the special/ directory. The 55 level includes words
from Alan's 2of4brif list found in version 4.0 of his 12dicts package. Like his other stuff the 2of4brif is also
in the public domain. The 60 level includes Brian's frequency class 0 and all words appearing in at least 2 of
the 12 dictionaries as indicated by the 12Dicts package. A large number of names are also included: The
4,946 female names and the 3,897 male names from the MWords package. The 70 level includes the 74,550
common dictionary words and the 21,986 names list from the MWords package The common dictionary
words, like those from the 12Dicts package, have had all likely inflections added. The 70 level also included
the 5desk list from version 4.0 of the 12Dics package which is the public domain The 80 level includes the
ENABLE word list, all the lists in the ENABLE supplement package (except for ABLE), the "UK Advanced
Cryptics Dictionary" (UKACD), the list of signature words in from YAWL package, and the 10,196 places
list from the MWords package. The ENABLE package, mainted by M\Cooper <thegrendel@theriver.com>,
is in the Public Domain: The ENABLE master word list, WORD.LST, is herewith formally released into
the Public Domain. Anyone is free to use it or distribute it in any manner they see fit. No fee or registration
is required for its use nor are "contributions" solicited (if you feel you absolutely must contribute something
for your own peace of mind, the authors of the ENABLE list ask that you make a donation on their behalf to
your favorite charity). This word list is our gift to the Scrabble community, as an alternate to "official" word
lists. Game designers may feel free to incorporate the WORD.LST into their games. Please mention the

source and credit us as originators of the list. Note that if you, as a game designer, use the WORD.LST in
your product, you may still copyright and protect your product, but you may *not* legally copyright or in
any way restrict redistribution of the WORD.LST portion of your product. This *may* under law restrict
your rights to restrict your users' rights, but that is only fair. UKACD, by J Ross Beresford
<ross@bryson.demon.co.uk>, is under the following copyright: Copyright (c) J Ross Beresford 1993-1999.
All Rights Reserved. The following restriction is placed on the use of this publication: if The UK Advanced
Cryptics Dictionary is used in a software package or redistributed in any form, the copyright notice must be
prominently displayed and the text of this document must be included verbatim. There are no other
restrictions: I would like to see the list distributed as widely as possible. The 95 level includes the 354,984
single words and 256,772 compound words from the MWords package, ABLE.LST from the ENABLE
Supplement, and some additional words found in my part-of-speech database that were not found anywhere
else. Accent information was taken from UKACD. My VARCON package was used to create the American,
British, and Canadian word list. Since the original word lists used used in the VARCON package came from
the Ispell distribution they are under the Ispell copyright: Copyright 1993, Geoff Kuenning, Granada Hills,
CA. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. All modifications to the source code
must be clearly marked as such. Binary redistributions based on modified source code must be clearly
marked as modified versions in the documentation and/or other materials provided with the distribution.
(clause 4 removed with permission from Geoff Kuenning) 5. The name of Geoff Kuenning may not be used
to endorse or promote products derived from this software without specific prior written permission. THIS
SOFTWARE IS PROVIDED BY GEOFF KUENNING AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL GEOFF KUENNING OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The variant
word lists were created from a list of variants found in the 12dicts supplement package as well as a list of
variants I created myself. The Readmes for the various packages used can be found in the appropriate
directory under the r/ directory.

Contents
Preface . 35
About This Manual . 35
Conventions in This Manual . 37

Typographical Conventions . 37
Syntax Notation. 38
Information Alerts . 38
Edition Alerts . 39
Video Alerts . 39

Available Documentation . 40
Technical Support . 40

Chapter 1: Getting Started with Stylus Studio® . 41
Stylus Studio Editions . 43

Stylus Studio XML Enterprise Suite . 43
Stylus Studio XML Professional Suite . 43
Stylus Studio Home Edition . 44
Edition Alerts . 44
More Information . 44

Integrated Components . 44
How Stylus Studio Uses Integrated Components . 45
Managing Component Licenses . 45

Starting Stylus Studio . 48
Getting Updates. 49
Getting Help . 49

Updating an XML Document – Getting Started . 50
Opening a Sample XML Document . 50
Updating the Text of a Sample Document . 52
Stylus Studio User Guide 9

Contents
Updating the Schema of a Sample Document .58
Updating the Tree Representation of a Sample Document .64
Updating a Sample Document Using the Grid Tab .68
Modifying Values .70
Moving Around the Grid .70

Working with Stylesheets – Getting Started .70
Opening a Sample Stylesheet .71
XSLT Stylesheet Editor Quick Tour .72
XSLT Scenarios .76

Using the XSLT Mapper – Getting Started. .82
Opening the XSLT Mapper .82
Mapping Nodes in Sample Files. .84
Saving the Stylesheet and Previewing the Result. .88
Deleting Links in Sample Files. .89
Defining Additional Processing in Sample Files .89

Debugging Stylesheets – Getting Started .90
Setting Up Stylus Studio to Debug Sample Files .90
Inserting a Breakpoint in the Sample Stylesheet .91
Gathering Debug Information About the Sample Files .93
Ending Processing During a Debug Session .96

Defining a DTD – Getting Started .99
Process Overview .99
Creating a Sample DTD .99
Defining Data Elements in a Sample DTD. .100
Defining the Container Element in a Sample DTD .101
Defining Structure Rules in a Sample DTD .101
Examining the Tree of a Sample DTD .103

Defining an XML Schema Using the Diagram Tab – Getting Started .104
Introduction to the XML Schema Editor Diagram Tab .105
Editing Tools of the XML Schema Diagram Tab .114
Description of Sample XML Schema. .119
Defining a complexType in a Sample XML Schema in the Diagram View 120
Defining Elements of the Sample complexType in the Diagram View128

Opening Files in Stylus Studio .130
Types of Files Recognized by Stylus Studio .130
Using the File Explorer. .132
Dragging and Dropping Files in the Stylus Studio. .135
Other Ways to Open Files in Stylus Studio .136
Adding File Types to Stylus Studio .137
10 Stylus Studio User Guide

Contents
Working with Projects . 138
Displaying the Project Window . 139
Creating Projects and Subprojects. 141
Saving Projects . 141
Opening Projects . 141
Adding Files to Projects . 142
Copying Projects . 143
Rearranging the Files in a Project . 144
Removing Files from Projects. 144
Closing and Deleting Projects . 144
Setting a Project Classpath . 145
Using Stylus Studio with Source Control Applications . 147

Customizing Tool Bars . 156
Tool Bar Groups . 156
Showing/Hiding Tool Bar Groups . 157
Changing Tool Bar Appearance . 158

Specifying Stylus Studio Options . 158
Setting Module Options. 158
Registering Custom Tools . 160

Defining Keyboard Shortcuts . 163
How to Define a Keyboard Shortcut . 164
Deleting a Keyboard Shortcut . 165

Using Stylus Studio from the Command Line. 166
Command Line Executables Location . 166
Invoking Stylus Studio from the Command Line . 166
Validating XML from the Command Line . 167

Managing Stylus Studio Performance . 168
Troubleshooting Performance . 168
Changing the Schema Refresh Interval . 168
Checking for Modified Files . 169
Changing the Recursion Level or Allocated Stack Size . 170
Automatically Opening the Last Open Files . 170

Configuring Java Components. 171
Stylus Studio Modules That Require Java . 171
Verifying the Current Java Virtual Machine. 172
Downloading Java Components . 172
Modifying Java Component Settings . 173
Stylus Studio User Guide 11

Contents
Chapter 2: Editing and Querying XML .175
Creating XML Documents .176

Using the XML Editor .176
Other Ways to Create XML .176

Using Document Wizards to Create XML .177
How to Use a Document Wizard .177
Creating XML from XML Schema .177
Creating XML from DTD. .178
Creating XML from HTML .178

Updating XML Documents. .178
Choosing a View. .179
Saving Your Work .179
Ensuring Well-Formedness .179
Reverting to Saved Version .180
Updating Java Server Pages as XML Documents .180

Using the Text Editor .181
Text Editing Features .182
Use of Colors in the Text Tab. .187
Using the Spell Checker .189
Moving Around in XML Documents .193

Updating DOM Tree Structures .195
Displaying All Nodes in the Tree View .196
Adding a Node in the Tree View .196
Deleting a Node in the Tree View .197
Moving a Node in the Tree View .197
Changing the Name or Value of a Node in the Tree View. .197
Obtaining the XPath for a Node .198

Using the Grid Tab .199
Layout of the Grid Tab .200
Features of the Grid Tab .201
Moving Around the Grid Tab .205
Selecting Items in the Grid .205
How Grid Changes Affect the XML Document. .206
Working with Rows .207
Working with Columns. .208
Working with Tables .211

Diffing Folders and XML Documents .215
Overview. .216
Diffing Folders .221
12 Stylus Studio User Guide

Contents
The XML Diff Viewer . 225
Diffing a Pair of XML Documents . 232
Diffing Multiple Documents . 234
Modifying Default Diff Settings . 239
Running the Diff Tool from the Command Line . 243

Using Schemas with XML Documents . 246
Associating an External Schema With a Document . 246
Having Stylus Studio Generate a Schema. 247
Validating XML Documents . 247
Updating a Document’s Schema . 248
Removing the Association Between a Document and a Schema . 248

Converting XML to Its Canonical Form . 249
Querying XML Documents Using XPath . 249
Printing XML Documents . 249
Saving XML Documents . 250

Chapter 3: Converting Non-XML Files to XML. 253
Introduction . 254

How XML Converters are Used in Stylus Studio . 254
XML Converters Run-Time Components. 255
Other Ways to Convert Files to XML. 256
Types of XML Converters . 256
XML Converters Can Be Configured . 258
Using XML Converters to Open a Non-XML File as XML. 259
Saving an XML File in Another Format . 260

Custom XML Conversions . 261
Creating a Custom XML Conversion Definition. 262

Choosing an Input File . 262
Specifying File Settings. 263
How to Create a Custom XML Conversion Definition. 263

The Custom XML Conversion Definition Editor . 265
Document Pane . 266
Properties Window . 273
Schema Pane . 275

Parts of an Input File . 276
Regions . 276
Rows . 277
Fields . 278
Stylus Studio User Guide 13

Contents
Working with Regions .278
Converting the Region Type. .279
Adjusting Fixed-Width Regions .281
Defining and Joining Regions .283
Controlling Region Output .286

Working with Fields .287
Naming Fields. .287
Defining Fields .290
Component and Sub-Component Fields. .293

Controlling XML Output .295
Specifying Element Names. .295
Specifying Format .296
Omitting Regions and Fields, and Rows .296
Pattern Matching. .297
Using Lookup Lists. .302
Using Key=Value Characters .305

Using Custom XML Conversion Definitions in Stylus Studio. .306
The Converter URI Scheme .309

Where You Use Converter URIs .309
Specifying a Converter URI .309
Converter URI Syntax .310
XML Converter Properties .311
Where Converter URIs are Displayed in Stylus Studio .312
Using Stylus Studio to Build a Converter URI. .314

Working with EDI Conversions .316
Supported EDI Dialects .316
Converting Custom EDI Message Types .317
Documentation for DataDirect XML Converters .319
XML Schemas for Custom EDI Message Types .319
Validating XML from/to EDI. .320

Custom XML Conversion Definitions Properties Reference .320
Input File Properties .321
XML Output URL Properties .322
Region Type Properties .324
Row Element Name Properties. .327
Field Element Name Properties .328
Data Type Properties (by data type) .330
Specifying Control Characters .351
14 Stylus Studio User Guide

Contents
Chapter 4: Converting EDI to XML . 355
What is the EDI to XML Module? . 356

Supported EDI Dialects. 356
When to Use the EDI to XML Module . 356
The EDI to XML Editor . 357
The SEF File . 358
Choosing an EDI Document . 359
EDI to XML Conversions and EDI Standards . 359

Creating an EDI to XML Conversion . 360
Using an EDI Document . 360
Using an EDI Standard . 361

Previewing an EDI to XML Conversion . 362
Active Scenario Is Previewed . 362
How to Preview an EDI to XML Conversion . 363

Example: Converting a Conforming EDI File . 363
Example: Converting a Non-conforming EDI File . 366
Resolving EDI Document Errors . 372

What Is an EDI Document Error? . 372
How Errors Are Represented . 373
Locating Data Errors . 374
Displaying Information about Errors . 374
Correcting Dialect and Version Errors . 375
Quick Fixes . 375
Working with Code Lists . 377

Specifying XML Converter Properties . 379
Customizing an EDI Standard . 380

The EDI Standards Repository . 380
Ways to Customize an EDI Standard . 381
EDI XML Conversions and EDI Definitions . 382
Views of the EDI Structure . 382
Creating New Structure Definitions . 384
Modifying Existing Definitions. 390
Modifying Definition Properties . 396
Importing EDI Standard Definitions . 397
Undoing Customizations . 399
Removing a Definition . 399

Generating XQuery and XML Schema from EDI . 400
Generate XQuery/XML Schema . 401
EDI to XQuery Document Wizard . 403
Stylus Studio User Guide 15

Contents
EDI Structure Definitions Properties Reference .406
Code List Properties .406
Composite Properties .407
Composite Reference Properties. .407
EDI Structure Properties. .408
Element Properties .408
Element Reference Properties. .409
Group Properties. .411
Message Properties .412
Repetition Properties .412
Segment Properties .412
Segment Reference Properties .413
Transaction Message Properties .414

EDI XML Converters Properties Reference .414

Chapter 5: Working with XSLT .415
Getting Started with XSLT .415

What Is XSLT?. .416
What Is a Stylesheet? .417
What Is a Template? .421
How the XSLT Processor Applies a Stylesheet .424
Controlling the Contents of the Result Document .429
Specifying XSLT Patterns and Expressions .431
Frequently Asked Questions About XSLT. .433
Sources for Additional XSLT Information. .434
Benefits of Using Stylus Studio .435

Tutorial: Understanding How Templates Work .439
Creating a New Sample Stylesheet. .441
Understanding How the Default Templates Work .445
Editing the Template That Matches the Root Node .449
Creating a Template That Matches the book Element .450
Creating a Template That Matches the author Element. .451

Working with Stylesheets .452
About the XSLT Editor .453
Creating Stylesheets .454
Creating a Stylesheet from HTML .454
Specifying Stylesheet Parameters and Options .455
Applying Stylesheets .458
Applying a Stylesheet to Multiple Documents. .464
16 Stylus Studio User Guide

Contents
About Stylesheet Contents . 465
Updating Stylesheets . 466
Saving Stylesheets. 468

Specifying Extension Functions in Stylesheets . 469
Using an Extension Function in Stylus Studio . 470
Basic Data Types. 471
Declaring an XSLT Extension Function . 471
Working with XPath Data Types . 472
Declaring an Extension Function Namespace. 472
Invoking Extension Functions. 473
Finding Classes and Finding Java . 473
Debugging Stylesheets That Contain Extension Functions . 473

Working with Templates . 474
Viewing Templates . 474
Using Stylus Studio Default Templates . 476
Creating Templates . 478
Applying Templates . 479
Updating Templates . 479
Deleting Templates . 479

Using Third-Party XSLT Processors . 479
How to Use a Third-Party Processor. 480
Setting Default Options for Processors . 482

Validating Result Documents . 484
Post-processing Result Documents . 485
Generating Formatting Objects . 486

Developing Stylesheets That Generate FO . 487
Troubleshooting FOP Errors . 487
Viewing the FO Sample Application . 488
Deploying Stylesheets That Generate FO . 490
Using Apache FOP to Generate NonPDF Output . 491

Generating Scalable Vector Graphics . 492
About SVG Viewers . 492
Running the SVG Example . 493

Generating Java Code for XSLT . 493
What Does Stylus Studio Generate? . 494
Scenario Properties Used for Generating Code. 494
Java Code Generation Settings . 496
How to Generate Java Code for XSLT . 497
Stylus Studio User Guide 17

Contents
Compiling Generated Code .498
Deploying Generated Code. .498

Generating C# Code for XSLT .499
What Does Stylus Studio Generate?. .499
Scenario Properties Used for Generating Code .499
C# Code Generation Settings .501
How to Generate C# Code for XSLT .502
Compiling Generated Code .503
Deploying Generated Code. .503

XSLT Instructions Quick Reference. .504
xsl:apply-imports .506
xsl:apply-templates .506
xsl:attribute .507
xsl:attribute-set .508
xsl:call-template .510
xsl:character-map .511
xsl:choose .513
xsl:comment .514
xsl:copy. .514
xsl:copy-of .515
xsl:decimal-format .516
xsl:element .517
xsl:fallback .518
xsl:for-each .518
xsl:for-each-group. .520
xsl:function .521
xsl:if .522
xsl:import .523
xsl:import-schema. .523
xsl:include. .525
xsl:key. .526
xsl:message .527
xsl:namespace-alias .527
xsl:number .528
xsl:otherwise .529
xsl:output .529
xsl:output-character .531
xsl:param. .532
xsl:preserve-space. .533
18 Stylus Studio User Guide

Contents
xsl:processing-instruction . 533
xsl:sequence. 534
xsl:sort . 535
xsl:strip-space . 537
xsl:stylesheet . 537
xsl:template . 538
xsl:text . 539
xsl:transform . 540
xsl:value-of . 540
xsl:variable . 541
xsl:when. 542
xsl:with-param. 542

Chapter 6: Creating XSLT Using the XSLT Mapper 545
Overview of the XSLT Mapper . 546

Example. 547
Graphical Support for Common XSLT Instructions and Expressions 548
Setting Options for the XSLT Mapper . 549
Simplifying the Mapper Canvas Display . 550
Exporting Mappings . 552
Searching Document Panes . 553
Ensuring That Stylesheets Output Valid XML . 553
Steps for Mapping XML to XML . 553

Source Documents . 554
Choosing Source Documents . 555
Source Documents and XML Instances . 555
How to Add a Source Document. 558
How to Remove a Source Document . 560
How Source Documents are Displayed. 560

Target Structures . 561
Using an Existing Document. 562
Building a Target Structure . 562
Modifying the Target Structure. 563

Mapping Source and Target Document Nodes . 564
Preserving Mapper Layout . 564
Left and Right Mouse Buttons Explained . 565
How to Map Nodes . 566
Removing Source-Target Maps. 566
Stylus Studio User Guide 19

Contents
Working with XSLT Instructions in XSLT Mapper .566
What XSLT Instructions Are Represented Graphically .567
Instruction Block Ports .567
Understanding Input Ports .568
The Flow Port .570
Adding an Instruction Block to the XSLT Mapper .570
xsl:if and xsl:choose .571

Processing Source Nodes .573
XPath Function Blocks .573
Logical Operators .576
Setting a Text Value .576
Defining Java Functions in the XSLT Mapper. .579

Creating and Working with Templates .580
What Happens When You Create a Template .580
How to Create a Named or Matched Template .581

Creating an XSLT Scenario .582
Overview of Scenario Features. .582
How to Create a Scenario .586
How to Run a Scenario .587
How to Clone a Scenario .588

Chapter 7: Debugging Stylesheets .589
Steps for Debugging Stylesheets. .590
Using Breakpoints .590

Inserting Breakpoints .590
Removing Breakpoints .591
Start Debugging .591

Viewing Processing Information. .591
Watching Particular Variables .592
Evaluating XPath Expressions in the Current Processor Context .592
Obtaining Information About Local Variables. .592
Determining the Current Context in the Source Document .593
Displaying a List of Process Suspension Points .593
Displaying XSLT Instructions for Particular Output .594

Using Bookmarks .594
Determining Which Template Generated Particular Output. .595
Determining the Output Generated by a Particular Template. .595
20 Stylus Studio User Guide

Contents
Profiling XSLT Stylesheets . 596
About Metrics . 597
Enabling the Profiler . 597
Displaying the XSLT Profiler Report . 598

Handling Parser and Processor Errors . 599
Debugging Java Files. 599

Requirements for Java Debugging . 599
Setting Options for Debugging Java . 600
Using the Java Editor . 601
Stylus Studio and the JVM . 602
Example of Debugging Java Files. 602

Chapter 8: Defining XML Schemas. 607
What Is an XML Schema?. 608
Creating an XML Schema in Stylus Studio. 608

Creating Your Own XML Schema . 609
Creating XML Schema from a DTD. 609
Creating XML Schema from an XML Document. 614

Creating XML Schema from EDI . 617
Wizard Options . 617
Running the EDI to XSD Document Wizard . 619

Working with XML Schema in Stylus Studio . 621
Views in the XML Schema Editor . 622
Validating XML Schema. 625
Updating XML Schema Associated with a Document . 625
Viewing Sample XML . 625
Using XML Schema in XQuery and XSLT Mapper. 627
Printing . 627
Saving theXML Schema Diagram as an Image . 627
Node Properties . 628
Searching for Referencing Nodes . 629

Getting Started with XML Schema in the Tree View . 631
Description of Sample XML Schema . 631
Tips for Adding Nodes . 632
Defining a complexType in a Sample XML Schema in the Tree View 632
Defining Elements of the Sample complexType in the Tree View. 637

Defining simpleTypes in XML Schemas. 637
About simpleTypes in XML Schemas . 638
Examples of simpleTypes in an XML Schema . 638
Stylus Studio User Guide 21

Contents
Defining a simpleType in the Diagram View. .639
Defining a simpleType in the Tree View .644
About Facet Types for simpleTypes. .645
Defining List and Union simpleTypes in the Tree View .647

Defining complexTypes in XML Schemas. .647
Defining complexTypes That Contain Elements and Attributes – Diagram View 648
Defining complexTypes That Contain Elements and Attributes – Tree View.652
Defining complexTypes That Mix Data and Elements .654
Defining complexTypes That Contain Only Attributes .656

Defining Elements and Attributes in XML Schemas .657
Defining Elements That Carry Attributes and Contain Data in XML Schemas.658
Defining Elements That Contain Subelements in XML Schemas .661
Adding an Identity Constraint to an Element .662

Defining Groups of Elements and Attributes in XML Schemas. .666
Defining Groups of Elements in XML Schemas – Diagram View .667
Defining Groups of Elements in XML Schemas – Tree View. .668
Defining attributeGroups in XML Schemas – Diagram View .668
Defining attributeGroups in XML Schemas – Tree View .669

Adding Comments, Annotation, and Documentation Nodes to XML Schemas.670
Comments .670
Annotations. .670
Example .672

Defining Notations .673
Diagram View. .673
Tree View .673

Referencing External XML Schemas .674
Ways to Reference XML Schemas. .674
Where You Can Reference XML Schemas .675
Referencing XML Schemas in the Diagram View. .676
Referencing XML Schemas in the Tree View .678
Redefining Nodes .679

Generating Documentation for XML Schema .681
XS3P Stylesheet Overview. .682
Saving XML Schema Documentation .685
Printing XML Schema Documentation .685

About XML Schema Properties .686
About xsd:schema Properties .687
Element and Element Reference Properties in XML Schemas .689
Attribute and Attribute Reference Properties in XML Schemas .691
22 Stylus Studio User Guide

Contents
Group Properties in XML Schemas . 693
Model Group Properties in XML Schemas. 693
Complex and simpleType Properties in XML Schemas . 695
Restriction and Extension Type Properties in XML Schemas . 696
Content Type Properties in XML Schemas. 696
Aggregator Type Properties in XML Schemas . 697
Facet Type Properties in XML Schemas. 698
Notation Type Properties in XML Schemas . 699
Include Type Properties in XML Schemas . 699
Import Type Properties in XML Schemas . 700
Redefine Type Properties in XML Schemas. 700
Identity Constraint Type Properties in XML Schemas . 700
Constraint Element Type Properties in XML Schemas . 701
Documentation Type Properties in XML Schemas. 701

Chapter 9: Defining Document Type Definitions . 703
What Is a DTD? . 704
Creating DTDs. 704
About Editing DTDs . 705

Restrictions . 705
About Modifiers in Element Definitions in DTDs . 706

Description of Element Modifiers in DTDs . 706
Simple Example of Aggregating Modifiers in DTDs . 707
More Complex Example of Aggregating Modifiers in DTDs . 708
Aggregating Modifiers to Allow Any Order and Any Number in DTDs 708

Defining Elements in DTDs . 709
Defining Elements in the DTD Tree Tab . 710
Specifying That an Element Can Have an Attribute in DTDs . 711
Specifying That an Element is Required in DTDs . 711
Specifying That an Element is Optional in DTDs. 712
Specifying That Multiple Instances of An Element Are Allowed in DTDs 713
Specifying That An Element Can Contain One of a Group of Elements in DTDs. 715
Specifying That an Element Can Contain One or More Elements in DTDs. 716
Specifying That an Element Can Contain Data in DTDs . 718
Moving, Renaming, and Deleting Elements in DTDs. 718

Defining General Entities and Parameter Entities in DTDs . 718
Steps for Defining Entities in DTDs . 719
General Entity Example in a DTD . 720
Parameter Entity Example in a DTD. 721
Stylus Studio User Guide 23

Contents
Inserting White Space in DTDs .721
Adding Comments to DTDs .721
About Node Properties in DTDs .722

Description of Element Properties in DTDs. .723
Description of Attribute Properties in DTDs .723
Description of Entity and Parameter Entity Properties in DTDs .725

Associating an XML Document with an External DTD. .726
Moving an Internal DTD to an External File .726

Chapter 10: Writing XPath Expressions .729
About the XPath Processor .730

Where You Can Use XPath Expressions .730
About XPath .730
Benefits of XPath .731
Internationalization .732
Restrictions on Queries. .732

Using the XPath Query Editor .732
Parts of the XPath Query Editor .734
Displaying the XPath Query Editor .735
Working with XPath Queries .735
Working with Query Results .737
Working with Namespaces .738

Sample Data for Examples and Practice .739
About XML Document Structure .740
A Sample XML Document. .741
Tree Representation of a Sample XML Document .742
Steps for Trying the Sample Queries .745

Getting Started with Queries .745
Obtaining All Marked-Up Text .746
Obtaining a Portion of an XML Document .746
Obtaining All Elements of a Particular Name .747
Obtaining All Elements of a Particular Name from a Particular Branch748
Different Results from Similar Queries .749
Queries That Return More Than You Want .749
Specifying Attributes in Queries .750
Filtering Results of Queries .751
Wildcards in Queries .754
Calling Functions in Queries .755
24 Stylus Studio User Guide

Contents
Case Sensitivity and Blank Spaces in Queries . 756
Precedence of Query Operators. 756

Specifying the Nodes to Evaluate . 757
Understanding XPath Processor Terms. 758
Starting at the Context Node . 760
About Root Nodes and Document Elements. 760
Starting at the Root Node . 760
Descending Along Branches . 761
Explicitly Specifying the Current Context . 762
Specifying Children or Descendants of Parent Nodes . 763
Examples of XPath Expression Results . 763
Syntax for Specifying an Axis in a Query. 764
Supported Axes . 765
Axes That Represent the Whole XML Document . 770

Handling Strings and Text . 771
 Searching for Strings . 771
Manipulating Strings . 774
Obtaining the Text Contained in a Node. 777

Specifying Boolean Expressions and Functions . 778
Using Boolean Expressions. 778
Calling Boolean Functions . 779

Specifying Number Operations and Functions . 781
Performing Arithmetic Operations . 781
Calling Number Functions . 782

Comparing Values . 784
About Comparison Operators . 785
How the XPath Processor Evaluates Comparisons . 785
Comparing Node Sets . 786
Comparing Single Values With = and != . 787
Comparing Single Values With <=, <, >, and >= . 788
Priority of Object Types in Comparisons . 788
Examples of Comparisons. 789
Operating on Boolean Values . 789

Finding a Particular Node . 789
About Node Positions . 790
Determining the Position Number of a Node . 790
Positions in Relation to Parent Nodes . 791
Finding Nodes Relative to the Last Node in a Set . 792
Finding Multiple Nodes. 792
Stylus Studio User Guide 25

Contents
Examples of Specifying Positions .793
Finding the First Node That Meets a Condition .793
Finding an Element with a Particular ID .793
Obtaining Particular Types of Nodes By Using Node Tests .795

Obtaining a Union .796
Obtaining Information About a Node or a Node Set .798

Obtaining the Name of a Node .798
Obtaining Namespace Information. .798
Obtaining the URI for an Unparsed Entity .801
Determining the Number of Nodes in a Collection .801
Determining the Context Size. .801

Using XPath Expressions in Stylesheets. .802
Using Variables .802
Obtaining System Properties .802
Determining If Functions Are Available .803
Obtaining the Current Node for the Current XSLT Template .803
Finding an Element with a Particular Key .804
Generating Temporary IDs for Nodes .806

Accessing Other Documents During Query Execution .806
Format of the document() Function .806
When the First Argument is a Node Set .807
Specification of Second Argument. .807
Example of Calling the document() Function .808

XPath Quick Reference. .808
XPath Functions Quick Reference .809
XPath Syntax Quick Reference .813
XPath Abbreviations Quick Reference. .814

Chapter 11: Working with XQuery in Stylus Studio 817
Getting Started with XQuery in Stylus Studio .818

What is XQuery? .818
What is an XQuery? .819
The Stylus Studio XQuery Editor. .819

An XQuery Primer .824
What is XQuery For? .824
Your First XQuery .824
Accessing XML Documents with XQuery. .825
XQuery and XPath .827
Introduction to FLWOR Expressions .831
26 Stylus Studio User Guide

Contents
Generating XML Output with XQuery . 832
Accessing Databases with XQuery . 834

Understanding FLWOR Expressions. 835
Simple XQuery FLWOR Expressions . 835
The Principal Parts of an XQuery FLWOR Expression . 836
Other Parts of the XQuery FLWOR Expression . 848
Grouping . 850

Building an XQuery Using the Mapper . 851
Process Overview . 852
Data Sources . 853
Specifying a Target Structure . 860
Modifying the Target Structure. 862
Mapping Source and Target Document Nodes . 863
Simplifying the Mapper Canvas Display . 869
Exporting Mappings . 871
Searching Document Panes . 872
FLWOR Blocks. 872
Function Blocks. 875
IF Blocks . 878
Condition Blocks. 878
Predicate Blocks . 879
SQL Function Blocks . 882

User-Defined Functions . 883
Creating a User-Defined Function . 884
Working with User-Defined Functions . 887

Working with Relational Data Sources . 889
Using the collection() Function in Stylus Studio . 890
How the collection() Function is Processed . 890
Creating a Database Connection . 891
Creating a collection() Statement . 896
Other Ways to Register a Database Configuration . 900

Working with Zip Archive Format Files as Data Sources. 901
Updating Relational Databases . 905

Overview . 906
Using SQL Function Blocks in XQuery Mapper . 906
Creating an Insert Function Call . 908
Creating an Update Function Call . 913
Creating a Delete Function Call . 917
Stylus Studio User Guide 27

Contents
Working with XQuery Library Modules. .921
Creating a Library Module .921
Importing a Library Module .923
Using a Library Module .924
Removing a Library Module .925

Debugging XQuery .926
Using Breakpoints .927
Viewing Processing Information .928
Using Bookmarks .930
Profiling XQuery .931

Using DataDirect XQuery® Execution Plans. .934
Query Plans in Stylus Studio .934
Example of a Query Plan .935
Parts of a Query Plan .936
Displaying a Query Plan. .938
Optimizing Your XQuery .938

Creating an XQuery Scenario .939
Specifying XML Input .939
Selecting an XQuery Processor .941
Using Custom URI Resolvers. .943
Setting Default Options for Processors. .946
Setting Values for External Variables .947
Performance Metrics Reporting .948
Validating XQuery Results. .948
How to Create a Scenario .950
How to Run a Scenario .951
How to Clone a Scenario .951

Generating XQuery Documentation .952
Documentation Defaults .953
Syntax and Usage .953
How to Generate XQuery Documentation .956

Using XQuery to Invoke a Web Service. .958
Choosing an XQuery Processor .958
Invoking a SOAP Request in an XQuery .958
Invoking Multiple SOAP Requests .959

Using Web Services in XQuery .960
Choosing a ddtek:wscall Function .960
Creating a ddtek:wscall Function .961
Examining the ddtek:wscall Function Block .963
28 Stylus Studio User Guide

Contents
Mapping ddtek:wscall Functions. 966
Example: Querying a Web Service . 967

Generating Java Code for XQuery. 972
What Does Stylus Studio Generate? . 972
Scenario Properties Used for Generating Code. 972
Java Code Generation Settings . 974
How to Generate Java Code for XQuery. 975
Compiling Generated Code . 976
Deploying Generated Code . 977

Generating C# Code for XQuery . 977
What Does Stylus Studio Generate? . 978
Scenario Properties Used for Generating Code. 978
C# Code Generation Settings . 979
How to Generate C# Code for XQuery . 981
Compiling Generated Code . 981
Deploying Generated Code . 981

Chapter 12: Composing Web Service Calls. 983
Overview . 984
Obtaining WSDL URLs. 987
Modifying a SOAP Request . 991

Understanding Parameters. 992
How to Modify a SOAP Request . 993

Testing a Web Service . 994
What Happens When You Test a Web Service. 994
How to Test a Web Service. 995

Saving a Web Service Call . 995
Using Web Service Calls as XML . 996
How to Save a Web Service Call . 998

Querying a Web Service . 999
Creating XQuery from a Web Service Call . 999

Example. 999
What Happens When You Create XQuery . 1000
How to Create XQuery from a Web Service Call . 1000

Creating a Web Service Call Scenario. 1001
Overview of Scenario Features . 1001
How to Create a Scenario . 1004
How to Run a Scenario . 1005
How to Clone a Scenario. 1005
Stylus Studio User Guide 29

Contents
Chapter 13: Working with WSDL Documents .1007
Creating a WSDL Document in Stylus Studio .1007
Opening WSDL Documents .1008
Using the WSDL Editor .1009

Uses for the WSDL Editor .1010
Similarities to the XML Schema Editor .1010
Diagram Pane .1011
Text Pane .1011
Properties Window .1012
Symbols for WSDL Elements .1013
Displaying Documentation .1017
Error Detection .1017
Back-Mapping .1017
Background Color. .1018
Moving Around the Diagram .1018

Working with WSDL Elements .1018
Sample WSDL – A Stock Quote Service .1019
The Definitions Element. .1019
The Types Element .1020
The Service Element. .1022
The Port Element .1023
The Message Element. .1024
The Part Element .1025
The PortType Element .1026
The Operation Element. .1028
The Binding Element .1029
The Input Element .1031
The Output Element .1032
The Fault Element. .1033
The Documentation Element .1033

Importing WSDL Documents .1034
Making Imported WSDL Elements Available .1035
Example .1036

Printing a WSDL Document .1037
Saving the WSDL Diagram as an Image .1037
30 Stylus Studio User Guide

Contents
Chapter 14: Building XML Pipelines . 1039
What is an XML Pipeline?. 1040

Example of an XML Pipeline in Stylus Studio . 1040
XML Pipeline Terminology . 1041
XML Pipeline Semantics. 1042

The XML Pipeline Editor . 1043
Parts of the XML Pipeline Editor . 1044
XML Pipeline Editor Toolbar . 1045
Menu Actions . 1046

Steps for Building an XML Pipeline . 1047
Planning an XML Pipeline . 1047

Design Approaches . 1048
XML Pipeline Components. 1050
Identifying Resources . 1053
Deployment Considerations . 1053

Use Case: Building order.pipeline . 1054
order.pipeline Requirements . 1054
Getting Started: Creating a New XML Pipeline . 1055
XML Pipeline Scenarios . 1056
Specifying an Execution Framework . 1056
Configuring Data Sources . 1057
Using XQuery to Merge Source File Data . 1062
Adding an XQuery Node. 1067
Setting the XQuery Node Data Sources . 1068
Testing the XML Pipeline . 1069
Setting a Value for an Output Port . 1069
Designing a Report from the XML Document . 1071
Adding XSLT and XQuery Transformations . 1073
Finishing Up . 1078

Working with Nodes . 1079
Types of Nodes . 1079
Adding Nodes to an XML Pipeline. 1079
XQuery and XSLT Nodes . 1082
XSL-FO Nodes . 1085
Pipeline and Related Nodes. 1086
Validate Nodes . 1088
Choose Nodes . 1090
ConvertToXML and ConvertFromXML Nodes . 1092
Stop and Warning Nodes. 1094
Stylus Studio User Guide 31

Contents
XML Parser Nodes .1096
XML Serializer Nodes .1097

Working with the XML Pipeline Diagram .1098
Displaying a Grid .1098
Labeling .1098
Zoom. .1099
Edge Style. .1099
Manipulating Nodes in the Diagram. .1101
Saving the XML Pipeline Diagram as an Image .1101
Labeling XML Pipeline Diagrams .1102

Debugging an XML Pipeline .1103
Cross-Language Debugging .1103
Execution Framework Determines Debugging Support. .1104
Setting and Removing Breakpoints .1104
Running the Debugger .1105
Stepping Into a Node .1106
Stopping Debug Processing .1107

Generating Code for an XML Pipeline .1107
Execution Framework and Code Generation .1107
Code Generation Settings .1109
How to Generate Code for an XML Pipeline .1111
Compiling Generated Java Code .1112
Deploying Generated Code. .1113

XML Pipeline Node Properties Reference .1114
Choose Node Properties .1115
ConvertFromXML Node Properties .1116
ConvertToXML Node Properties .1117
Pipeline Node Properties .1118
Pipeline Input Node Properties. .1119
Pipeline Output Node Properties .1120
Stop Node Properties .1120
Validate Node Properties .1121
Warning Node Properties .1122
XML Parser Node Properties .1123
XML Serializer Node Properties .1124
XQuery Node Properties. .1125
XSL-FO Node Properties .1126
XSLT Node Properties .1127
32 Stylus Studio User Guide

Contents
Chapter 15: Publishing XML Data . 1129
The XML Publisher . 1130
Building an XML Publisher Report. 1131

Process Summary . 1131
How to Create an XML Publisher Report . 1132
The XML Publisher Canvas . 1133

Choosing a Report Format . 1134
Working with Data Sources . 1135

How Data Sources are Represented in XML Publisher . 1135
Adding a Data Source . 1136
Specifying a Default Data Source . 1137
Data Source Required for XSLT. 1138
Using XML Schema or DTD as a Data Source. 1138
Grouping Data . 1140

Adding Data to a Report . 1149
How to Add Data to a Report . 1149
Example: Dropping a Repeating Node . 1150
How Data is Represented on the Canvas. 1151
More About the Navigation Bar . 1153

Working with Report Components . 1156
Types of Components . 1156
Tables . 1157
Lists . 1160
Text . 1162
Images . 1163
Repeaters . 1166
Ifs. 1167
Component Properties . 1170
Formatting Components . 1174
Formatting Decimal Numbers . 1179

Generating Code for an XML Publisher Report . 1182
Supported Transformation Languages . 1183
Sources . 1183
How to Generate Code . 1185

Example: Building an XML Publisher Report . 1186
Getting Started. 1186
Insert and Populate a Table . 1186
Simple Table Formatting. 1188
Stylus Studio User Guide 33

Contents
Format Data Conditionally .1189
Generate the Code. .1191

Properties Reference .1192
Context and XPath Sub-Properties .1193
Body Properties .1193
Table Properties .1195
List Properties. .1197
Text Properties .1197
Repeater Properties. .1198
If Properties .1199
Image Properties .1199
Dynamic Value Properties .1199

Chapter 16: Integrating with Third-Party File Systems 1201
Using Stylus Studio with TigerLogic XDMS .1201

Overview. .1202
Connecting to TigerLogic XDMS .1203
Using Documents Stored on TigerLogic XDMS .1205
Creating Collections .1206

Chapter 17: Extending Stylus Studio. .1207
Custom XML Validation Engines. .1208

Registering a Custom Validation Engine .1209
Configuring a Custom Validation Engine .1209

Custom Document Wizards .1214
Registering a Custom Document Wizard .1215
Configuring a Custom Document Wizard .1215

Chapter 18: The Stylus Studio Java API .1225

Index . 1227
34 Stylus Studio User Guide

Preface
This Preface contains the following sections:

● “About This Manual” on page 35 describes this manual and its intended audience.

● “Conventions in This Manual” on page 37 describes the text formatting, syntax
notation, and flags used in this manual.

● “Available Documentation” on page 40 describes the printed and online
documentation that accompanies Stylus Studio®.

● “Technical Support” on page 40 provides information on contacting Technical
Support.

About This Manual
This manual describes how to use Stylus Studio to develop XML applications. It is
assumed that you are familiar with XML and the concepts of it and its related
technologies.

This manual has the following chapters:

● Chapter 1, Getting Started with Stylus Studio®, provides step-by-step instructions for
editing an XML document, applying a stylesheet, creating a dynamic Web page,
debugging stylesheets and Java files, and mapping an XML document with one
schema to an XML document with another schema.

● Chapter 2, Editing and Querying XML, describes how to update an XML document
in the text, tree, schema, and grid views of the XML editor. It also provides
information about how to query documents and handle query results.
Stylus Studio User Guide 35

● Chapter 3, Converting Non-XML Files to XML, describes how to use DataDirect
XML Converters™ and Stylus Studio custom XML converters to convert files (EDI,
CSV, binary, and others) to XML.

● Chapter 4, Converting EDI to XML, describes how to use the EDI to XML module
to convert EDI documents to XML, and how to create and use Standard Exchange
Format (SEF) files to describe custom EDI structures.

● Chapter 5, Working with XSLT, includes a tutorial for using XSLT and
understanding how XSLT works. It provides information and instructions for using
the XSLT editor to create, modify, and apply stylesheets. It also contains reference
information for the various XSLT instructions you can specify in a stylesheet.

● Chapter 6, Creating XSLT Using the XSLT Mapper, describes how to use the Stylus
Studio XML mapper. The XML mapper generates a stylesheet for transforming an
XML document that uses one schema to an XML document that uses another schema.

● Chapter 7, Debugging Stylesheets, describes how to use the Stylus Studio debugging
features.

● Chapter 8, Defining XML Schemas, provides information and instructions for
creating and editing DTDs and XML Schema documents.

● Chapter 9, Defining Document Type Definitions,provides information about how to
use the Stylus Studio Document Type Definition (DTD) editor to define a DTD.

● Chapter 10, Writing XPath Expressions, includes complete information about how to
define a query, which must be an XPath expression. In addition to explicitly running
a query on an XML document, you specify queries as the values of select and match
attributes in stylesheets.

● Chapter 11, Working with XQuery in Stylus Studio, describes how to work with
XQuery in Stylus Studio, including how to use the XQuery debugger.

● Chapter 12, Composing Web Service Calls, describes how to design, compose, and
test a Web service call without writing any code, and how to use the Web service calls
you create elsewhere in Stylus Studio.

● Chapter 13, Working with WSDL Documents, describes how to compose and review
Web Services Description Language (WSDL) documents in Stylus Studio.

● Chapter 14, Building XML Pipelines, describes how to use Stylus Studio to create an
XML pipeline application that chains together two or more XML transformations,
and how to generate Java code you can use to deploy that application.

● Chapter 15, Publishing XML Data, describes how to use Stylus Studio to use XML
Publisher to generate XQuery or XSLT that creates HTML+CSS or XSL-FO reports
using XML and non-XML data sources.
36 Stylus Studio User Guide

Conventions in This Manual
● Chapter 16, Integrating with Third-Party File Systems, describes how Stylus Studio
is integrated with third-party file systems like RainingData® TigerLogic® XML Data
Management Server (TigerLogic XDMS).

● Chapter 17, Extending Stylus Studio, provides a description of advanced Stylus
Studio features, including information about using the Stylus Studio custom
document wizard.

● Chapter 18, The Stylus Studio Java API, was deprecated in Stylus Studio 2007 XML
Enterprise Suite Release 2. The functionality provided by the Stylus Studio Java API
has been replaced by DataDirect XML Converters™ standalone components for
Java™ and .NET. See the DataDirect XML Converters documentation for more
information:
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp.

Conventions in This Manual
This section describes the typographical and formatting conventions used in this manual
for text, notes, warnings, and important messages.

Typographical Conventions
This manual uses the following typographical conventions:

● Bold typeface in this font indicates keyboard key names (such as Tab or Enter) and
the names of windows, menu commands, buttons, and other user-interface elements.
For example, “From the File menu, select Open.”

● Italic text emphasizes new terms when they are introduced.

● Code samples appear in text like this:

● Monospace typeface indicates text that might appear on a computer screen such as

■ Code that the user must enter

■ System output (such as responses, error messages, and so on)

■ Filenames and pathnames

■ Software component names, such as class and method names

Essentially, monospace typeface indicates anything that the computer is “saying,” or
that must be entered into the computer in a language that the computer “understands.”

-Xdebug -Xnoagent -Xrunjdwp:transport=dt_socket,
server=y,suspend=n,address=8000 -Djava.compiler=NONE
Stylus Studio User Guide 37

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Bold monospace typeface emphasizes text that would otherwise appear in monospace
typeface.

Monospace typeface in italics or Bold monospace typeface in italics (depending
on context) indicates variables or placeholders for values you supply or that might
vary from one case to another.

◆ Procedures are introduced this way:

Syntax Notation
This manual uses the following syntax notation conventions:

● Brackets ([]) in syntax statements indicate parameters that are optional.

● Braces ({ }) indicate that one (and only one) of the enclosed items is required. A
vertical bar (|) separates the alternative selections.

● Ellipses (...) indicate that you can choose one or more of the preceding items.

Information Alerts
This manual highlights special kinds of information by shading the information area, and
indicating the type of alert in the left margin.

Tip A Tip flag identifies information that can help you use Stylus Studio more effectively –
short-cuts, alternatives, and information about system behavior are all examples of tips.

Note A Note flag indicates information that complements the main text flow. Such information
is especially needed to understand the concept or procedure being discussed.

Important An Important flag indicates information that must be acted upon within the given context
in order for the procedure or task (or other) to be successfully completed.

Warning A Warning flag indicates information that can cause loss of data or other damage if
ignored.
38 Stylus Studio User Guide

Conventions in This Manual
Edition Alerts
Not all features are supported in all editions of Stylus Studio. Documentation that
describes features peculiar to a given edition is identified with an alert like the following:

See “Stylus Studio Editions” on page 43 for more information about the features that are
available in a given edition.

Video Alerts
Stylus Studio provides dozens of video demonstrations of editing tools and features for
XSLT, XQuery, XML Schema, relational-toXML conversion, and others. Sections in the
documentation that describe a Stylus Studio feature for which a video demonstration
exists include an alert like the following:

Clicking either the television icon or the hyperlink launches the video.

Video Descriptions

You can find descriptions of all Stylus Studio video demonstrations here:
http://www.StylusStudio.com/xml_videos.html

XML Pipelines are available only in Stylus Studio XML Enterprise Suite.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch a video on Custom XML
Conversions.
Stylus Studio User Guide 39

http://www.stylusstudio.com/videos/convert-to-xml1/convert-to-xml1.html
http://www.stylusstudio.com/videos/convert-to-xml1/convert-to-xml1.html
http://www.stylusstudio.com/videos/convert-to-xml1/convert-to-xml1.html
http://www.stylusstudio.com/xml_videos.html

Available Documentation
Table 1 lists the documentation supplied with Stylus Studio. In addition to the
documentation listed in this table, Stylus Studio comes with sample files. All
documentation is included with the Stylus Studio media and downloads.

Technical Support
Submit questions and report problems using the Stylus Studio Developer Network
(SSDN). SSDN has numerous active forums, including specialized forums for

● XQuery

● XSLT

● Code samples and utilities

● General technical questions

● Feature requests

SSDN is fully searchable, and contains current as well as historical information about
Stylus Studio and XML technologies. If you cannot find the answer to the question you
have, submit it to the forum and a Stylus Studio technician will respond to you.

When submitting a question or reporting an issue, it often helps to state the version of
Stylus Studio you are running (click Help > About Stylus Studio on the menu bar) as well
as any other information about your environment you think might be relevant (such as the
JVM version you are using, for example).

Table 1. The Stylus Studio Documentation Set

Document Description

Stylus Studio User Guide Describes how to use Stylus Studio to develop XML applications
using XML, SQL/XML, XQuery, Web Services, and XSLT.

ReadMe Describes features in the current release of Stylus Studio plus late-
breaking information and known issues. The release notes are
located in the \doc directory where you installed Stylus Studio.

Online help Stylus Studio’s online help system can be accessed from the
application by pressing F1 or by selecting Help >
Documentation from the menu bar. You can also view the help
independently of the application, by opening ide.chm in the \doc
directory where you installed Stylus Studio.
40 Stylus Studio User Guide

http://www.stylusstudio.com/SSDN/default.asp
http://www.stylusstudio.com/SSDN/default.asp

Chapter 1 Getting Started with Stylus Studio®
Stylus Studio is an integrated development environment (IDE) for XML and related
technologies. Stylus Studio allows you to design, develop, and test XML applications
using its intuitive graphical interface, textual editors, and debuggers for XML, XML
Schema, DTD, XQuery, XSLT, Web services, and Java.

Figure 1. Stylus Studio’s XML Pipeline Editor
Stylus Studio User Guide 41

Getting Started with Stylus Studio®
Stylus Studio includes modules for:

● XML

● XQuery

● XSLT

● XML Pipelines

● XML reporting

● Relational data sources

● DTD

● XML Schema

● Web services

● Java

● Converting non-XML files to XML, and vice versa

Each module has one or more editors to help you author, edit, and debug XML
applications.

This chapter provides a tour of the basic operations Stylus Studio provides with each of
its modules. It also includes information about opening files in any module, using projects
to organize files, and setting options that affect all modules.

This chapter is organized as follows:

● “Stylus Studio Editions” on page 43

● “Integrated Components” on page 44

● “Starting Stylus Studio” on page 48

● “Updating an XML Document – Getting Started” on page 50

● “Working with Stylesheets – Getting Started” on page 70

● “Using the XSLT Mapper – Getting Started” on page 82

● “Debugging Stylesheets – Getting Started” on page 90

● “Defining a DTD – Getting Started” on page 99

● “Defining an XML Schema Using the Diagram Tab – Getting Started” on page 104

● “Opening Files in Stylus Studio” on page 130

● “Working with Projects” on page 138

● “Customizing Tool Bars” on page 156

● “Specifying Stylus Studio Options” on page 158

● “Defining Keyboard Shortcuts” on page 163
42 Stylus Studio User Guide

Stylus Studio Editions
● “Using Stylus Studio from the Command Line” on page 166

● “Managing Stylus Studio Performance” on page 168

● “Configuring Java Components” on page 171

Stylus Studio Editions
Stylus Studio is offered in several editions to provide a tool that is appropriate for every
level of user, from integration architects and application developers providing enterprise-
class solutions, to students and non-professional users just starting out with XML and
related technologies.

Stylus Studio XML Enterprise Suite
Stylus Studio XML Enterprise Suite is Stylus Studio’s most comprehensive XML IDE,
offering a complete and robust set of tools for writing, testing, debugging, and deploying
XML applications. In addition to editors for XML, XML Schema, XQuery, and XSLT,
Stylus Studio XML Enterprise Suite provides the following features exclusive to this
edition of Stylus Studio:

● Java and C# for .NET code generation for deployment of XQuery and XSLT
transformations

● The ability to expose XML Schema to Java bindings

● XQuery and XSLT Profilers to help you gather performance metrics and troubleshoot
performance bottlenecks

● Custom XML Conversions, a module that allows you to easily convert non-XML
files like EDI and CSV to XML

● Web Service Call Composer to help you build and test calls to hundreds of industry-
standard Web services

● Integration with Raining Data Tiger Logic XDMS

● Support for OASIS catalogs, including dozens of catalogs bundled with Stylus Studio

Stylus Studio XML Professional Suite
Stylus Studio XML Professional Suite provides a complete set of tools for the XML
application developer, including XML Differencing for comparing multiple XML
documents and folders.

XML Differencing is also included in Stylus Studio XML Enterprise Suite.
Stylus Studio User Guide 43

Getting Started with Stylus Studio®
Stylus Studio Home Edition
Stylus Studio Home Edition is a value-priced XML IDE that provides an excellent way
to learn about and work with XML and its related technologies. Stylus Studio Home
Edition offers many of the features of Stylus Studio XML Professional Suite, allowing
you to do real work with XML, XML Schema, XSLT, DTD, and other important XML
technologies.

Edition Alerts
The Stylus Studio User Guide describes features found in all Stylus Studio editions.
Alerts, like the one shown here, are used to identify documentation describing features
found only in particular Stylus Studio editions.

More Information
For a complete description of Stylus Studio XML Enterprise Suite, Stylus Studio XML
Professional Suite, and Stylus Studio Home Edition, see the Stylus Studio Web site:
http://www.StylusStudio.com/xml_feature_comparison.html

Integrated Components
Stylus Studio XML Enterprise Suite is fully integrated with these DataDirect products:

● DataDirect XML Converters® for Java™

● DataDirect XML Converters for .NET

● DataDirect XQuery®

The XML Converters are high-performance Java and .NET components that provide bi-
directional, programmatic access to virtually any non-XML file including EDI, flat files,
and other legacy formats. DataDirect XML Converters allow developers to seamlessly
stream any non-XML data as XML to industry-leading XML processing components or
to any application. They support StAX, SAX, XmlReader, XmlWriter, DOM and I/O
streaming interfaces, and can be embedded directly for transformation purposes, or as part
of a chain of programs including XSLT and XQuery, or even inside XML pipelines.
DataDirect XML Converters maximize developer productivity and provide a fast,
scalable solution for converting between EDI and other legacy formats and XML.

The XML Editor Grid tab is available only in Stylus Studio XML Enterprise Suite
and Stylus Studio XML Professional Suite.
44 Stylus Studio User Guide

http://www.stylusstudio.com/xml_feature_comparison.html

Integrated Components
DataDirect XQuery is an XQuery processor that enables developers to access and query
XML, relational data, SOAP messages, EDI, legacy, or a combination of data sources,
and, in addition, provides full update support for relational data. DataDirect XQuery
supports the XQuery for Java (XQJ) API, and is easily embedded into any Java program
– it does not require any other product or application server, and has no server of its own.

Evaluation copies of these DataDirect products are installed in the \Components directory
where you installed Stylus Studio. These copies provide full development libraries,
sample code, and user documentation.

How Stylus Studio Uses Integrated Components
Stylus Studio uses the DataDirect XQuery and XML Converters engines to process
XQuery and XML conversions. These processing engines run under the covers
throughout Stylus Studio – in the XQuery module, EDI to XML Conversions module,
XML Pipelines module, and the Custom XML Conversions module, to name a few.

You can also use the APIs for these components to build and test applications that run
outside Stylus Studio. You might, for example, want to build an XQuery application using
Java or C# code for .NET generated by Stylus Studio for the XQuery you develop using
the Stylus Studio XQuery module.

Managing Component Licenses
Each DataDirect component is installed with an evaluation license that allows you to
develop and test XQuery and XML conversion applications. Applications that you deploy
outside Stylus Studio might require a license for DataDirect XML Converters,
DataDirector XQuery, or both, regardless of whether the application is built using a
DataDirect API or simply takes advantage of the XQuery or XML Converters processing
engines.

The Stylus Studio License Manager

The Stylus Studio License Manager allows you to perform the following tasks for
DataDirect XQuery and XML Converters components. You can

● Extend the evaluation period

● Add and remove license keys
Stylus Studio User Guide 45

Getting Started with Stylus Studio®
The License Manager is on the Components page of the Options dialog box (click Tools
> Options on the Stylus Studio menu). As seen in the following illustration, licenses for
each component are managed separately:

The component name Folder field displays the location of the DataDirect component
installation whose license you wish to manage. You can use the License Manager to
manage license keys for

● The copies of the DataDirect components that are installed with Stylus Studio. This
is the default.

● Standalone installations of the DataDirect components. If you acquired a separate
copy of a DataDirect component, you can specify its URI in the component name
Folder field.

How to Extend an Evaluation

◆ To extend an evaluation:

1. Select the component whose evaluation you wish to extend from the Components
tree in the Options dialog box.

2. If necessary, change the URI in the component name Folder field to point to the folder
where the component whose license you wish to manage is installed.

Figure 2. Stylus Studio License Manager
46 Stylus Studio User Guide

Integrated Components
3. Click the Extend Evaluation button.

An entry field appears in the License Manager list box.

4. Replace the instructional text with the IPE key.

5. Press Enter or click the OK button.

The license is added to your XML Converters installation.

6. Click OK to close the Options dialog box.

How to Add a License

◆ To add a license:

1. Select the component for which you wish to add a license from the Components tree
in the Options dialog box.

2. If necessary, change the URI in the component name Folder field to point to the folder
where the component whose license you wish to add is installed.

3. Click the Add button.

An entry field appears in the License Manager list box.

4. Replace the instructional text with the IPE key.

5. Press Enter or click the OK button.

The license for your XML Converters installation is added to the license manager.

6. Click OK to close the Options dialog box.

How to Remove a License

◆ To remove a license:

1. Select the component whose license you wish to remove from the Components tree
in the Options dialog box.

2. If necessary, change the URI in the component name Folder field to point to the folder
where the component whose license you wish to remove is installed.

3. Select the license you want to remove from the License Manager list box.

4. Click the Remove button.
Stylus Studio User Guide 47

Getting Started with Stylus Studio®
5. Press Enter or click the OK button.

The license is removed from the license manager.

6. Click OK to close the Options dialog box.

Starting Stylus Studio
Throughout this chapter, you perform exercises that require you to first start Stylus
Studio. For example, if you installed Stylus Studio XML Enterprise Suite, you would

◆ Select Start > Programs > Stylus Studio XML Enterprise Suite > Stylus Studio.

The path shown here assumes that you accepted the defaults when you installed Stylus
Studio. If you did not, you must alter your selection path accordingly.

You can also start Stylus Studio by double-clicking the desktop icon, which is added to
your desktop by default when you install Stylus Studio:

Figure 3. Example of a Stylus Studio Desktop Icon
48 Stylus Studio User Guide

Starting Stylus Studio
On startup, Stylus Studio displays the Tip of the Day dialog box.

Getting Updates
By default, Stylus Studio checks the Stylus Studio Web site for newer versions each time
you start the application. You can review and modify this and other application settings
by selecting Tools > Options from the menu bar and selecting the Application Settings
page.

If you want, you can perform this check manually by selecting Help > Check for latest
version from the Stylus Studio menu.

Getting Help
As you use Stylus Studio, you can press F1 at any time to obtain context-sensitive help.
If you want, you can open the online help manually (and independent of the Stylus Studio

Figure 4. Stylus Studio on Startup (XML Enterprise Suite Shown)
Stylus Studio User Guide 49

Getting Started with Stylus Studio®
application) by selecting Start > Programs > Stylus Studio XML Edition Name> Stylus
Studio Documentation.

Updating an XML Document – Getting Started
Each of the following topics contains instructions for editing a sample XML document.
You should perform the steps in each topic before you move on to the next topic. After
the first topic, some steps depend on actions you performed in a previous topic. This
introduction to updating XML documents in Stylus Studio is organized as follows:

● “Opening a Sample XML Document” on page 50

● “Updating the Text of a Sample Document” on page 52

● “Updating the Schema of a Sample Document” on page 58

● “Updating the Tree Representation of a Sample Document” on page 64

● “Updating a Sample Document Using the Grid Tab” on page 68

Opening a Sample XML Document

◆ To open the your-quotes.xml sample XML document in Stylus Studio:

1. In the File Explorer window, navigate to the examples\quotes directory in your Stylus
Studio installation directory.

2. Double-click your-quotes.xml.

Note The online documentation is not installed with Stylus Studio. The first time you access
the online documentation, you are prompted to download it from the Stylus Studio web
site. By default, the online documentation is installed in the \doc directory where you
installed Stylus Studio.

Tip The \examples directory is a sibling of \bin.
50 Stylus Studio User Guide

Updating an XML Document – Getting Started
Stylus Studio displays the your-quotes.xml document in the XML editor. The initial
view of the document is the Text view, as you can see by the tab at the bottom of the
window.

Alternatives

The File Explorer window is the primary way to open and access files in Stylus Studio,
but you can also open files using:

● The Open dialog box, which is displayed when you select File > Open from the menu
bar or click the Open button on the tool bar, for example.

● The Project window, which is displayed on the left of the Stylus Studio desktop. The
Project window shows only those files associated with Stylus Studio projects.

Figure 5. Editors Use Color-Keyed Text

Tip Stylus Studio uses different colors to distinguish markup, tag names, and data in all of its
text editors. Orange, for example, identifies elements that are not associated with a
schema. You can change the colors for editors individually. Select Tools > Options from
the menu bar, then select Editor Format. You select the editor whose settings you want
to modify using the Editor drop-down list.
Stylus Studio User Guide 51

Getting Started with Stylus Studio®
For more information

See “Opening Files in Stylus Studio” on page 130 to learn more about the File Explorer
window.

See “Working with Projects” on page 138 to learn more about projects in Stylus Studio.

Updating the Text of a Sample Document
When you update an XML document in the Text view of the XML editor, you can use the
usual editing tools, as well as tools tailored for handling XML.

Each of the following topics contains instructions for editing a sample XML document.
You should perform the steps in each topic before you move on to the next topic. After
the first topic, some steps depend on actions you performed in a previous topic.

For more information on editing tools and features, see Using the Text Editor on
page 181.

This section provides instructions for

● “Displaying Line Numbers” on page 52

● “Adding Elements in the Text View of a Sample Document” on page 53

● “Copying and Pasting in the Text View of a Sample Document” on page 54

● “Undoing Operations in the Text View of a Sample Document” on page 54

● “Inserting Indents in the Text View of a Sample Document” on page 55

● “Querying in the Text View of a Sample Document” on page 56

● “Deleting and Saving Queries” on page 58

Displaying Line Numbers

Stylus Studio lets you optionally display line numbers in most of its editors. Line numbers
provide simple, unobtrusive points of reference that can make working large or complex
documents easier. Line numbers are off by default; turn them on now.

◆ To display line numbers:

1. Select Tools > Options from the Stylus Studio menu.

Stylus Studio displays the Options dialog box.
52 Stylus Studio User Guide

Updating an XML Document – Getting Started
2. Click Application Settings > Editor General.

3. Select XML Editor from the Editor drop-down list.

4. Click Show line numbers.

5. Click OK.

Adding Elements in the Text View of a Sample Document

◆ To add elements in the Text view of your-quotes.xml:

1. In the XML editor window, click in the first line just after <ticker>.

2. Press Enter and type <quote><company>data</.

Sense:X™ Auto-Completion

As soon as you type the closing forward slash, Stylus Studio displays company> because
it is the only element that is appropriate to close. Automatic closing of open tags is part
of Stylus Studio’s Sense:X intelligent editing. You can change this and other Sense:X
options on the Editor General page of the Options dialog box – for example, you can have
Stylus Studio display a list of appropriate elements, even if that list includes one only
item.

Figure 6. Sense:X and Other Editor Features are in the Options Dialog Box
Stylus Studio User Guide 53

Getting Started with Stylus Studio®
Stylus Studio’s Sense:X provides even greater functionality if the document you are
editing has either a DTD or XML Schema associated with it. See “Sense:X Speeds
Editing” on page 183 for more information.

Copying and Pasting in the Text View of a Sample Document

This topic is part of a sequence. If your-quotes.xml is not open, see “Opening a Sample
XML Document” on page 50. The sequence starts with “Adding Elements in the Text
View of a Sample Document” on page 53.

◆ To copy and paste elements in the Text view of your-quotes.xml:

1. Use the mouse to select the text for one quote element and its contents.

2. In the menu bar, select Edit > Copy.

Alternatives: Press Ctrl+C or click Copy.

3. Scroll down in the XML editor and click just before </ticker>.

4. In the menu bar, select Edit > Paste.

Stylus Studio copies the quote element here, but the indentations are not quite right.
Instructions for fixing this are in the topic Inserting Indents in the Text View of a
Sample Document on page 55.

Alternatives: Press Ctrl+V or click Paste. .

Undoing Operations in the Text View of a Sample Document

This topic is part of a sequence. If your-quotes.xml is not open, see “Opening a Sample
XML Document” on page 50. The sequence starts with “Adding Elements in the Text
View of a Sample Document” on page 53.

◆ To undo operations performed on the your-quotes.xml document:

1. In the menu bar, select Edit > Undo to remove the text you just pasted.

Alternative: Press Ctrl+Z.

2. In the menu bar, select Edit > Redo to replace the text you just removed.

Alternative: Press Ctrl+Y.

3. In the XML editor window, click Indent XML Tags , which is the left most button.
54 Stylus Studio User Guide

Updating an XML Document – Getting Started
Stylus Studio displays a message that alerts you that there is an open tag for a quote
element but no close tag. The messages indicates the line and column in which the
error was found.

4. In the alert box, click OK. Because the document is not well-formed XML, Stylus
Studio does not insert indents in the document. The next topic, Inserting Indents in
the Text View of a Sample Document on page 55, shows how to fix the document so
that it is well-formed. “Starting Stylus Studio” on page 48

5. In the menu bar, click Edit.

The Undo and Redo operations are no longer active. After you click the Indent XML
Tags button, you cannot automatically undo or redo recent changes. It does not matter
whether or not Stylus Studio actually inserts the indents. After you make another
change, the Undo operation becomes active again.

Inserting Indents in the Text View of a Sample Document

This topic is part of a sequence. If your-quotes.xml is not open, see “Opening a Sample
XML Document” on page 50. The sequence starts with “Adding Elements in the Text
View of a Sample Document” on page 53.

◆ To insert indents in your-quotes.xml:

1. In the XML editor tool bar, click Indent XML Tags again.

Stylus Studio displays the message that indicates that a close tag is missing. It
specifies the element name, and the line and column numbers that identify where the
error was found.

2. In the alert box, click OK.

Stylus Studio moves the cursor so that it appears immediately after the quote tag that
has no closing tag.

Tip The current cursor location within the document is displayed as line/column
coordinates in the Stylus Studio status bar at the bottom of the Stylus Studio window.

Figure 7. Document Position DIsplayed in Status Bar
Stylus Studio User Guide 55

Getting Started with Stylus Studio®
3. In line 2, click after the </company> tag and type </. By default, Stylus Studio displays
quote> because it is the only element that is appropriate to close.

4. In the XML Editor tool bar, click Indent XML Tags .

This time, Stylus Studio correctly indents the XML text.

Indent XML Tags changes your XML document by inserting white space. If this is
undesirable, and you want to check for well-formedness, click the Tree tab at the bottom
of the XML Editor window. If the document is well-formed, Stylus Studio displays the
tree representation. If the document is not well formed, Stylus Studio displays a message
that indicates the reason the document is not well formed and the location of the error or
omission.

Querying in the Text View of a Sample Document

You use the XPath Query Editor to query XML documents using XPath. Stylus Studio
supports both XPath 2.0 and 1.0. The default is XPath 2.0.

The XPath Query Editor is a dockable window that appears to the right of the XML
document window. If you do not see it, click the Show XPath Query Editor button ().

Figure 8. XPath Query Editor
56 Stylus Studio User Guide

Updating an XML Document – Getting Started
This topic is part of a sequence. If your-quotes.xml is not open, see “Opening a Sample
XML Document” on page 50. The sequence starts with “Adding Elements in the Text
View of a Sample Document” on page 53.

◆ To query your-quotes.xml:

1. Click the Query 1 tab in the XPath Query Editor.

2. Type /ticker/quote and click the Execute Query button ().

Stylus Studio runs the /ticker/quote query on your-quotes.xml, and displays the
results at the bottom of the XPath Query Editor window.

3. In the Query Output window, expand the second quote element to view its contents.

4. Click the symbol element.

In the Text view, Stylus Studio uses its back-mapping feature to move the cursor to
the source element for the symbol result element you clicked.

5. In the Text view, click the down arrow to the right of the query field.

6. In the XPath Query Editor window, click the New Query button ().

Stylus Studio adds a new tab for each query you define.

Figure 9. Backmapping from XPath Query Result to XML Document
Stylus Studio User Guide 57

Getting Started with Stylus Studio®
7. Type //company and click the Execute Query button ().

Stylus Studio runs the new query and displays the results.

8. Close the XPath Query Editor window by clicking the x in that window’s upper right
corner.

Deleting and Saving Queries

You cannot explicitly delete a query. In addition, queries you define are not saved with an
XML document unless that document belongs to a Stylus Studio project – if you close the
XML document and then reopen it, the queries you defined in the previous editing session
are no longer there.

For more information

See “Using the XPath Query Editor” on page 732 to learn more about the XPath Query
Editor.

See “Working with Projects” on page 138 to learn more about projects and their role in
Stylus Studio.

Updating the Schema of a Sample Document
This section provides instructions for updating the internal DTD for your-quotes.xml.

When an XML document has an external DTD, you can view the external DTD in the
Schema tab of the XML Editor, but you cannot edit it. To be able to edit an external DTD,
you must open it in the DTD editor. When an XML document has an internal DTD, you
can view and edit it in both the Schema tab and the Text tab of the XML editor.

You should have already performed the steps in “Updating the Text of a Sample
Document” on page 52. Each of the following topics contains instructions for editing the
sample XML document. You should perform the steps in each topic before you move on
to the next topic. After the first topic, some steps depend on actions you performed in a
previous topic.

This section includes the following topics:

● “Creating a Sample Schema” on page 59

● “Defining a Sample Element” on page 61

● “Adding an Element Reference to a Sample Schema” on page 62
58 Stylus Studio User Guide

Updating an XML Document – Getting Started
● “Defining an Entity in a Sample Schema” on page 63

● “Exploring Other Features in a Sample Schema” on page 63

For more information, see “Defining a DTD – Getting Started” on page 99.

Creating a Sample Schema

◆ To create the schema of a sample XML document:

1. If it is not already open, open your-quotes.xml. See “Opening a Sample XML
Document” on page 50 if you need help with this step.

2. At the bottom of the XML editor window, click the Schema tab.

Stylus Studio displays the Schema tab, and opens the Properties window. The
Schema tab displays a DTD tree, which is currently empty.

3. To create a schema for your-quotes.xml, select XML > Create Schema from XML
Content from the Stylus Studio menu.

Stylus Studio displays the Create Schema or DTD dialog box. By default, Stylus
Studio generates an internal DTD and inserts it in a DOCTYPE element at the beginning

Figure 10. Default Schema Tab for Document With no Schema
Stylus Studio User Guide 59

Getting Started with Stylus Studio®
of the document. You can also use this dialog box to generate an external XML
Schema or DTD.

4. Click Yes to instruct Stylus Studio to create a DTD based on the XML document
content.

Stylus Studio displays a tree representation of the new, internal DTD. It also displays
the Properties window.

Figure 11. Create Schema or DTD Based on XML Content

Figure 12. Result of Generating a Schema Based on XML Content
60 Stylus Studio User Guide

Updating an XML Document – Getting Started
Defining a Sample Element

This topic is part of a sequence. If your-quotes.xml is not open, see “Opening a Sample
XML Document” on page 50. The sequence starts with “Creating a Sample Schema” on
page 59.

◆ To define a new element in the Schema view of the sample schema:

1. Click the company element in the Schema tab.

This selects the company element definition and displays the properties for the company
element in the Properties window.

The Content Model property indicates the allowable contents for a company element.
In this example, it is Mixed, which means that a company element can contain specified
elements (as opposed to all elements defined in this DTD), attributes, and raw data.

2. Click the DTD node.

In the left tool bar, Stylus Studio activates only those buttons that are applicable to the
DTD – you can add elements, entities, comments, and so on. But you cannot add an
attribute definition, a reference to an element, or a #PCDATA node, for example.

Figure 13. Properties Window Displays Element Properties

Tip Windows like the Properties and Query Output windows are docking windows – you
can change their location within the Stylus Studio window, or separate them from the
Stylus Studio entirely, by dragging them to the desired location.
Stylus Studio User Guide 61

Getting Started with Stylus Studio®
3. In the left tool bar, click New Element Definition . Stylus Studio displays an entry
field at the bottom of the tree.

4. Type location and press Enter. Stylus Studio displays the properties for the new
location element in the Properties window.

5. In the left tool bar, click New Modifier . Stylus Studio displays a drop-down menu
of options that specify the rules for the occurrence of the children of the new element.

6. Double-click Zero or More (or click once to select it and press Enter).

7. In the left tool bar, click Add #PCDATA . Your definition of the location element
specifies that it can contain only raw data.

Adding an Element Reference to a Sample Schema

This topic is part of a sequence. If your-quotes.xml is not open, see “Opening a Sample
XML Document” on page 50. The sequence starts with “Creating a Sample Schema” on
page 59.

◆ To update the definition of the quote element to include an optional location
element:

1. In the Schema tab, expand the quote element.

2. Click its Sequence modifier.

3. In the left tool bar, click New Modifier .

Figure 14. Entry Field for a New DTD Element

Figure 15. Drop-Down List for Modifier Values
62 Stylus Studio User Guide

Updating an XML Document – Getting Started
Stylus Studio displays an entry field for the new modifier at the end of the list of
modifiers that already apply to the Sequence modifier. The entry field consists of a
drop-down list of available values for the new modifier.

4. In the drop-down list, double-click Optional.

5. In the left tool bar, click New Reference to Element . Stylus Studio displays an
entry field after the new Optional modifier.

6. Type location and press Enter.

7. To move the location element to be earlier in the sequence, click its Optional
modifier.

8. In the XML editor top tool bar, click Move Up repeatedly until the location
element is where you want it to be.

Defining an Entity in a Sample Schema

This topic is part of a sequence. If your-quotes.xml is not open, see “Opening a Sample
XML Document” on page 50. The sequence starts with “Creating a Sample Schema” on
page 59.

◆ To define an entity in the internal DTD for your-quotes.xml:

1. Click the DTD node.

2. In the left tool bar, click New Entity .

At the end of the schema, Stylus Studio displays Ent and a entry field for the name of
the new entity.

3. Type TCBCC for the name of the entity and press Enter.

In the Properties window, Stylus Studio displays the properties for the new entity.

4. In the Properties window, double-click the Value field.

5. Type The Country’s Best Computer Company and press Enter.

Exploring Other Features in a Sample Schema

This topic is part of a sequence. If your-quotes.xml is not open, see “Opening a Sample
XML Document” on page 50. The sequence starts with “Creating a Sample Schema” on
page 59.
Stylus Studio User Guide 63

Getting Started with Stylus Studio®
◆ To toggle white space or validate your document:

1. Click Toggle Display of White Space to display nodes that represent white space
in the DTD. Click the button again to hide the white space nodes.

2. Click Validate Document .

Stylus Studio displays a message in the Output window that indicates that the
document is valid.

Updating the Tree Representation of a Sample Document
This section provides instructions for updating the DOM tree representation of the your-
quotes.xml document.

You should have already performed the steps in “Updating the Schema of a Sample
Document” on page 58. Each of the following topics contains instructions for editing the
sample XML document. You should perform the steps in each topic before you move on
to the next topic. After the first topic, some steps depend on actions you performed in a
previous topic.

This section includes the following topics:

● “Adding an Element to a Sample Document Tree” on page 65

● “Changing an Element’s Data in a Sample Document Tree” on page 65

● “Adding Attributes and Other Node Types to a Sample Document Tree” on page 66

● “Adding an Entity Reference to a Sample Document Tree” on page 67

Figure 16. Output Window After Schema Validation
64 Stylus Studio User Guide

Updating an XML Document – Getting Started
Adding an Element to a Sample Document Tree

◆ To add an element to the tree representation of your-quotes.xml:

1. If it is not already open, open your-quotes.xml.

See “Opening a Sample XML Document” on page 50 if you need help with this step.

2. At the bottom of the XML Editor window, click the Tree tab.

Stylus Studio closes the Properties window.

3. Click the plus sign next to the ticker element to expose the children of the ticker
element.

4. Click New Element in the left tool bar to add a quote element to the document.

Stylus Studio displays a drop-down menu that lists the elements you can add at that
position in the tree.

5. Click quote and press Enter.

Stylus Studio displays a field next to the new quote element. The DTD allows a quote
element to contain data.

6. Click outside the field to close it without entering data.

Changing an Element’s Data in a Sample Document Tree

This topic is part of a sequence. If your-quotes.xml is not open, see “Opening a Sample
XML Document” on page 50. The sequence starts with “Adding an Element to a Sample
Document Tree” on page 65.

◆ In the Tree tab of your-quotes.xml, to change the data that an element contains:

1. Expand the third quote element.

2. Click the symbol element.

3. In the XML Editor top tool bar, click Change Value .

Stylus Studio activates the field to the right of the symbol element and selects the
current value.

4. In the active field, type XSOL and press Enter.

5. To the right of the exchange element, right-click Nasdaq NMS.

Stylus Studio displays a shortcut menu.

Tip You can close the Output window if it is still open from the previous exercise.
Stylus Studio User Guide 65

Getting Started with Stylus Studio®
6. Click Change Value. Stylus Studio activates the value field for the exchange element.

7. In the active field, type NYSE and press Enter.

Adding Attributes and Other Node Types to a Sample Document Tree

This topic is part of a sequence. If your-quotes.xml is not open, see “Opening a Sample
XML Document” on page 50. The sequence starts with “Adding an Element to a Sample
Document Tree” on page 65.

◆ To add attributes and other types of nodes to your-quotes.xml:

1. Click the last quote element in the tree.

2. Click New Attribute .

Stylus Studio displays an attribute name field immediately below the selected quote
element.

3. In the attribute name field, type agent and press Enter.

Stylus Studio displays a default value for the attribute, Text, in an entry field to the
right of the new attribute.

4. In the attribute value field, type Star Brokers and press Enter.

Stylus Studio displays an entry field for a new attribute name, allowing you to easily
add a number of attributes, one after the other.

5. Click outside the attribute name field to close it.

6. In the XML editor top tool bar, click Validate Document .

Stylus Studio displays a message in the Output window that indicates that the
document is not valid. The DTD does not specify the agent attribute for the quote
element. Stylus Studio allows you to modify your document in invalid ways, which
you might want to do during application design. The validation feature informs you
that your document is invalid when you try to validate the document.

Figure 17. Adding a New Element to a Document Tree
66 Stylus Studio User Guide

Updating an XML Document – Getting Started
7. Click the agent attribute.

8. In the XML Editor top tool bar, click Delete Node .

9. Click Validate Document again.

Stylus Studio displays a message in the Output window that indicates that the
document is now valid.

Adding an Entity Reference to a Sample Document Tree

This topic is part of a sequence. If your-quotes.xml is not open, see “Opening a Sample
XML Document” on page 50. The sequence starts with “Adding an Element to a Sample
Document Tree” on page 65.

◆ To add an entity reference to your-quotes.xml:

1. If it is not already selected, click the quote element you defined in the previous topic.

2. In the left tool bar, click New Element to add subelements to the new quote
element.

Stylus Studio displays a drop-down menu that lists a number of elements that you can
insert at this point. Scroll the list to view them all.

3. Click company, which is first in the list, and press Enter.

Stylus Studio displays a field next to the element name. You can enter data here, such
as the name of the company. But rather than entering data, suppose you want to refer
to an entity. To refer to an entity:

4. Click outside the field or press the Esc key.

5. Click New Entity Reference , which is the last button in the left tool bar.

Stylus Studio displays a drop-down menu that lists the defined entities.

If the New Entity Reference button is not active, click Toggle Display of Entity
References in the XML editor top tool bar. This button allows you to control
whether you can refer to entities.

6. Double-click TCBCC.

Stylus Studio inserts the text The Country’s Best Computer Company as the value for
the company element.
Stylus Studio User Guide 67

Getting Started with Stylus Studio®
7. Click the Text tab at the bottom of the XML editor window.

Stylus Studio displays the &TBCC; entity reference in the new company element.

8. Click the Tree tab.

Updating a Sample Document Using the Grid Tab

This section provides instructions for updating the your-quotes.xml document using the
Grid tab of the XML Editor. The Grid tab is useful for displaying structured data. It is a
convenient way to view a document that contains multiple instances of the same type of
element, for example.

A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

◆ To update an XML document using the Grid tab:

1. If it is not already open, open your-quotes.xml.

See “Opening a Sample XML Document” on page 50 if you need help with this step.

2. At the bottom of the XML Editor window, click the Grid tab.

Stylus Studio displays a table that contains the XML data.

The XML Editor Grid tab is available only in Stylus Studio XML Enterprise Suite
and Stylus Studio XML Professional Suite.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the XML Grid Editor video.

Figure 18. Grid Tab
68 Stylus Studio User Guide

http://www.stylusstudio.com/videos/XMLGrid1/XMLGrid1.html
http://www.stylusstudio.com/videos/XMLGrid1/XMLGrid1.html
http://www.stylusstudio.com/xml_videos.html

Updating an XML Document – Getting Started
The left most column, with the Tag Name heading, contains the children of the
<ticker> element. The remaining columns contain the grandchildren of the <ticker>
element. The heading of each column identifies the element name – company,
symbol, and so on.

3. Select the last row by clicking to the left of the last <quote> element.

The row is highlighted in blue.

4. Click the Insert row after () button.

A new instance of the <quote> element is added to the document. The cursor is placed
in the <company> element cell.

5. Type XML Designs and press Enter.

Stylus Studio creates the value for the <company> subelement.

6. Press Tab (or use the right arrow key) to move the cursor to the next cell in the row.

7. Repeat Step 5 and Step 6 to create values for the <symbol> and <exchange>
subelements.

8. If you want, you can continue to add the data contained in a quote element.

Tip You can resize columns by dragging the handle on the column heading’s right side.
You can change the element order in the document by dragging the handle on the
column heading’s left side. Stylus Studio swaps positions with the column on which
you come to rest.

Figure 19. Grid with a New Row
Stylus Studio User Guide 69

Getting Started with Stylus Studio®
Modifying Values
It is easy to change and delete values in grid fields:

● To change the value of any field, double-click the field and type the new data. Press
Enter to save the change.

● To delete the value of a field, double-click the field, select the text you want to delete,
and press the Delete key.

Moving Around the Grid
You can move around the grid using the mouse and the keyboard.

Using the mouse, click where you want to place the cursor.

Using the keyboard:

● Use the Tab key to advance the focus to the next cell; use Shift + Tab to move the
focus to the previous cell

● Use the arrow keys to move the focus in the direction of the arrow you choose

Working with Stylesheets – Getting Started
This section helps you get started working with XSLT stylesheets. To focus on stylesheets
that map XML to XML, see “Using the XSLT Mapper – Getting Started” on page 82. To
learn about using XML Publisher to generate XSLT for dynamic HTML reports, see
Chapter 15, “Publishing XML Data.”

Except for the first topic, each of the following topics contains instructions for working
with a sample XSLT stylesheet. You should perform the steps in each topic before you
move on to the next topic. After the first topic, some steps depend on actions you
performed in a previous topic.

This introduction to working with stylesheets in Stylus Studio is organized as follows:

● “Opening a Sample Stylesheet” on page 71

● “XSLT Stylesheet Editor Quick Tour” on page 72

● “XSLT Scenarios” on page 76

To get started, you’ll need to start Stylus Studio if you haven’t already. See “Starting
Stylus Studio” on page 48 if you need help with this step.
70 Stylus Studio User Guide

Working with Stylesheets – Getting Started
Opening a Sample Stylesheet

◆ To open the your-quotes.xsl sample XSLT stylesheet in Stylus Studio:

1. In the File Explorer or Open dialog box, navigate to the examples\quotes directory in
your Stylus Studio installation directory.

Alternative: If the Stylus Studio examples project is open, you can access this file from
the Project window. To open the examples project, open examples.prj in the Stylus
Studio examples directory.

2. Double-click your-quotes.xsl. Stylus Studio displays the your-quotes.xsl document
in the XSLT Source tab of the XSLT editor.

As with the XML Editor, Stylus Studio uses different colors to distinguish markup,
tag names, and data in the XSLT Editor.

Figure 20. Stylus Studio’s XSLT Editor
Stylus Studio User Guide 71

Getting Started with Stylus Studio®
XSLT Stylesheet Editor Quick Tour
When you use the Stylus Studio XSLT stylesheet editor, you work with XSLT
stylesheets, XML source documents, and result documents. This quick tour is organized
to introduce you to some of the main features for working with XSLT in Stylus Studio:

● “Parts of the XSLT Editor” on page 72

● “Exploring the XSLT Source Tab” on page 73

● “Exploring the Params/Other Tab” on page 75

Parts of the XSLT Editor

The XSLT Editor consists of four tabs that allow you to work with XSLT in different
ways, based on your preferences and the functionality that you desire.

● XSLT Source. Use the XSLT Source tab when you want to directly edit or view the
XSLT source code that comprises your stylesheet. The XSLT Source tab can also be
a good way to learn more about XSLT.

● Mapper. The Mapper tab allows you to create XSLT by graphically mapping source
document nodes to nodes in a target document. Stylus Studio interprets the mappings
to generate XSLT that will yield a document conforming to the document described
in the Set Target Document pane.

● Params/Other. You use the Params/Other tab to specify the encoding Stylus Studio
uses to store the stylesheet, the stylesheet’s output method, and the encoding Stylus
Studio uses for the document that results from applying this stylesheet. You can also
use this tab to view default values for parameters used by your stylesheet.

Tip XSLT source is also visible from a pane within the Mapper tab.

Note Using the Mapper tab is discussed in detail in “Using the XSLT Mapper – Getting
Started” on page 82.
72 Stylus Studio User Guide

Working with Stylesheets – Getting Started
Exploring the XSLT Source Tab

This topic is part of a sequence. If your-quotes.xsl is not open, see “Opening a Sample
Stylesheet” on page 71.

◆ To work with the XSLT Source tab:

1. In the stylesheet text, click anywhere below the third xsl:template instruction (line
11).

In the status bar just below the XSLT Editor tool bar, Stylus Studio displays match: /.
This indicates that the location you clicked is inside a template that matches the root
node.

2. Click in the xsl:stylesheet instruction (line 5).

Now the status bar is blank. This instruction is not part of a template.

3. In the XSLT Editor tool bar, click Add a new template .

Stylus Studio inserts the following after the last template already specified in the
stylesheet.
<xsl:template match="NewTemplate">
</xsl:template>

Figure 21. Current Template Identity Is Displayed at the Top of the Editor
Stylus Studio User Guide 73

Getting Started with Stylus Studio®
To define a new template, replace NewTemplate with the match pattern you want, and
add contents to the new template as needed.

4. In the XSLT Editor tool bar, click Template Mode , which is the right most button.

Stylus Studio displays only the new template.

You can edit the stylesheet in either template mode or in full source mode. In template
mode, Stylus Studio displays one template at a time. In full source mode, Stylus
Studio displays the whole stylesheet.

5. In the upper right corner of the editing pane, click the down arrow.

Stylus Studio displays a list of the templates in the stylesheet with their match
patterns.

Tip You can also create a new template by double-clicking a node on the schema tree.
Templates that match nodes in the XSLT document are displayed with a check in the
schema tree, as shown here.

Yellow indicates that the text cursor in the XSLT source is within that template.

Figure 22. Use Template Mode to Focus on a Single Template

Tip In large or complex stylesheets, use the XSLT Editor’s status bar to identify the
current template.

Figure 23. You Can Show Individual Templates in a Stylesheet
74 Stylus Studio User Guide

Working with Stylesheets – Getting Started
6. Click match: *|/. This displays the template that matches every element and the root
node.

Every stylesheet that Stylus Studio creates includes two built-in templates. One built-
in template matches every element and the root node. The other built-in template
matches all text and attribute nodes. See “Using Stylus Studio Default Templates” on
page 476.

To delete a template, click the match pattern for the template you want to delete and
then click Delete template in the XSLT Editor tool bar. You must be in template
mode to delete a template.

7. Click Full Source Mode .

Stylus Studio displays the complete stylesheet. The cursor is at the beginning of the
template that was being displayed in template mode.

Exploring the Params/Other Tab

◆ Click the Params/Other tab:

Drop-down menus let you specify the encoding format used to store the stylesheet in
Stylus Studio, as well as method and encoding output attributes. A simple grid displays
the name, source URL, and default value of any global parameters used by the active
stylesheet, as well as by any imported ones.

Figure 24. Specify XSLT Parameters Here or in XSLT Source
Stylus Studio User Guide 75

Getting Started with Stylus Studio®
All information that you can specify in the Params/Other tab can also be specified in the
XSLT source. For example, you can specify the XSLT encoding in the processing
instruction at the beginning of the stylesheet; you can specify the output method and
encoding with the xsl:output instruction. Stylus Studio automatically updates the XSLT
source with any changes you make in the Params/Other tab, and vice versa.

XSLT Scenarios
This topic is part of a sequence. If your-quotes.xsl is not open, see “Opening a Sample
Stylesheet” on page 71. The sequence starts with “Exploring the XSLT Source Tab” on
page 73.

To apply a stylesheet to an XML document in Stylus Studio, you use a scenario. A
scenario is a group of customizable settings that allows you to experiment with different
source XML documents (that is, the XML document to which you will apply the XSLT),
processors, parameter values, post-processors, and profiling settings. You can also use
scenarios to perform validation on the XML document that results from the XSLT
processing. (Validation is always performed before any post-processing you specify.)

You can define multiple scenarios using different settings to see how each affects
document processing. Stylus Studio also supports scenarios for Web service calls,
XQuery, and XML pipelines.

Figure 25. Scenarios Let You Easily Test Stylesheets and XML Source
76 Stylus Studio User Guide

Working with Stylesheets – Getting Started
An XSLT scenario is defined by a single stylesheet-XML document pair. You can
associate any number of scenarios with a stylesheet, though only one scenario can be in
effect at the time the XSLT is processed. Similarly, you can associate any number of
scenarios with an XML source document.

A scenario has already been created for the your-quotes.xsl stylesheet, using the your-
quotes.xml as the source XML document. Run the scenario now and look at the output
created by the XSLT defined in your-quotes.xsl.

Tip Stylus Studio lets you work with several XSLT processors, including Saxon, MSXML
and .NET.
Stylus Studio User Guide 77

Getting Started with Stylus Studio®
◆ To run a scenario, click Preview Result .

Stylus Studio processes the source XML document using the XSLT stylesheet you specify
and displays the results in the Preview window.

By default, results are displayed using a Web browser. If you choose, you can display
results in tree or text format, by clicking Preview in Tree and Preview Text in the
Preview window tool bar.

Use the scroll bar to review the HTML in the Preview window. You can see that the values
come from the XML document your-quotes.xml.

Figure 26. XSLT Processing Results are Shown in the Preview Window

Tip If it is not already open, you can open the source XML document specified in a scenario
by clicking Open XML From Scenario in the XSLT Editor tool bar.
78 Stylus Studio User Guide

Working with Stylesheets – Getting Started
Working with Scenarios

To define additional scenarios, click the down arrow next to the scenario field in the XSLT
Editor tool bar, and click Create Scenario. After you have more than one scenario, click
the same down arrow to select the scenario you want to use to preview a result.

To change the properties of a scenario, or to delete a scenario, select the scenario you want
to change or delete, and then click Browse to the right of the scenario name field.
Stylus Studio displays the Scenario Properties dialog box.

About Preview

When you preview a result, Stylus Studio automatically saves the changes you have made
to the document. If you want to revert to the document’s previous state, you can use the
undo function (Edit > Undo).

Working with a Sample Result Document

This topic is part of a sequence. If your-quotes.xsl is not open, see “Opening a Sample
Stylesheet” on page 71. The sequence starts with “Exploring the XSLT Source Tab” on
page 73.

◆ To work with a sample result document, follow these steps:

1. In the Preview window, click anywhere in the display.
Stylus Studio User Guide 79

Getting Started with Stylus Studio®
Using its back-mapping functionality, Stylus Studio displays the template in the
XSLT Editor’s status bar and flags the line that generated the line you clicked with a
blue pointer.

Figure 27. Back-mapping Shows which XSLT Generated a Result
80 Stylus Studio User Guide

Working with Stylesheets – Getting Started
2. In the left tool bar of the Preview window, click Preview Text . Stylus Studio
displays the HTML file that generates the browser display.

3. Click anywhere in the HTML display. The gray background identifies any HTML
that was generated by the same template.

This works in reverse as well. If you click a line in a template (full source mode or
template mode), Stylus Studio uses a gray background to display the HTML
generated by that template.

4. In the left tool bar, click Export Preview . Stylus Studio displays the Save As
dialog box. If you want, you can enter a file name and click Save to preserve the
generated HTML file. Otherwise, click Cancel.

Figure 28. You Can Render XSLT Results as Plain HTML

Note Notice the tab at the bottom of the XSLT Preview window. It specifies your-quotes
[your-quotes.xsl]. After you create another scenario and apply the stylesheet in that
scenario, another tab with the name of that scenario will be displayed. You can click
the tab for the result you want to view and easily compare result documents from
different scenarios.
Stylus Studio User Guide 81

Getting Started with Stylus Studio®
Using the XSLT Mapper – Getting Started

This section helps you get started using the XSLT Mapper to create stylesheets that
aggregate data and transform XML. The sample files used in this section are in the Stylus
Studio examples\simpleMappings directory. If you follow the procedures in this section,
you create the BooksToCatalog.xsl stylesheet. A sample version of this stylesheet,
sampleBooksToCatalog.xsl, is also in the examples\simpleMappings directory of your
Stylus Studio installation directory.

Each of the topics in this section contains instructions for working with sample XML
documents that you can use to familiarize yourself with the XSLT Mapper. You should
perform the steps in each topic before you move on to the next topic – after the first topic,
some steps depend on actions you performed in a previous topic.

This section covers the following topics:

● “Opening the XSLT Mapper” on page 82

● “Mapping Nodes in Sample Files” on page 84

● “Saving the Stylesheet and Previewing the Result” on page 88

● “Deleting Links in Sample Files” on page 89

● “Defining Additional Processing in Sample Files” on page 89

In addition to the topics described in this section, the Stylus Studio User Guide contains
other sources of information on XSLT:

● To learn more about XSLT, see “Working with XSLT” on page 415.

● To get started XSLT Editor features for stylesheets, see “Working with Stylesheets –
Getting Started” on page 70.

● To learn about the XSLT mapper in greater detail, see “Creating XSLT Using the
XSLT Mapper” on page 545.

To get started, you will need to start Stylus Studio if you haven’t already. See “Starting
Stylus Studio” on page 48 if you need help with this step.

Opening the XSLT Mapper
This procedure describes how to open the XSLT Mapper and select the files you want to
use for the drag-and-drop operations that will define your XSLT stylesheet.

The XSLT Mapper is available only in Stylus Studio XML Enterprise Suite and
Stylus Studio XML Professional Suite.
82 Stylus Studio User Guide

Using the XSLT Mapper – Getting Started
◆ To open the XSLT Mapper:

1. From the Stylus Studio menu bar, select File > New > XSLT Stylesheet.

Stylus Studio displays the Scenario Properties dialog box.

2. Click the Cancel button to dismiss the dialog box.

3. Click the Mapper tab.

Stylus Studio displays XSLT editor with the Mapper tab selected. The source pane
beneath the mapper panes appears by default, allowing you to see how the mappings
of XML document elements are rendered as XSLT. The source pane is fully editable
and synchronized with the XSLT Mapper. Of course, you can always click the XSLT
Source tab for a full-screen view of your XSLT code.

4. Click the Add Source Document button at the top of the mapper’s left pane.

Stylus Studio displays the Open dialog box.

Figure 29. XSLT Editor Mapper Tab for a New Stylesheet

Tip The Project window also appears if it was open the last time Stylus Studio was
closed. You can close it.
Stylus Studio User Guide 83

Getting Started with Stylus Studio®
5. For this example, navigate to the examples\simpleMappings directory in the Stylus
Studio installation directory.

6. Double-click books.xml.

7. Click the Set Target Document button at the top of the Mapper’s right pane.

Stylus Studio displays the Open dialog box.

8. For this example, navigate to the examples\simpleMappings directory in the Stylus
Studio installation directory.

9. Double-click catalog.xml.

Stylus Studio displays tree diagrams of these XML documents. The default XSLT
source code has not been altered at this point.

Mapping Nodes in Sample Files
This topic is part of a sequence that starts with “Opening the XSLT Mapper” on page 82.

Figure 30. XSLT Mapper Tab with Source and Target Documents
84 Stylus Studio User Guide

Using the XSLT Mapper – Getting Started
◆ To define links and examine the stylesheet Stylus Studio creates:

1. In the Mapper tab, expand the tree for both books.xml and catalog.xml.

2. In books.xml, place the pointer over the book repeating element.

3. Press and hold the left mouse button, and drag from book to the Book repeating element
in catalog.xml.

Stylus Studio draws a line as you drag.

4. Release the mouse button to create the link between book and Book.

Stylus Studio creates an xsl:for-each block that links the book and Book repeating
elements. (If you mouse over the block, xsl:for-each appears in a pop-up to indicate
the XSLT operation represented by the link.)

Also notice that the complete xsl:for-each instruction has been added to the XSLT
source, which appears in the XSLT source pane under the XSLT Mapper canvas. The
back-mapping pointer identifies the line of XSLT that was just added to stylesheet.

Tip You can display an entire tree using the asterisk key (*) on your keyboard’s number
pad.

Tip If you prefer, you can render xsl:for-each as a simple line. You might want to do this
to simplify the appearance of the mapper canvas. Select Tools > Options from the
menu, and then navigate to Module Settings > XSLT Editor > Mapper.

Figure 31. xsl:for-each Block Displayed by the XSLT Mapper
Stylus Studio User Guide 85

Getting Started with Stylus Studio®
The template contains an xsl:for-each instruction that selects the book element,
which is the node you selected in Step 2. The output from this template is an empty
Book element, which is the node that was the target of the link. Stylus Studio created
the Catalog element automatically, to provide the document structure necessary to
support the Book element.

5. Click the Params/Other tab.

In the Output method: field, display the drop-down list and select xml. (Even if the
setting for Output method is unspecified, Stylus Studio still generates XML.) Other
choices for the output method include text and HTML.

6. Click the Mapper tab.

The xsl:output instruction is added to the XSLT source:

7. Create another link from the title element to the Title element.

Tip By default, Stylus Studio creates an xsl:value-of instruction when you link one
element to another; Stylus Studio creates an xsl:for-each instruction if you link two
repeating elements. You can also create other types of instructions graphically,
including xsl:if, xsl:choose, and xsl:apply-template.

<xsl:output method="xml"/>

Note When you map, you always map from the source document to the destination
document.
86 Stylus Studio User Guide

Using the XSLT Mapper – Getting Started
8. Click the XSLT Source tab to see the new instructions in the template. (If you prefer,
you can simply adjust the splitter between the XSLT source pane and the XSLT
Mapper canvas.

For each link you define, Stylus Studio adds instructions to the template that matches
the root node. In the XSLT you have composed so far, the XSLT inserts a Book
element for each book element it finds in the source document. In the Book element,
the stylesheet selects the title elements. For each title element, it inserts a Title
element. Finally, in each Title element, the stylesheet extracts the value of the current
context node, which is the title node.

Why does the stylesheet extract the value of the title nodes but not the book nodes?
The title node has only a text node as its child. In this situation, the default is that
the XSLT Mapper inserts an xsl:value-of instruction.

Figure 32. Stylus Studio Builds XSLT Based on the Mapper Links
Stylus Studio User Guide 87

Getting Started with Stylus Studio®
Saving the Stylesheet and Previewing the Result
This topic is part of a sequence that starts with “Opening the XSLT Mapper” on page 82.

◆ To save the stylesheet and preview the result:

1. Click Save . Stylus Studio displays the Save As dialog box.

2. In the URL: field, type BooksToCatalog.xsl.

3. Click the Save button.

This saves the stylesheet that Stylus Studio has generated. It does not matter that you
have not finished mapping all nodes.

4. In the upper left corner of the XSLT Mapper, click Preview Result .

Stylus Studio displays the result of processing books.xml with the stylesheet you
created in the XSLT Mapper in the Preview window.

The result document uses the same schema as the target document, catalog.xml in
this example. Because not all nodes have been mapped yet, the result document does
not contain all nodes found in books.xml (author and subject nodes, for example).

5. You can confirm that the result document is incomplete by viewing books.xml. Click
Open XML From Scenario , which is at the top of the Mapper tab.

Stylus Studio displays the books.xml document in the Stylus Studio XML Editor.

6. Review the XML document, and then click the document tab for the
BooksToCatalog.xsl stylesheet to re-display the XSLT Editor.

Tip When you create a stylesheet using the XSLT Mapper, Stylus Studio automatically
creates a scenario for you, using the source document you specify as the source
document for the scenario. Scenarios and their value in the application development
process are described earlier in this chapter. See “XSLT Scenarios” on page 76.

Figure 33. Result of Applying XSLT to books.xml
88 Stylus Studio User Guide

Using the XSLT Mapper – Getting Started
Deleting Links in Sample Files
This topic is part of a sequence that starts with “Opening the XSLT Mapper” on page 82.

◆ To delete links:

1. Click the Mapper tab if it is not already selected.

2. Click the title to Title link to select it.

3. Press the Delete key, or

a. Right-click the selected link. This displays a shortcut menu.

b. Click Delete to delete the selected link.

Defining Additional Processing in Sample Files
The stylesheet that the XSLT Mapper creates is not limited to the instructions that Stylus
Studio adds. You can edit the template as you would any template. Stylus Studio
automatically incorporates any changes you make to the template and displays them in
the Mapper tab, if it is appropriate to do so.

In addition, you can perform external processing by, for example, defining Java functions
and incorporating those functions in your XSLT stylesheet. Like standard supported
XSLT functions, user-defined Java functions can be created graphically in the XSLT
Mapper – just right click on the mapper canvas, select Java Functions from the shortcut
menu, and select any registered Java function you want to use.

Figure 34. Click a Link to Select It

Tip In addition to Delete, the shortcut menu displays the following options:

● Go To Source displays the line of XSLT code represented by the link you select
in the XML Editor.

● Carry Value allows you to create <xsl:value-of select="."/> statements. This
option is available for links representing xsl:for-each instructions only.
Stylus Studio User Guide 89

Getting Started with Stylus Studio®
See “Processing Source Nodes” on page 573.

Debugging Stylesheets – Getting Started
The Stylus Studio debugger allows you to follow XSLT processing and detect errors in
your stylesheets. Stylus Studio includes sample files that you can experiment with to learn
how to use the debugger. To get you started, this section provides step-by-step instructions
for using the debugger with these sample files. You should perform the steps in each topic
in the order of the topics.

For complete information about how to use the debugger, see “Debugging Stylesheets”
on page 589.

In addition, Stylus Studio allows you to observe and debug the interaction between your
Java code and XML data. See “Debugging Java Files” on page 599.

This section includes the following topics:

● “Setting Up Stylus Studio to Debug Sample Files” on page 90

● “Inserting a Breakpoint in the Sample Stylesheet” on page 91

● “Gathering Debug Information About the Sample Files” on page 93

To get started, you’ll need to start Stylus Studio if you haven’t already. See “Starting
Stylus Studio” on page 48.

Setting Up Stylus Studio to Debug Sample Files

◆ To set up Stylus Studio to debug sample files:

1. Open the videosDebug.xsl stylesheet, located in the examples\VideoCenter directory
where Stylus Studio was installed.

Alternative: If the Stylus Studio Project window is open, you can access this
stylesheet from the examples project.

Stylus Studio displays the videosDebug.xsl stylesheet in the XSLT editor.

2. In the XSLT editor tool bar, click Preview Result to run the predefined scenario
DebugVideosScenario. The source XML document is videos.xml.
90 Stylus Studio User Guide

Debugging Stylesheets – Getting Started
Stylus Studio applies the stylesheet and displays the results (a finished HTML page
that displays information about a single video) in the Preview window.

Inserting a Breakpoint in the Sample Stylesheet
This topic is part of a sequence that starts with “Setting Up Stylus Studio to Debug Sample
Files” on page 90.

As with any debugger, in the Stylus Studio XSLT debugger you insert a breakpoint where
you want to suspend processing and examine what is going on. You can do this using the
Debug menu or the debug set of tools in the tool bar.

Figure 35. Preview of videosDebug.xsl

Tip Tools in the tool bar are in grouped by function. These groups, like the one for debug
tools shown here, are dockable and can be moved anywhere you please.
Stylus Studio User Guide 91

Getting Started with Stylus Studio®
◆ To insert a breakpoint in the sample stylesheet:

1. In the XSLT Editor, click in line 202. Line numbers appear in the lower right corner
of the XSLT Editor window. Line 202 starts with
<xsl:template match="director">

2. In the Stylus Studio tool bar, click Toggle Breakpoint .

Alternative: If you prefer, select Debug > Toggle Breakpoint, or press F9.

Stylus Studio displays a red circle to the left of the line that contains the xsl:template
match="director" instruction. The XSLT processor will stop processing when it gets
to the instantiation of this template.

Do not do it, but to remove a breakpoint, you click in the line that has the breakpoint
and then click Toggle Breakpoint (or F9). The Toggle Breakpoint button and F9 key
operate as toggles.

3. Press F5 to start debugging.

Alternative: In the Stylus Studio tool bar, click Start Debugging .

The XSLT processor displays a yellow triangle to indicate where processing has been
suspended. Instead of the finished HTML created when you first ran the scenario, the
Preview window displays just the HTML code because complete processing of the
XSLT was suspended before the finished HTML could be rendered.

Do not do it, but to stop debugging, you can click Cancel in the lower right corner of
the XSLT editor window, or click Stop Debugging in the Stylus Studio tool bar.

Tip To display lines in Stylus Studio text editors, click Tool > Option > Editor General,
and select Show line numbers.

Figure 36. A Red Circle Shows Where Breakpoints Are Set

Figure 37. Yellow Triangle Shows Where XSLT Processing Stopped
92 Stylus Studio User Guide

Debugging Stylesheets – Getting Started
If you click Preview Result instead of pressing F5, Stylus Studio applies the
stylesheet without running the debugger. Pressing F5 always invokes the debugger. If
there are no breakpoints, and no errors, processing completes and Stylus Studio
displays the result in the Preview window.

Gathering Debug Information About the Sample Files
This topic is part of a sequence that starts with “Setting Up Stylus Studio to Debug Sample
Files” on page 90.

When XSLT processing is suspended at a breakpoint, Stylus Studio displays the
Variables, Call Stack, and Watch windows.

Figure 38. Variable, Call Stack, and Watch Windows Appear During Debugging
Stylus Studio User Guide 93

Getting Started with Stylus Studio®
You can use the information in these windows to learn about potential and actual
problems encountered in your XSLT processing.

The Variables Window

The Variables window displays a list of variables and their values when processing was
suspended.

As you can see, the stylesheet defines the VideoName parameter, which had no value when
processing was suspended. In addition, the Variables window shows you that when
processing was suspended, the processor was operating on the first director child
element of the first video child element of the first videos child element of the first result
element.

Tip You can also control the display of these windows using the Debug menu, shown here,
or the tool bar.

Figure 39. Variables Window
94 Stylus Studio User Guide

Debugging Stylesheets – Getting Started
The Call Stack Window

The Call Stack window displays a history of the steps the processor performed to reach
the point at which processing was suspended, including the names of the templates that
are currently instantiated, in most recent-to-oldest order.

In this example, the XSLT processor has instantiated the director template, which is part
of the instantiation of the video template, which is part of the instantiation of the template
that matches the root node.

◆ To step out of debug Step out , or press Shift+F11.

The processor completes the instantiation of the director template, which adds some
HTML to the Preview window. The yellow triangle moves to show the new location in
the XSLT source.

As you can see in the Call Stack window, the processor is now two levels deep in the
template that matches the root node, instead of three levels deep as it was previously. The
value of the context node in the Variables window is /result[1]/videos[1]/video[9] (it
was /result[1]/videos[1]/video[9]/director[1]).

Figure 40. Call Stack Window

Figure 41. Stepping Out Advances the Processor
Stylus Studio User Guide 95

Getting Started with Stylus Studio®
The Watch Window

If your application contains a lot of variables, the Watch window allows you to focus on
the variables in which you are particularly interested.

◆ To enter a variable to watch:

1. Double-click the Name field.

2. Type the name of the variable you want to watch and press Enter.

As processing continues, the Watch window displays the values of the variables you
specify.

Ending Processing During a Debug Session

◆ To end processing during a debug session:

1. In the Preview window, click any line of text.

In the XSLT Source tab, Stylus Studio displays the blue back-mapping triangle that
indicates the line in the stylesheet that generated the output line you clicked.

Figure 42. Watch Window Lets You Track Variables
96 Stylus Studio User Guide

Debugging Stylesheets – Getting Started
2. In the lower right corner of the XSLT editor, click the Cancel button to end
processing.

Stylus Studio displays a notification message that indicates that processing has been
stopped and, optionally, allows you to jump to the location where processing ended.

3. Click Yes to jump to the location where processing ended.

The cursor appears on line 146 of the XSLT Source tab, which contains
<xsl:apply-templates select="director"/>.

Figure 43. Cancelling Processing During Debugging

Figure 44. You Can Jump to Where XSLT Processing Ended
Stylus Studio User Guide 97

Getting Started with Stylus Studio®
4. In the XSLT editor tool bar, click Open XML from Scenario .

Stylus Studio displays the XML source document that the stylesheet operates on. As
you can see, the first result element is the document element.

This section demonstrated some of the major features of Stylus Studio’s debug tools,
including specialized windows for presenting call stack and variable information. For
complete information on using the XSLT debugger, see “Debugging Stylesheets” on
page 589.

Figure 45. Viewing the XML Source for an XSLT Transformation
98 Stylus Studio User Guide

Defining a DTD – Getting Started
Defining a DTD – Getting Started
This section provides a quick tour of the main features of the DTD Editor. It provides
instructions that you can follow to actually define a simple DTD. For complete
documentation about how to use the Stylus Studio DTD Editor, see “Defining Document
Type Definitions” on page 703.

Process Overview
When you use Stylus Studio to define a DTD, the main steps you perform are:

1. Create a new DTD schema file.

2. Define the elements that contain the raw data.

3. Define the elements that contain other elements.

4. In the container elements, specify the rules for the contained elements. That is,
specify whether a contained element is optional or required, whether there can be
more than one, and what order contained elements must be in.

This section provides step-by-step instructions for defining the bookstore.dtd schema
file. You should perform the steps in each topic in the order of the topics. This section
includes the following topics:

● “Creating a Sample DTD” on page 99

● “Defining Data Elements in a Sample DTD” on page 100

● “Defining the Container Element in a Sample DTD” on page 101

● “Defining Structure Rules in a Sample DTD” on page 101

● “Examining the Tree of a Sample DTD” on page 103

To get started, you’ll need to start Stylus Studio if you haven’t already. See “Starting
Stylus Studio” on page 48.

Creating a Sample DTD

◆ To create a new DTD schema file:

1. From the Stylus Studio menu bar, select File > New > DTD Schema.

2. Click Save .

Stylus Studio displays the Save As dialog box.
Stylus Studio User Guide 99

Getting Started with Stylus Studio®
3. Navigate to the Stylus Studio examples directory.

4. In the URL: field, type bookstore.dtd.

5. Click the Save button.

Defining Data Elements in a Sample DTD
This topic is part of a sequence that starts with “Creating a Sample DTD” on page 99.

In your DTD, suppose you want a book element to be optional. Further, if a book element
is present, it must always have exactly one title element and it can have any number of
author elements. The title and author elements contain only raw data.

◆ To accomplish this, perform the following steps:

1. At the bottom of the DTD editor, click the Tree tab.

2. Click the DTD node at the top of the tree if it is not already selected.

3. Click New Element Definition , which is the top button in the tool bar on the left
side of the DTD editor window.

Stylus Studio displays an entry field for the element name.

4. Type title and press Enter.

Stylus Studio displays the new element, title, and the element’s properties in the
Properties window.

5. Click New Modifier .

Stylus Studio displays an entry field for the element’s modifier.

Figure 46. New Element in the DTD Editor
100 Stylus Studio User Guide

Defining a DTD – Getting Started
6. Double-click Zero or More.

The new modifier is added to the element.

7. Click Add #PCDATA .

8. To define the author element, repeat Step 2 through Step 7. In Step 4, type author
instead of title.

When you are done, the Stylus Studio desktop should resemble the following:

Defining the Container Element in a Sample DTD
This topic is part of a sequence that starts with “Creating a Sample DTD” on page 99.

◆ To define the book element:

1. Click the DTD node at the top of the tree.

2. Click New Element Definition .

3. Type book and press Enter.

Defining Structure Rules in a Sample DTD
This topic is part of a sequence that starts with “Creating a Sample DTD” on page 99.

◆ To specify the rules for the structure of the book element:

1. Click the book node in the DTD tree if it is not already selected.

2. Click New Modifier .

3. In the drop-down list that appears, scroll down and double-click Sequence. This
indicates that the book element can include one or more elements.

i

Figure 47. Creating a DTD with Two Elements
Stylus Studio User Guide 101

Getting Started with Stylus Studio®
4. Click New Reference to Element .

5. Type title in the entry field and press Enter.

Because the reference to the title element appears immediately after the Sequence
modifier, the DTD editor assumes that the default behavior is what is wanted. That is,
the book element must contain exactly one instance of the title element.

6. Click the Sequence modifier.

7. Click New Modifier .

8. Double-click One or More. (There can be one or more author elements in each book
element.)

9. Click New Reference to Element .

10. Type author in the entry field and press Enter.

At this point, the definition of the book element is complete, and the tree diagram of
bookstore.dtd should look like this:

However, you have not yet specified that you want the book element itself to be optional.
You need to do this in the element that references the book element. For example, suppose
the bookstore element is the root element in XML documents that use this DTD. Further
suppose that you want the book element to be a child of the bookstore element.

◆ You can define the bookstore element as follows:

1. Click the DTD node at the top of the tree.

2. Click New Element Definition .

3. Type bookstore in the entry field and press Enter.

4. Click New Modifier .

5. In the drop-down list that Stylus Studio displays, double-click Optional.

Figure 48. Early Steps of bookstore.dtd
102 Stylus Studio User Guide

Defining a DTD – Getting Started
6. Click New Reference to Element .

7. Type book in the entry field and press Enter.

8. Click Save

Examining the Tree of a Sample DTD
This topic is part of a sequence that starts with “Creating a Sample DTD” on page 99.

Your DTD should now look like Figure 49.

To complete this DTD, you could define magazine and newsletter elements. In the
bookstore element definition, you could add references to the magazine and newsletter
elements. You could also expand the definition of the book element to include information
about the publisher, price, publication date, and number of pages.

i

Figure 49. Finished bookstore.dtd
Stylus Studio User Guide 103

Getting Started with Stylus Studio®
Defining an XML Schema Using the Diagram Tab –
Getting Started

This section provides a quick tour of the main features of the Diagram tab of the XML
Schema Editor and shows you how to define a simple XML Schema. For complete
documentation about how to use the XML Schema Editor, see “Creating an XML Schema
in Stylus Studio” on page 608.

The topics in this section provide step-by-step instructions for defining the
bookstoreDiagram.xsd XML Schema document. You should perform the steps in each
topic in the order of the topics.

This section includes the following topics:

● “Introduction to the XML Schema Editor Diagram Tab” on page 105

● “Editing Tools of the XML Schema Diagram Tab” on page 114

● “Description of Sample XML Schema” on page 119

● “Defining a complexType in a Sample XML Schema in the Diagram View” on
page 120

● “Defining Elements of the Sample complexType in the Diagram View” on page 128

To get started, you will need to start Stylus Studio if you have not already. See “Starting
Stylus Studio” on page 48.
104 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
Introduction to the XML Schema Editor Diagram Tab
The recommended way to define an XML Schema in Stylus Studio is to start with the
Diagram tab of the XML Schema Editor, which is shown in Figure 50.

When you use the Diagram tab to define an XML Schema, you can create XML Schema
nodes directly on the XML Schema diagram pane using tools on the tool bar or from the
XML Schema > Diagram and shortcut menus. You can also type in the text pane, which
appears under the Diagram tab. The text pane displays the XML Schema syntax Stylus
Studio creates for you as you work in the diagram pane.

Stylus Studio ensures that the XML Schema you create is valid. For example, any nodes
you define are created in the required order in the XML document that contains the XML
Schema definition, regardless of the order in which you create them.

Figure 50. Diagram Tab of the XML Schema Editor
Stylus Studio User Guide 105

Getting Started with Stylus Studio®
The Diagram tab, shown in Figure 50, consists of three main areas:

● “Diagram Pane” on page 106

● “Text Pane” on page 111

● “Definition Browser” on page 113

This section describes these areas and how to work with them.

Diagram Pane

The diagram pane contains graphical representations of the elements, attributes, and other
nodes that make up your XML Schema.

Nodes

Each node displayed in the diagram pane is represented by its own symbol; tool tips,
which are displayed when you hover over a node in the diagram, identify the node’s type

Figure 51. Schema Diagram Pane
106 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
(element, attribute, sequence, and so on). The symbols used in the diagram are
summarized in Table 1.

Table 1. Symbols Used in the XML Schema Diagram

Symbol Represents

schema (xsd:schema)

annotation (xsd:annotation)

documentation (xsd:documentation)

element (xsd:element)

attribute (xsd:attribute)

attributeGroup (xsd:attributeGroup)

simpleType (xsd:simpleType)

complexType (xsd:complexType)

choice (xsd:choice)

sequence (xsd:sequence)

key (xsd:key)

key reference (xsd:keyref)

unique (xsd:unique)

group (xsd:group)

simpleContent (xsd:simpleContent)

complexContent (xsd:complexContent)

restriction (xsd:restriction)

extension (xsd:extension)

union (xsd:union)

list (xsd:list)
Stylus Studio User Guide 107

Getting Started with Stylus Studio®
Nodes can be expanded and collapsed using the plus and minus symbols, respectively,
that appear on the right side of the node. In Figure 54 for example, the PurchaseOrderType
complexType has been expanded. The shipTo element has not.

Displaying Properties

To streamline the diagram, most nodes are displayed with their properties hidden by
default. Exceptions include element, extension, and restriction nodes, for which the type
is displayed, as shown in the productName element in Figure 52.

You can change the display for classes of nodes (all elements, for example) using the
Diagram Properties dialog box, shown in Figure 53. (In addition, the Properties window
displays all the properties for any node you select.)

For each node property, you can choose to

● Show the property

● Show the property only if it is not empty

● Hide the node

Figure 52. Most Nodes Appear with Properties Hidden

Figure 53. Schema Diagram Properties Dialog Box
108 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
If all of a node’s properties have the same show/hide setting, that value is displayed in the
Inline Visibility in Diagram field. If no value is displayed in the Inline Visibility in Diagram
field, it means that two or more properties have different show/hide settings.

◆ To display the Diagram Properties dialog box:

● Select Diagram > Properties from the Stylus Studio menu

● Select Properties from the diagram shortcut menu

◆ To change node properties display:

1. Display the Diagram Properties dialog box, or the Schema Details page of the
Options dialog box.

2. Select the node whose properties display you want to change.

3. Click OK.

Background color

Background color is used as another visual cue for information about the XML Schema:

● A tan, or light brown, color identifies global nodes – these are elements, types, and so
on, that are defined as children of the schema (xsd:schema). In Figure 54, the
purchaseOrder element is an example of a globally defined node.

Tip You can also change schema diagram properties on the Diagram page of the Options
dialog box – Tools > Options > Module Settings > XML Schema Editor > Schema
Details.

Tip To hide all properties, click the Hide All button. To restore defaults, click the Restore
Defaults button.
Stylus Studio User Guide 109

Getting Started with Stylus Studio®
● A light yellow background identifies local instances of globally defined types. In
Figure 54, the PurchaseOrderType complexType is a local instance of that type.

Displaying documentation

By default, text associated with documentation elements (xsd:documentation) is hidden.
You can expand documentation elements in the diagram by clicking the Show
Documenation () button, or by selecting Diagram > Show Documentation from the
Stylus Studio menu. When you do, the text associated with all documentation elements
defined in the XML Schema appears, as shown in Figure 55.

Figure 54. Background Colors Show Global and Local Types

Figure 55. Show Documentation with the Click of a Button
110 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
Moving around the diagram

There are several ways to move around the diagram pane:

● To move from node to node in the diagram, press the arrow keys.

● You can use the scroll bars to explore the diagram; the zoom slider lets you change
the magnification.

● Click Go to Definition () on the shortcut menu to display a new page that shows
just the type definition.

● Click Display Definition () on the shortcut menu to jump to the place in the XML
Schema where the type is defined.

Text Pane

The text pane appears directly beneath the XML Schema diagram pane. It displays the
XML Schema code represented by the nodes you create in the diagram. The default font
is Courier New, but you can change it to whatever font you want by clicking the Change
Font button ().

Stylus Studio synchronizes the diagram and text views of the XML Schema – any changes
you make in the diagram are reflected in the text pane, and vice versa. Synchronization
information is displayed in the bar that separates the diagram and text panes. Current
status is displayed on the right. When the two views are synchronized, Stylus Studio
displays this graphic: . When Stylus Studio detects a change, such as a change to
the text, it displays a message and changes the status graphic, as shown in Figure 56.

Figure 56. Synchronization Status is Monitored and Displayed
Stylus Studio User Guide 111

Getting Started with Stylus Studio®
Stylus Studio also flags any XML Schema errors in the text pane – lines that contain errors
are identified with a red dot, and the type and location of the error is displayed in the status
area at the top of the text pane, as shown here:

When you click the error message, Stylus Studio jumps to that part of the XML Schema
containing the error. When you correct one error, information about the next error
detected by Stylus Studio (if any) is displayed in the status area.

You can use the splitter to resize the text pane to view more or less text, or you can hide
it entirely using the controls on the splitter’s right side.

Stylus Studio supports back-mapping between the text pane and the XML Schema
diagram pane – if you click a node in the diagram, Stylus Studio scrolls the text pane to
display the line of XML Schema that defines the node you clicked. A blue triangle is
displayed to the left of the exact line of code.

Figure 57. Text Pane Highlights XML Schema Errors

Figure 58. Splitter Controls Change Size of Text and Diagram Panes
112 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
Definition Browser

The definition browser is a drop-down list that displays all the child nodes of the schema
node. It is located at the top of the Diagram tab.

When you select a node from the definition browser, Stylus Studio displays a new page
in the XML Schema diagram pane that shows the definition of the node you select. In
addition, the definition browser displays information about that node.

To return to the page you were viewing previously, press the back () button.

Figure 59. Definition Browser

Figure 60. Information About the Selected Node

Note When you display a node using the definition browser, the focus of the text pane does not
change. Clicking the node jumps you to that part of the XML Schema where the node is
defined.
Stylus Studio User Guide 113

Getting Started with Stylus Studio®
Editing Tools of the XML Schema Diagram Tab
Many of the operations you perform in the Diagram tab can be performed in a number of
ways. This section briefly describes menu and tool bar use, and introduces additional
features for defining XML Schema.

This section covers the following topics:

● “Menus and Tool Bars” on page 114

● “In-place Editing” on page 115

● “Drag-and-Drop” on page 115

● “QuickEdit” on page 116

● “Refactoring” on page 117

Menus and Tool Bars

The complete set of available operations is defined by the menu system. The tool bar
provides a subset of frequently performed operations. The top-level menu (XMLSchema
> Diagram), the shortcut menus, and the tool bar are context sensitive – only operations
that are permitted given the current context are available. For example, if you want to add
an element to a sequence, you can

● Select XML Schema > Diagram > Add > Element from the main menu

● Select Add > Element from the sequence shortcut menu

● Click the Add button on the tool bar and select Element from the drop-down list
it displays

Each of these actions lets you add a new node, in this case, an element, to your XML
Schema definition.
114 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
In-place Editing

In-place editing allows you to change node names and properties directly in the diagram.
For example, say you want to change the value of the Mixed property of the
PurchaseOrderType complexType. Just double-click the property. Stylus Studio opens the
property for editing, as shown in Figure 61.

Similarly, if you double-click a node name, Stylus Studio places the property in edit mode,
allowing you to type a new name.

Drag-and-Drop

An alternative to using the menu and the tool bar is to use drag-and-drop, which lets you
add an existing node to another node’s definition. For example, say you wanted to add an
existing element to a sequence. You can do this by dragging the element icon to the
sequence icon, as shown in Figure 62.

Use drag-and-drop any time you want to define a node using a node already defined in
your XML Schema.

Figure 61. In-Place Editing

Tip To display all of a node’s properties in the diagram, see “Displaying Properties” on
page 108.

Figure 62. Using Drag-and-Drop to Define a Node

Tip When you drag and drop, you remove the element from its current context. If you want
to make a copy an element, press and hold the CTRL key when you perform the drag
operation.
Stylus Studio User Guide 115

Getting Started with Stylus Studio®
Typical targets of drag-and-drop operations include the following nodes:
● schema

● sequence

● choice

● all
● list

● annotation

● restriction

● union

Typical sources for drag-and-drop operations include the following nodes:
● simpleType

● element

● annotation

QuickEdit

QuickEdit is a feature of the Diagram tab that streamlines common editing operations. For
example, you can use QuickEdit to:

● Change a sequence to a choice or to an all

● Specify a restriction for a simpleType

● Create sequence, choice, any, and all element definitions

For example, the following structure was created by selecting QuickEdit > Add Elements
Choice from the complexType’s shortcut menu.

QuickEdit appears on the top-level and shortcut menus in those contexts in which it is
available, and it is also available on the tool bar by pressing the QuickEdit button .

Tip Any node you drag to the schema node is created as a child of the schema node.

Figure 63. QuickEdit Creates Complex Definitions With a Click
116 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
Refactoring

Refactoring is a process that allows you to copy globally defined nodes from one XML
Schema and paste them in a new XML Schema. The difference between refactoring and
a simple copy is that refactoring includes both the node you select and all its
dependencies. Consider the following example: here is how the purchaseOrder node
appears when it is copied from purchaseOrder.xsd and pasted into a new XML Schema
document:

Figure 64. Simple Copy/Paste of a Node
Stylus Studio User Guide 117

Getting Started with Stylus Studio®
As you can see, the copy action copies only the selected node to the clipboard. When the
same node is copied using refactoring and pasted into another XML Schema document,
the node, and all its dependencies copied as well.

Not all of the diagram or text are displayed in this illustration, but it is clear that more than
just the purchaseOrder node was copied to the clipboard. For example, the
purchaseOrder’s type, PurchaseOrderType complexType has been copied, as well as
PurchaseOrderType’s element and sequence nodes, such as shipTo, billTo, and items.

If you were to scroll up either the text pane or the diagram pane, you would also see, for
example, the complete definitions for other global complexTypes such as SKU and
USAddress.

Figure 65. Refactoring Copy/Paste of a Node
118 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
◆ To refactor a node:

1. Right-click the node you want to refactor.

2. Select Refactoring > Copy from the node’s shortcut menu.

The node and all its dependencies are copied to the clipboard.

3. To paste the node in the target XML Schema document, select Refactoring > Paste
from the shortcut menu.

Description of Sample XML Schema
Suppose you want to define an XML Schema that defines book, magazine, and newsletter
elements. The type of each of these elements is PublicationType. The XML Schema
defines the PublicationType complexType. An element that is a PublicationType has the
following description:

● The genre attribute specifies the style of the publication. That is, whether it is a book,
magazine, or newsletter.

● There is always exactly one title element.

● The subtitle element is optional.

● There must be at least one author element and there can be more. Each author
element contains one first-name element and one last-name element.

● Of the following three elements, exactly one must always be present:
❍ ISBNnumber

❍ PUBnumber

❍ LOCnumber

● The elements must be in the order specified in this list.

The following topics in this section describe how to define this XML Schema using the
Diagram tab of the XML Schema Editor.

Note If the node is not globally defined, refactoring is not available.
Stylus Studio User Guide 119

Getting Started with Stylus Studio®
Defining a complexType in a Sample XML Schema in the Diagram
View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 119.

The steps for defining the PublicationType complexType described in “Description of
Sample XML Schema” on page 119 are presented in the following topics:

● “Defining the Name of a Sample complexType in the Diagram View” on page 121

● “Adding an Attribute to a Sample complexType in the Diagram View” on page 122

● “Adding Elements to a Sample complexType in the Diagram View” on page 123

● “Adding Optional Elements to a Sample complexType in the Diagram View” on
page 124

● “Adding an Element That Contains Subelements to a complexType in the Diagram
View” on page 125

● “Choosing the Element to Include in a Sample complexType in the Diagram View”
on page 127
120 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
Defining the Name of a Sample complexType in the Diagram View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 119.

◆ To define a complexType in a sample XML Schema:

1. From the Stylus Studio menu bar, select File > New > XML Schema.

Stylus Studio displays the XML Schema Editor. Maximize the XML Schema Editor
window. If the Project window is visible, you can close it.

2. At the bottom of the XML Schema editor, click the Diagram tab.

Stylus Studio displays the Diagram view for the new schema.

Figure 66. The XMLSchema Editor Diagram Tab
Stylus Studio User Guide 121

Getting Started with Stylus Studio®
3. Right-click the schema node in the XML Schema diagram pane and select Add >
ComplexType from the shortcut menu.

Alternatives: This action is also available from the XMLSchema > Grid Editing menu.

Stylus Studio displays a representation for the new node in the diagram. The
complexType properties appear in the Properties window. The new complexType has
a default name of ComplexType-0.

4. Type PublicationType in the Name property in the Properties window and press
Enter.

Stylus Studio updates the diagram and the XML Schema in the text pane.

5. Click Save .

6. In the Save As dialog box, in the URL field, type bookstoreDiagram.xsd, and click
Save. You can save it in the examples directory of the Stylus Studio installation
directory or in a directory of your choice.

Adding an Attribute to a Sample complexType in the Diagram View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 119.

◆ To add the genre attribute to the PublicationType complexType:

1. Right-click the PublicationType node.

2. In the shortcut menu that appears, select Add > Attribute.

Stylus Studio displays a node for the new attribute (untitled).

Figure 67. New complexType

Figure 68. Adding an Attribute in the Diagram Tab
122 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
3. In the Properties window, type genre as the name of the new attribute and press Enter.

4. In the Properties window, click the Type field.

Stylus Studio displays a drop-down list of built-in types.

5. Scroll down to xsd:string and click it, or type xsd:string and press Enter.

The diagram should now look like the one shown in Figure 69.

6. Click Save .

Adding Elements to a Sample complexType in the Diagram View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 119.

The elements belonging to this complexType must occur in a specific order. Before
defining the first element, you need to create a sequence node to define this requirement
in the XML Schema.

◆ To add the title element to the PublicationType complexType:

1. Right-click the PublicationType node.

2. In the shortcut menu that appears, select Add > Sequence.

The sequence node is added to bookstoreDiagram.xsd. The sequence modifier
indicates that if an instance document contains the sequence node’s child elements
(the elements you will add next), they must be in the order in which they are defined.

3. Type title and press Enter.

4. Right-click the sequence node .

5. In the shortcut menu that appears, select Add > Element.

A child element is added to the PublicationType node.

6. In the Properties window, click the Name field and enter title.

Figure 69. The Finished genre Attribute

Tip You can toggle the display of attributes by clicking the small triangle at the bottom
of the complexType node.
Stylus Studio User Guide 123

Getting Started with Stylus Studio®
7. In the Properties window, click the Type field.

Stylus Studio displays a drop-down list of built-in types.

8. Scroll down to xsd:string and click it, or type xsd:string and press Enter.

According to the XML Schema requirements described earlier, the title element can
occur only once. By default, the default value for the Min Occur. (minimum occurrences)
and Max Occur. (maximum occurrences) properties is 1. You want exactly one instance of
the title element in PublicationType, so you can accept these defaults.

Adding Optional Elements to a Sample complexType in the Diagram View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 119.

◆ To add the optional subtitle element to the PublicationType complexType:

1. Right-click the sequence node .

2. In the shortcut menu that appears, select Add > Element.

Below the title element, Stylus Studio displays a rectangle for the new element
definition.

3. Rename the new element subtitle.

4. Give the new element a data type of xsd:string.

5. Give the new element a minimum occurrences value of 0.

You can accept the default of 1 for the Max Occur. property.

6. Click Save .

At this point, the XML Schema diagram should look like Figure 70:

Figure 70. PublicationType complexType
124 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
Adding an Element That Contains Subelements to a complexType in the
Diagram View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 119.

The sample schema requirements (see “Description of Sample XML Schema” on
page 119) state that the PublicationType complexType must include at least one author
element. Further, an author element must include a first-name element and a last-name
element.

Each element that can contain one or more subelements is a complexType. Consequently,
to add the author element to the PublicationType complexType, you must first define the
AuthorType complexType. You can then add an element that is of AuthorType to the
PublicationType complexType.

◆ To define the AuthorType complexType:

1. Right-click the schema node in the XML Schema diagram pane and select Add >
Complex Type from the shortcut menu.

Alternatives: This action is also available from the XMLSchema > Grid Editing menu.

Stylus Studio displays a representation for the new node in the diagram. The
complexType properties appear in the Properties window.

2. Type AuthorType in the Name property in the Properties window and press Enter.

Stylus Studio updates the diagram and the XML Schema in the text pane.

3. Right-click the AuthorType node in the diagram.

4. In the shortcut menu that appears, select Add > Sequence.

Stylus Studio displays the sequence node .

5. Right-click the sequence node.

6. In the shortcut menu that appears, select Add > Element.

7. Type first-name in the Name property in the Properties window and press Enter.

8. Change the Type property to xsd:string and press Enter.

9. Repeat Step 5 through Step 8 to add a new element to the sequence, using last-name
as the name of the new element.
Stylus Studio User Guide 125

Getting Started with Stylus Studio®
◆ Now you can add the author element to the PublicationType complexType:

1. Right-click the sequence node belonging to the PublicationType node.

2. In the shortcut menu that appears, select Add > Element.

Stylus Studio displays a representation for the new node in the diagram. The
complexType properties appear in the Properties window.

3. Type author in the Name property in the Properties window and press Enter.

Stylus Studio updates the diagram and the XML Schema in the text pane.

4. Click the Type field in the Properties window. Stylus Studio displays a drop-down
list of built-in types plus any types you have defined, such as the AuthorType you
defined in the previous procedure.

5. Select AuthorType from the drop-down list.

6. Click the Max Occur. field.

7. In the drop-down list that appears, click unbounded.

8. Click Save .

At this point, the XML Schema diagram should look like Figure 71:

Tip A plus sign appears on the right side of the author element. You can click the plus
sign to display the definition of the AuthorType complexType, which was just added
to the author element.

Tip When you give an element an unbounded maximum number of occurrences, Stylus
Studio renders the node using two outlines, to indicate that multiple occurrences of
this element are allowed.

Figure 71. author Element with AuthorType complexType
126 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
Choosing the Element to Include in a Sample complexType in the
Diagram View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 119.

In the sample XML Schema, you want PublicationType elements to contain an
ISBNnumber, PUBnumber, or LOCnumber element.

◆ To specify this:

1. Right-click the sequence node belonging to the PublicationType node.

2. In the shortcut menu that appears, select Add > Sqeuence.

Stylus Studio displays a representation for the new sequence node in the diagram.
Sequence properties appear in the Properties window.

We added the sequence node in error – the specification requires that this node be a
choice node. The QuickEdit feature makes it easy to correct errors such as this.

3. Right-click the new sequence node. In the shortcut menu that appears, select
QuickEdit > Switch to Choice.

Stylus Studio changes the sequence node to the choice node ().

4. Right-click the new choice node.

5. In the shortcut menu that appears, select Add > Element.

6. In the Properties window, change the Name to ISBNnumber and press Enter.

7. In the Properties window, change the Type xsd:int and press Enter.

8. Repeat Step 4 through Step 7 twice: once to add the PUBnumber element, and once to
add the LOCnumber element.

9. Click Save .
Stylus Studio User Guide 127

Getting Started with Stylus Studio®
The definition of the PublicationType complexType is now complete and should look like
Figure 72:

Defining Elements of the Sample complexType in the Diagram
View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 119.

In the final step of defining bookstoreDiagram.xsd, you define elements that are of the
PublicationType complexTypes you defined earlier – book, magazine, and newsletter
elements.

◆ To define the book, magazine, and newsletter elements in the sample XML Schema:

1. Right-click the schema node in the diagram.

2. In the shortcut menu that appears, select Add > Element.

Figure 72. PublicationType complexType Fully Defined
128 Stylus Studio User Guide

Defining an XML Schema Using the Diagram Tab – Getting Started
Stylus Studio displays a node for the new element in the XML Schema diagram pane.
The properties for the new element appear in the Properties window.

3. Type book as the name of the new element and press Enter.

4. In the Properties window, click the Data Type field. Stylus Studio displays a drop-
down list of built-in types plus any types you have defined.

5. Click PublicationType.

6. Repeat Step 1 through Step 5 twice: once to add the magazine element, and once to
add the newsletter element.

7. Click Save .

The bookstoreDiagram.xsd document is now complete.

8. Select XMLSchema > Validate Document from the menu to validate the XML Schema
document you created.

The validation message appears in the Output window, as shown in Figure 73.

Figure 73. Validation of bookstoreDiagram.xsd
Stylus Studio User Guide 129

Getting Started with Stylus Studio®
Opening Files in Stylus Studio
This section describes the types of files Stylus Studio recognizes, how to add new file
types to Stylus Studio, and how to open files using the Stylus Studio File Explorer and
other methods. This section covers the following topics:

● “Types of Files Recognized by Stylus Studio” on page 130

● “Using the File Explorer” on page 132

● “Dragging and Dropping Files in the Stylus Studio” on page 135

● “Other Ways to Open Files in Stylus Studio” on page 136

● “Adding File Types to Stylus Studio” on page 137

Types of Files Recognized by Stylus Studio
Stylus Studio recognizes over ten types of files by default. Each file is associated with a
Stylus Studio module, or editor, appropriate for its type, as shown in the following table.

Tip You can set an option so that when you open Stylus Studio, Stylus Studio automatically
opens any files that were open the last time you closed Stylus Studio. See “Options -
Application Settings” on page 1333.

Table 2. File Extensions and Associated Modules

File Name Extension Stylus Studio Module

.conv Custom XML Conversion Editor

.dff XML Diff Viewer

.dtd DTD Schema Editor

.java Java Debugger

.pipeline XML Pipline

.prj Project framework

.report XML Publisher

.sef EDI to XML Conversion

.wscc, .wsc Web Service Call Composer

.wsdl Web Service Description Language
130 Stylus Studio User Guide

Opening Files in Stylus Studio
You can add your own file types to this list, specify the module you want them opened in,
and, optionally, specify Stylus Studio as the default application for viewing and editing
files of that type. See “Adding File Types to Stylus Studio” on page 137.

Opening Unknown File Types

When you try to open a file of a type that is not recognized by Stylus Studio, Stylus Studio
displays the Choose Module for dialog box, which allows you to specify the module or
editor you want to use to open the file.

When you respond to this dialog box, you can optionally indicate whether you want all
files of that type to be associated with the Stylus Studio module you select in the future.
File types you associate with a Stylus Studio module are added to the File Types page of
the Options dialog box. You can remove or change the module association at any time.
See “Adding File Types to Stylus Studio” on page 137 for more information.

.xml XML Editor

.xquery XQuery Editor

.xsd XML Schema Editor

.xsl, .xslt XSLT Stylesheet Editor

Table 2. File Extensions and Associated Modules

File Name Extension Stylus Studio Module

Figure 74. Choose Module Dialog Box
Stylus Studio User Guide 131

Getting Started with Stylus Studio®
Opening Files Stored on Third-Party File Systems

Stylus Studio provides access XML documents stored on third-party file systems like
Raining Data® TigerLogic® XML Data Management Server (TigerLogic XDMS).

See Integrating with Third-Party File Systems on page 1201 for more information.

Modifications to Open Files

If a file that is open in Stylus Studio is modified (changed, and saved) outside Stylus
Studio, Stylus Studio alerts you that the file has been changed and gives you the chance
to reload it.

Using the File Explorer
The Stylus Studio File Explorer is a dockable window that provides easy access to any
file system accessible from the computer on which you are running Stylus Studio. You
can use the File Explorer to quickly add files to Stylus Studio and open files in Stylus
Studio, as well as to perform typical file management tasks (like renaming and deleting
files, for example).

Figure 75. Stylus Studio File Explorer
132 Stylus Studio User Guide

Opening Files in Stylus Studio
By default, the File Explorer window appears on the right side of the Stylus Studio
window, but you can drag it anywhere on your desktop. You can close/open the File
Explorer window from the View menu.

How to Use the File Explorer to Open Files

There are several ways to open files using the File Explorer:

● Double-click the file

● Right-click the file and select Open or Open With from the shortcut menu

● Drag and drop the file. See Dragging and Dropping Files in the Stylus Studio on
page 135.

When you open a file by double-clicking or using the Open shortcut menu, Stylus Studio
opens the file in the module associated with the file type (the XML Editor for .xml files,
for example). If the file type is not currently registered with Stylus Studio, you can register
the file at this time using the Choose Module for dialog box. See “Types of Files
Recognized by Stylus Studio” on page 130 for more information about file type/module
associations in Stylus Studio.

Other Features of the File Explorer

The tool bar in the File Explorer window has several features that can help you navigate
the file systems associated with your computer and work with individual documents.

Tip Open With allows you to select the module you want to use to open the file.

Figure 76. File Explorer Tool Bar
Stylus Studio User Guide 133

Getting Started with Stylus Studio®
These features are summarized in the following table.

Working with the File Explorer Filter

By default, the File Explorer window uses a wildcard filter to display all file types (*.*).

You can

● Type your own filter (*.txt, for example). If you want to use multiple filters, separate
them with a semicolon (*.txt; *.html, for example).

● Use the Stylus File Types button to change the filter to display only file types
associated with Stylus Studio (.xml, .xsd, .dtd, .java, .conv, and others)

Stylus Studio remembers the filters you create and adds them to the drop-down list.

Table 3. File Explorer Tools

Tool Description

 New Folder Creates a new folder as a child of the folder with current focus. The
default folder name is New Folder.

 Read Document
Structure

Displays the structure of XML documents in tree form. You can
drag exposed nodes onto the document tab area to open the
document associated with that node. If you drag a node into an
existing XQuery or XSLT document, Stylus Studio creates the
document function with the XPath expression for that node. For
example, if you drag the title element from books.xml into an
XQuery document, Stylus Studio builds the following function:

doc("file:///c:/Program Files/Stylus Studio 2011 XML
Enterprise Suite/examples/simpleMappings/
books.xml")/books/book/title

 Refresh Refreshes the File Explorer window.

 Reset Filters Resets the File Explorer filter from its current content to the
wildcard (*.*).

 Stylus File Types Changes the File Explorer filter to display only file types associated
with Stylus Studio: .xml, .xsd, .dtd, .java, .conv, and others.

Figure 77. File Explorer Filter
134 Stylus Studio User Guide

Opening Files in Stylus Studio
Dragging and Dropping Files in the Stylus Studio
You can open a file in Stylus Studio by dragging the file from the File Explorer (or other
file system browsers, like Windows Explorer) and dropping it inside Stylus Studio. How
Stylus Studio behaves depends on where you drop the file, as summarized in Table 4.

Table 4. How Stylus Studio Handles Dragged-and-Dropped Files

If You Drop the File Here Stylus Studio Does This

On the document editor area
(when no documents are open)

Opens the document editor associated with the type of file
you selected. See Types of Files Recognized by Stylus
Studio on page 130. If the file type is not currently
registered with Stylus Studio, you can register the file at
this time using the Choose Module for dialog box. See
Opening Unknown File Types on page 131.

On the document editor tab area Opens the document editor associated with the type of file
you selected. See Types of Files Recognized by Stylus
Studio on page 130. If the file type is not currently
registered with Stylus Studio, you can register the file at
this time using the Choose Module for dialog box. See
Opening Unknown File Types on page 131.

In an active document Adds the file’s URL to the end of the document.

On another file in the File
Explorer

Performs the operation associated with the target file and
opens the resulting document in its own editor. For
example, you might use this operation to convert a text file
to XML by dropping the .txt file on a converter file
(.conv).

In a project in the Project
window

Adds the file to the project. If the file type is not currently
registered with Stylus Studio, you can register the file at
this time using the Choose Module for dialog box. See
Opening Unknown File Types on page 131.
Stylus Studio User Guide 135

Getting Started with Stylus Studio®
Other Ways to Open Files in Stylus Studio
In addition to the File Explorer and drag-and-drop, you can also open files in Stylus
Studio from the following places:

● The Open dialog box (displayed when you select File > Open from the menu, for
example). By default, Stylus Studio opens the file in the editor associated with files
of the type you select (see Types of Files Recognized by Stylus Studio on page 130).
If you want, you can choose a different editor – you might want to open an XSLT
stylesheet in the XML Editor, for example – when opening files from the Open dialog
box.

To specify a different module, click the down arrow to the right of the Open button
and select the module you want to use from the drop-down list as shown in Figure 78.

● Project window – either double-click the file, or select Open or Open With from the
file’s shortcut menu.

● Other file system browsers (like Windows Explorer, for example) – for files
recognized by Stylus Studio, just double-click the file. See “Opening Unknown File
Types” on page 131.

Figure 78. Choose the Module to Use When Opening a File
136 Stylus Studio User Guide

Opening Files in Stylus Studio
Adding File Types to Stylus Studio
You use the procedure described in this section to associate a file type (.txt, for example)
with a specific Stylus Studio module or editor. Once you do this, any time you open a file
of that type from within Stylus Studio (using the File Explorer, for example), that file is
opened in the editor you specify.

You can optionally specify that you want to use Stylus Studio as the default editor for files
of this type, regardless of where the file is opened (from a file browser like Total
Commander, for example).

◆ To add a file type to Stylus Studio:

1. From the Stylus Studio menu bar, select Tools > Options.

Stylus Studio displays the Options dialog box.

2. Under General, click File Types.

The File Types page appears.

Note You do not need to specify the usual extensions, such as xml, xsl, and java. Use the
procedure described in this section for file name extensions peculiar to your application
or environment.

Figure 79. Associating File Types with Stylus Studio Editors
Stylus Studio User Guide 137

Getting Started with Stylus Studio®
3. To add a new file type/module association, click the Add button.

Alternative: Double-click the Type field.

4. Type the new extension, including the period, and press Enter.

Stylus Studio adds the file type and selects a default module in the Module field.

5. Optionally, select a different module using the drop-down list in the Module field.

6. If you want to always use Stylus Studio to open files of this type, change the value in
the Open with Stylus Studio field to True.

7. To add another file type, repeat Step 3 through Step 6.

8. When you are done, click OK.

Deleting File Types

◆ To delete a file type:

1. Click the file type you want to delete.

2. Click the Delete button.

3. Click OK.

Working with Projects
A project in Stylus Studio is a group of files related to a given XML application. A project
might include XML, XML Schema, and XQuery files, as well as OASIS catalogs, for
example. A project can contain subprojects, and subprojects can contain subprojects. The
Stylus Studio project framework allows you to name projects (project files are saved with
a .prj extension), and it provides several tools for managing the projects you create.

Projects are simply a convenience for organizing files – a file does not have to belong to
a project in order for you to edit it in Stylus Studio. For example, Stylus Studio includes
all sample application files in the examples project. You can find the examples.prj file in
the examples directory of your Stylus Studio installation directory.

This section discusses the following topics:

● “Displaying the Project Window” on page 139

● “Creating Projects and Subprojects” on page 141

● “Saving Projects” on page 141
138 Stylus Studio User Guide

Working with Projects
● “Opening Projects” on page 141

● “Adding Files to Projects” on page 142

● “Copying Projects” on page 143

● “Rearranging the Files in a Project” on page 144

● “Removing Files from Projects” on page 144

● “Closing and Deleting Projects” on page 144

● “Setting a Project Classpath” on page 145

● “Using Stylus Studio with Source Control Applications” on page 147

Displaying the Project Window
When you open Stylus Studio for the first time, Stylus Studio displays the Project window
with the examples project. (The File Explorer window is displayed on the right.)

There are several ways to toggle the display of the Project window. You might want to
close the Project window in order to gain more space in the editor you are working with,
for example.

Figure 80. Project Window with Default Project DIsplayed
Stylus Studio User Guide 139

Getting Started with Stylus Studio®
◆ To toggle Project window display:

● From the Stylus Studio menu, select View > Project Window.

● In the Stylus Studio tool bar, click Toggle Project Window .

◆ To hide Project window:

Click the X in the upper right corner of the Project window.

Displaying Path Names

You can control whether the Project window displays absolute or relative path names for
files in projects. The default display is relative names.

◆ To toggle the way path names appear:

1. Display the Project window.

2. In the Project window, right-click to display the pop-up menu.

3. Click Show Full URL Info.

Other Documents

Stylus Studio displays documents that are not associated with a project in the Other
Documents folder, which appears after the last folder or document in the currently
displayed project. In addition, when you remove a file from a project, it is placed in the
Other Documents folder.

You can add these documents to a project at any time. See “Adding Files to Projects” on
page 142.

Tip The Project window is dockable – you can move it anywhere on your desktop.

Tip When you hide the Project window, any open files remain open.

Figure 81. Other Documents Folder
140 Stylus Studio User Guide

Working with Projects
Creating Projects and Subprojects
You can create projects and organize any project into multiple levels of subprojects. You
can add files to projects and save the project under a name you specify.

◆ To create a project, select Project > New Project from the menu:

Stylus Studio displays the new project in the Project window. The Project window
displays information for only one project at a time.

◆ To create a subproject:

1. Right-click the project name, and click New Project Folder in the pop-up menu.

Stylus Studio displays a default subproject folder name (NewFolder1, for example).

2. Type a new subproject name.

3. Press Enter.

There are several ways to add files to your projects and subprojects. See “Adding Files to
Projects” on page 142.

Saving Projects

◆ To save a project, select Project > Save Project.

The first time you save a project, Stylus Studio prompts you to specify a name for your
project. Stylus Studio appends .prj to the name you specify. It does not matter whether
or not you specify the .prj extension. Stylus Studio does not allow a project to have any
other file name extension.

When you save a project, references to the files part of the project are saved relative to the
path of the project file. This allows you to move or share projects easily.

Opening Projects
You can have only one project open at one time. If you have a project open and you open
a second project, Stylus Studio closes the first project and then opens the second project.

If the Project window is not visible when you open a project, Stylus Studio automatically
displays the Project window.
Stylus Studio User Guide 141

Getting Started with Stylus Studio®
◆ To open a project:

1. From the Stylus Studio menu bar, select Project > Open Project.

2. Navigate to and select your project file. For example, you can open examples.prj in
the examples directory of your Stylus Studio installation directory. The examples
project contains the files for all Stylus Studio sample applications.

3. Click the Open button.

Recently Opened Projects

Projects that were recently opened are displayed at the bottom of the Project drop-down
menu. Click the project you want to open.

Adding Files to Projects
The easiest way to add a file to a Stylus Studio project is to drag the file from the File
Explorer or another file browser (like Total Commander, for example) into the desired
project folder. You can drag-and-drop multiple files at a time.

If the file type is unknown to Stylus Studio, the Choose Module for dialog box appears,
which allows you to associate the file with a Stylus Studio module or editor. See Opening
Unknown File Types on page 131 for more information.

Figure 82. Recently Opened Projects Are Listed on the Project Menu
142 Stylus Studio User Guide

Working with Projects
Other Ways to Add Files to Projects

The following procedures describe other ways to add files to a project. Note that these
procedures vary based on whether or not the file is already open in Stylus Studio.

When Files are Open in Stylus Studio

◆ To add an open file to a project:

1. Open the project to which you want to add the file.

2. Click the window (the Web Service Call Composer, for example) that contains the file
you want to add.

3. In the Stylus Studio tool bar, click Add Document to Project .

Alternative: Select Project > Add Document from the Stylus Studio menu bar.

When Files are Closed

◆ To add a closed file to a project:

1. Open the project to which you want to add the file.

2. In the Stylus Studio tool bar, click Add File to Project .

Alternative: Select Project > Add File from the Stylus Studio menu bar.

The Open dialog box appears.

3. Navigate to the file you want to add and click the Open button.

Copying Projects

◆ To copy a project:

1. Open the project you want to copy.

2. From the Stylus Studio menu bar, select Project > Save Project As.

The Save As dialog box appears.

3. Navigate to the location for the project copy.

4. In the URL: field, type the name of the new project.

5. Click the Save button.
Stylus Studio User Guide 143

Getting Started with Stylus Studio®
Rearranging the Files in a Project
The order in which files are displayed in the Project window has no effect on the project.
You might want to place related files near each other, or place more frequently used
project files toward the top of the project tree.

◆ To rearrange files in a project:

1. If the Project window is not visible, click Toggle Project Window in the Stylus
Studio tool bar.

2. In the Project window, click the file you want to move.

3. Drag it to its new location.

Removing Files from Projects
When you remove a file from a project, it is added to the Other Documents folder in the
Project window.

◆ To remove a file from a project:

1. If the Project window is not visible, click Toggle Project Window in the Stylus
Studio tool bar.

2. In the Project window, click the path for the file you want to remove.

3. From the Stylus Studio menu bar, select Project > Remove File from Project.

Alternative: Press the Delete key.

Closing and Deleting Projects

Closing

◆ To close a project, open another project or create a new project.

Tip Toggling or closing the Project window does not close the project.
144 Stylus Studio User Guide

Working with Projects
Deleting

◆ To delete a project, remove its .prj file from the file system.

Setting a Project Classpath
You can set a classpath at the project level. When Stylus Studio compiles or runs Java
code, it always checks the project for a locally defined classpath.

Specifying Multiple Classpaths

You use the Project Classpath dialog box to specify one or more classpaths for a project.
If multiple classpaths have been defined, Stylus Studio searches them in the order in
which they are listed in the Project Classpath dialog box. You can use the up and down
arrows at the top of this dialog box to change the classpath order.

How to Set a Project Classpath

◆ To set a classpath for a project:

1. Open the Project Window if it is not already displayed.

2. Right-click the project node.

The project shortcut menu appears.

Alternative: Select Project > Set Classpath from the Stylus Studio menu.

Figure 83. Use Arrow Buttons to Change the Order of Classpaths
Stylus Studio User Guide 145

Getting Started with Stylus Studio®
3. Select Set Project Classpath.

The Project Classpath dialog box appears.

4. Click the browse folders () button.

A new entry field appears in the Locations list box. Two buttons appear to the right
of the entry field.

5. To add a JAR file to the classpath, click the browse jar files button ().

Stylus Studio displays the Browse for Jar Files dialog box.

Figure 84. Project Classpath Dialog Box

Figure 85. Browse for Jar Files Dialog Box
146 Stylus Studio User Guide

Working with Projects
6. To add a folder to the classpath, click the browse folders button ().

Stylus Studio displays the Browse for Folder dialog box.

7. When you have located the JAR file or folder you want to add to the classpath, click
OK.

8. Optionally, add other JAR files or folders to the classpath by repeating Step 5 and
Step 7.

Using Stylus Studio with Source Control Applications
Stylus Studio supports the Microsoft Source Code Control Interface, allowing you to use
Stylus Studio with any source code control system that supports the same interface used
by Microsoft Visual Studio or Microsoft Visual Studio .NET.

Stylus Studio’s source control support allows you to

● Add a file to source control

● Remove a file from source control

● Get the latest version of a source-controlled file

● Check out a file

● Check in a file

● Un-check out a file

● Show the source control history of a file

● Show differences between versions of a file

Figure 86. Browse for Folder Dialog Box
Stylus Studio User Guide 147

Getting Started with Stylus Studio®
In this section

This section covers the following topics:

● “Tested Source Control Applications” on page 148

● “Prerequisites” on page 148

● “Using Stylus Studio with Microsoft Visual SourceSafe” on page 149

● “Using Stylus Studio with ClearCase” on page 151

● “Using Stylus Studio with Zeus CVS” on page 154

● “Specifying Advanced Source Control Properties” on page 155

Tested Source Control Applications

Integration with the following source control applications has been tested:

● Microsoft Visual SourceSafe

● Clearcase/Attache

● CVS

Prerequisites

To use Stylus Studio’s source control features, you must have already installed the client
software for your source control application, as shown in Table 5.

In addition, files must belong to a Stylus Studio project before you can use them with a
source control application.

Recursive Selection

When you build a project using files from a source control application, Stylus Studio
gives you the option of recursively importing all projects that are subordinate to the
project folder you select. This option, Recursively import all subprojects, appears on the

Table 5. Working with Source Control Clients

When Data Is In You Need to Install

SourceSafe repository SourceSafe client or SourceOffSite

ClearCase Attache client

CVS Zeus-CVS product
148 Stylus Studio User Guide

Working with Projects
Build Project from SCC dialog box, which appears when you start the New Project
Wizard.

Selecting the Recursively import all subprojects option has the effect of selecting all the
siblings of the selected file or directory, as well as any descendants of the selected item
and its siblings. Stylus Studio creates a project that contains all files that Stylus Studio can
open (for example, .xml, xslt, and .xsd files) and that are in the directory hierarchy of the
file or directory you select.

For example, suppose you check Recursively import all subprojects, and you select
c:\work\myproject\documentation.xml. Stylus Studio creates a project that contains all
Stylus Studio-editable files in c:\work\myproject and its subdirectories.

If you do not check Recursively import all subprojects, only the file you select is added
to the new Stylus Studio project you create. You cannot select a directory if you do not
select this option.

Using Stylus Studio with Microsoft Visual SourceSafe

◆ To use Stylus Studio to operate on files that are under SourceSafe source control:

1. From the Stylus Studio menu bar, select Project > New Project Wizard.

The Project Wizards dialog box appears.

Figure 87. Project Wizards Dialog Box
Stylus Studio User Guide 149

Getting Started with Stylus Studio®
2. Click Project from SCC, and click the OK button.

The Build Project From SCC dialog box appears.

3. Select Microsoft Visual Sourcesafe from the Provider to use drop-down list.

4. If you want to use Stylus Studio to access more than one file in a directory hierarchy,
click the check box for Recursively import all subprojects. See “Recursive
Selection” on page 148 if you need help with this step.

Depending on your installation, you might need to specify other properties. See
“Specifying Advanced Source Control Properties” on page 155.

5. Click the OK button.

The Visual SourceSafe Login dialog box appears:

6. Specify the username and password; optionally, use the Browse... button to access a
database other than the default database displayed in the Database field.

Figure 88. Build Project From SCC Dialog Box

Figure 89. Visual SourceSafe Login Dialog Box
150 Stylus Studio User Guide

Working with Projects
7. Click OK.

The Create Local Project from SourceSafe dialog box appears.

8. Select the folder in which you want to create the new project.

9. Click OK.

The project is created in Stylus Studio. A message displays the names of any files that
were not added to the project because their extensions are not associated with a Stylus
Studio editor.

Using Stylus Studio with ClearCase

◆ To use Stylus Studio to operate on files that are under ClearCase source control:

1. Use Attache to copy the files you want to work on from a ClearCase view to the local
file system.

Figure 90. Create Local Project from SourceSafe Dialog Box

Note If you move these files from this directory after you create the project, you must
specify the new directory that contains the files in the Local Project Path field of the
Source Control Properties dialog box. To access this dialog box, select
SourceControl > Source Control Properties from the Stylus Studio menu bar.
Stylus Studio User Guide 151

Getting Started with Stylus Studio®
2. From the Stylus Studio menu bar, select Project > New Project Wizard.

The Project Wizards dialog box appears.

3. Click Project from SCC, and click the OK button.

The Build Project From SCC dialog box appears.

4. Select Clearcase from the Provider to use drop-down list.

5. If you want to use Stylus Studio to access more than one file in a directory hierarchy,
click the check box for Recursively import all subprojects. See “Recursive
Selection” on page 148 if you need help with this step.

Depending on your installation, you might need to specify other properties. See
“Specifying Advanced Source Control Properties” on page 155.

Figure 91. Project Wizards Dialog Box

Figure 92. Build Project From SCC Dialog Box
152 Stylus Studio User Guide

Working with Projects
6. Click the OK button.

The Browse for Folder dialog box appears.

7. Navigate to and select the file or directory you want to operate on, or one of the files
or directories in the topmost level of the directory hierarchy that you want to access,
and click the OK button.

Stylus Studio creates a new project that contains the file you selected, or all files that
are editable by Stylus Studio and that were in the directory hierarchy of the file you
selected. The default name of the project is Projectn. To rename the project, select
Project > Save Project As from the Stylus Studio menu bar.

Adding Files After the Project is Created

After you create the project, you can add additional ClearCase files to it. If the file is
already in ClearCase, it must be a sibling of the original file you selected, or it must be a
descendant of one of its siblings. If the file you want to add is not in the directory
hierarchy of the original file, you must create a new Stylus Studio project and specify a
directory in the source control hierarchy that contains all the files you want to be in your
Stylus Studio project.

If you want to add a file that is not already in ClearCase, open the file in Stylus Studio and
then click Add To Source Control in the Stylus Studio tool bar.

Figure 93. Browse for Folder Dialog Box
Stylus Studio User Guide 153

Getting Started with Stylus Studio®
Using Stylus Studio with Zeus CVS

Stylus Studio supports the latest version of the Zeus CVS Provider, and with some
additional configuration needed in the SourceControl > Properties dialog box.

◆ To use Stylus Studio to operate on files that are under Zeus CVS source control:

1. From the Stylus Studio menu bar, select Project > New Project Wizard.

The Project Wizards dialog box appears.

2. Click Project from SCC, and click the OK button.

The Build Project From SCC dialog box appears.

3. Select Zeus SCC-CVS from the Provider to use drop-down list.

4. Click the check box for Recursively import all subprojects.

5. Click Advanced. Several new fields appear.

6. In the User Name field, type the user name you want to use to log in to the CVS server.

7. In the Project Name field, type the name of a module in the source control hierarchy.
This should be the name of a directory that contains all files that you want to open in
Stylus Studio.

8. In the Auxiliary Path field, type the contents of the CVSROOT environment variable that
you use to access the CVS server.

For example, suppose you are required to enter the following commands in a DOS
console or UNIX shell:
cvs.exe -d:pserver:user@server.company.com:/cvsroot/projectname login
Password: *****
cvs.exe -d:pserver:user@server.company.com:/cvsroot/projectname co module

The value you should enter in the Auxiliary Path field would be:
:pserver:user@server.company.com:/cvsroot/projectname

9. In the Working Dir field, type the name of a local directory.
154 Stylus Studio User Guide

Working with Projects
10. Click the OK button.

Stylus Studio downloads the selected files and places them in the directory you
specified in the Working Dir field. If you move these files from this directory, you
must specify the new directory that contains the files in the Local Project Path field
of the Source Control Properties dialog box. To open this dialog box, select
SourceControl > Source Control Properties from the Stylus Studio menu bar.

All files that can be opened in Stylus Studio are now in the new Stylus Studio project. The
default name of the project is Projectn. To rename the project, select File > Project > Save
Project As from the Stylus Studio menu bar.

Specifying Advanced Source Control Properties

The Advanced button in the Build Project From SCC dialog box displays several
additional fields.

● User Name is the name of the source control user. Stylus Studio uses this name to
establish a connection with the source control server.

● Project Name is the name of the source control repository you want to access. The
syntax of the project name depends on the source control provider you want to
connect with. For example, SourceSafe uses $/Name/Name, ClearCase uses the name
of the view, and CVS uses the name of the module. Some source control providers
change this description to something more suitable to their model. For example,
ClearCase changes it to ClearCase Attache.

Note The cvs.exe file must be in your PATH environment variable.

Figure 94. Advanced Source Control Settings
Stylus Studio User Guide 155

Getting Started with Stylus Studio®
● Auxiliary Path contains source control provider-specific information. This field
allows you to enter any other information required to find your source control server.
For example, if you are using SourceSafe, you would specify the directory of the
SourceSafe client here. If you are using CVS, you would specify the contents of the
CVSROOT environment variable.

● Working Dir is the local directory into which you copied the files under source control
that you want to access. It is the local counterpart for the source control repository.
For example, suppose you copied the contents of the SourceSafe repository
$/Company/OneProject to the local directory c:\work\myproject. Your local files
would map to the source control hierarchy as shown in Table 6:

Customizing Tool Bars
Stylus Studio allows you to customize the appearance, location, and content of tool bars,
and even to create tool bars of your own. This section covers the following topics:

● “Tool Bar Groups” on page 156

● “Showing/Hiding Tool Bar Groups” on page 157

● “Changing Tool Bar Appearance” on page 158

Tool Bar Groups
Tool bars are organized by functional group within Stylus Studio (Default, Edit, Source
Control, and so on). Customizations available for these groups include

● Show/hide

● Look, feel, and size

● Group position

Table 6. Local/Repository File Mappings

Local File Repository File

c:\work\myproject\documentation.xml $/Company/OneProject/documentation.xml

c:\work\myproject\subdir\root.java $/Company/OneProject/subdir/root.java

c:\work\anotherproject\root.java $/Company/anotherproject/root.java

Tip Tool bars are docking windows – you can drag them anywhere on your desktop.
156 Stylus Studio User Guide

Customizing Tool Bars
You control all these customizations from the Toolbars tab of the Customize dialog box.

◆ To display the Customize dialog box, select Tools > Customize from the menu.

Showing/Hiding Tool Bar Groups
Tool bar groups are displayed by default. Use this procedure to hide/re-display them.

◆ To hide/show a toolbar group:

1. Display the Customize dialog box (Tools > Customize).

2. In the Toolbars group box, deselect the check box of the group you want to hide.

The tool bar is removed from the Stylus Studio window.

3. To re-display a hidden tool bar group, follow Step 1 and Step 2 and reselect the check
box.

Figure 95. Toolbars Tab of Customize Dialog Box

Tip Consider maximizing Stylus Studio on your desktop in order to view as much of the tool
bar as possible when making changes.
Stylus Studio User Guide 157

Getting Started with Stylus Studio®
Changing Tool Bar Appearance
Changes you can make to the tool bar’s appearance include

● Whether or not to show tooltips when the mouse pointer is placed over a tool bar
button

● Whether tool bar buttons are rendered in a size larger than the default

◆ To modify toolbar appearance:

1. Display the Customize dialog box (Tools > Customize).

2. Click Show Tooltips to toggle the display of tooltips when the pointer is placed over
a tool bar button.

3. Click Large Buttons to toggle the size of the tool bar buttons.

4. Optionally, click the Reset button to restore default settings.

5. Click the OK button.

Specifying Stylus Studio Options
Stylus Studio allows you to set a variety of options for Stylus Studio modules, and it
provides the ability to define custom tools to run different editors and processors. This
section covers the following topics:

● “Setting Module Options” on page 158

● “Registering Custom Tools” on page 160

Setting Module Options
Stylus Studio allows you to set a variety of options for the Stylus Studio modules.

◆ To change module options:

1. From the Stylus Studio menu bar, select Tools > Options.

2. In the Options dialog box that appears, expand Module Settings to display a list of
choices.

Note Appearance settings affect all tool bars. You cannot control the appearance of individual
tool bar groups.
158 Stylus Studio User Guide

Specifying Stylus Studio Options
XML Diff

You use the Engine and Presentation pages to define settings used by the XML Diff tool.
See “Diffing Folders and XML Documents” on page 215 for more information.

XML Editor

Click XML Settings to specify the following:

● Refresh interval for Sense:X

● Number of errors after which you want Stylus Studio to stop validation, and whether
or not you want Stylus Studio to display a message when validation is complete

Click Custom Validation Engines to specify an alternate validation engine. See “Custom
XML Validation Engines” on page 1208 for more information.

XSLT Editor

Module settings for the XSLT Editor let you specify external XSLT processors, settings
used by the Mapper tab, and general editor behavior.

Click External XSLT to specify default values for external XSLT processors. Note that
Stylus Studio’s back-mapping and debugging features are not supported for all XSLT
processors. The XSLT processors that support back-mapping and debugging are
identified on the Processor tab of the Scenario Properties dialog box.

In a scenario, you can specify that you want to use an external XSLT processor. If you use
a particular XSLT processor frequently, specify default values here. Then, in the scenario
properties, you just need to specify which external XSLT processor you want to use. If
you specify default values and you then specify different values in a scenario’s properties,
the scenario properties override the defaults. You can specify the following external
XSLT options:

● Default custom processor command line

● Default additional path for custom processor

● Default additional classpath for custom processor

Click Mapper to specify how xsl:for-each instructions should be rendered on the Mapper
canvas, and to specify element creation for unlinked nodes. See “Mapping Source and
Target Document Nodes” on page 564 for more information on using the XSLT Mapper.
Stylus Studio User Guide 159

Getting Started with Stylus Studio®
Click XSLT Settings to specify the following:

● Whether Stylus Studio displays the Scenario Properties dialog box when you create
a new stylesheet

● Whether Stylus Studio saves scenario meta information in stylesheets

● Whether Stylus Studio detects infinite loops

● Maximum recursion level

● Allocated stack size

Java

To modify Java settings, see “Configuring Java Components” on page 171.

Registering Custom Tools
Stylus Studio allows you to register custom tools to run alternative editors, processors,
preprocessors, or postprocessors. For example, you can register a custom tool that
configures Internet Explorer to display the document you are working on.

After you register a custom tool, Stylus Studio adds an entry to its Tools menu – select
Tools and then your tool. The order in which the tool names appear in the Custom Tools
options page is the order in which the tool names appear in the Stylus Studio Tools menu.

You can register custom tools from within Stylus Studio or from the command line.

Using Stylus Studio

◆ To register a custom tool in Stylus Studio:

1. From the Stylus Studio menu bar, select Tools > Options.

Stylus Studio displays the Options dialog box.

2. Click Custom Tools to display the Custom Tools page.
160 Stylus Studio User Guide

Specifying Stylus Studio Options
3. In the Custom Tools page, click Define New Tool .

Stylus Studio displays an entry field for the tool name.

4. Enter the name as you want it to appear in the Stylus Studio Tools menu.

5. In the Command field, specify or select the absolute path for the command that runs
your tool. This must be a .exe, .bat, or .cmd file.

6. In the Arguments field, specify any arguments your tool requires. You can click
to display a drop-down list that includes File Path, File Dir, File Name, File Extension,
and Classpath.

7. In the Initial Directory field, type the absolute path for the directory that contains any
files or directories needed by your custom tool.

8. In the Path field, type any paths that need to be defined and that are not already
defined in your PATH environment variable.

9. If you want Stylus Studio to prompt for arguments before it runs your tool, click
Prompt for Arguments.

10. If you want Stylus Studio to display output from your custom tool in its Output
Window, select Use Output Window.

Figure 96. Defining a Custom Tool
Stylus Studio User Guide 161

Getting Started with Stylus Studio®
11. If you want Stylus Studio to save all open documents before running this tool, select
Save All documents before execution.

12. Click the OK button.

Using the Command Line

◆ To register a custom tool using the command line:

The format for the command line is:

struzzo /newCustomTool "Tool n:=Tooln; Args= value; Command=value;
Description=value; Initial Directory=value; Path=value; PromptArgs=value;
RedirectOutput=value; DoSaveAll=value"

Example:

struzzo /newCustomTool "Tool 0:=Tool 0;Description=Avalon Uploader;
Command=AVRPTLDR.exe;Args= ${FilePath}"

Arguments for the newCustomTool function are described in the following table:

Table 7. Properties for Registering Custom Tools

Name Description

Tool n: The full syntax for this property is Tool n:=Tool n, where n is some
number. The number, n, specifies the order in the Tools menu in
which the custom tool you are registering appears. You might use 0
for the first tool you register, 1 for the second, and so on. Valid
values are numbers starting with 0.

The first part (Tools n:=) is used to create a key in the Windows
registry. The second part (Tools n) is used as a prefix for other
entries in the registry key that correspond to this tool. The two
values should always be the same (Tools 1:=Tools 1, for example).

Args Command line arguments for the tool you are registering.

Command The absolute path for the command that runs your tool. This must be
a .exe, .bat, or .cmd file.

Description The tool name as you want it to appear on the Stylus Studio Tools
menu.
162 Stylus Studio User Guide

Defining Keyboard Shortcuts
Defining Keyboard Shortcuts
You can define a keyboard shortcut for many of the tasks you perform with Stylus Studio.
If you find that you repeatedly perform the same action, define a shortcut to speed your
work. You can use a keyboard shortcut right after you define it.

Initial Directory The working directory for the tool. This is the absolute path for the
directory that contains any files or directories needed by your
custom tool.

Path Any paths that need to be defined and that are not already defined in
your PATH environment variable.

PromptArgs Whether you want Stylus Studio to display the Parameters dialog
box each time this tool is run. Valid values are 0 (do not display the
Parameters dialog box) and 1 (display the Parameters dialog
box).

RedirectOutput Whether you want the output directed to the Stylus Studio Output
window. Valid values are 0 (do not redirect) and 1 (redirect).

DoSaveAll Whether you want Stylus Studio to save all open documents before
running this tool. Valid values are 0 (do not save) and 1 (save all).

Table 7. Properties for Registering Custom Tools

Name Description
Stylus Studio User Guide 163

Getting Started with Stylus Studio®
How to Define a Keyboard Shortcut

◆ To define a keyboard shortcut for a Stylus Studio task:

1. From the Stylus Studio menu bar, select Tools > Keyboard.

The Shortcut Keys dialog box appears.

2. In the Select a macro: field, select the macro for which you want to define a shortcut.

Figure 97. Defining Shortcut Keys

Tip When you select a macro, Stylus Studio displays a description of what that macro
does.
164 Stylus Studio User Guide

Defining Keyboard Shortcuts
3. Click Create Shortcut.

The Assign Shortcut dialog box appears.

4. Press the key or keys that you want to be the shortcut. For example, Ctrl+E, F7, Alt+P.

The Assign Shortcut dialog box displays a message indicating whether or not that
key combination is currently in use.

5. If the shortcut key is not already in use, click the OK button. Otherwise, try another
shortcut key.

Stylus Studio closes the Assign Shortcut dialog box.

6. Click OK in the Shortcut Keys dialog box.

Deleting a Keyboard Shortcut

◆ To delete a shortcut:

1. From the Stylus Studio menu bar, select Tools > Keyboard. The Shortcut Keys dialog
box appears.

2. In the Select a macro: field, select the macro you want to delete a shortcut for.

3. In the Assigned shortcuts field, click the shortcut you want to remove.

4. Click Remove.

5. Click OK in the Shortcut Keys dialog box.

Figure 98. Assigning a Shortcut Key
Stylus Studio User Guide 165

Getting Started with Stylus Studio®
Using Stylus Studio from the Command Line
Stylus Studio provides several command line utilities that allow you to perform Stylus
Studio operations, such as starting Stylus Studio and executing XML Diff. Command line
utilities are provided as a convenience for use during development and testing.

Available command line utilities, and where to find more information on them, are
described in the following table.

You can also execute DataDirect XML Converters (components that let you convert non-
XML like EDI and CSV to XML, and vice versa) from the command line. To learn more
about the DataDirect XML Converters for Java and .NET, see the DataDirect XML
Converters documentation at
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp.

Command Line Executables Location
The executables for Stylus Studio command line utilities are located in the \bin directory
where you installed Stylus Studio.

Invoking Stylus Studio from the Command Line
You use the Struzzo utility to invoke Stylus Studio from the command line and open a
particular file. Stylus Studio recognizes the file extension and opens the file in the editor
associated with that file type. If Stylus Studio is already running, the same instance is used
to open the file specified in the file parameter.

You can optionally use the stylesheet or XQuery parameter to create a scenario with the
stylesheet or XQuery you specify.

Table 8. Stylus Studio Command Line Utilities

Utility Name Description Where to Find More Information

struzzo Invokes Stylus Studio “Invoking Stylus Studio from the Command
Line” on page 166

StylusDiff Diffs two XML documents “Running the Diff Tool from the Command
Line” on page 243

StylusValidator Validates XML “Validating XML from the Command Line”
on page 167
166 Stylus Studio User Guide

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Using Stylus Studio from the Command Line
The Struzzo utility takes the following format:

Struzzo file [stylesheet or XQuery]

Table 9 describes the parameters for the Struzzo command.

Validating XML from the Command Line
You use the StylusValidator utility to validate XML from the command line.
StylusValidator uses the built-in Stylus Studio XML validator. All output from this
utility goes to stdout.

The StylusValidator utility takes the following format:

StylusValidator [-q] [-noval] [-schema] filename

Table 10 describes the parameters for the StylusValidator command.

Table 9. Struzzo Command Line Parameters

Parameter Description

file The path of the document you want to open in Stylus Studio. This document
is used as the source document in a scenario when you provide the
stylesheet or XQuery parameter.

[stylesheet or
XQuery]

The path of the stylesheet or XQuery you want to use to create a scenario.

Table 10. StylusValidator Command Line Parameters

Parameter Description

[-q] Quiet mode – errors are not printed to stdout.

[-noval] Checks only for well-formedness. Does not check for errors.

[-schema file] Validates the XML document against the XML Schema specified in the
file parameter.

filename The path of the XML document you want to validate.
Stylus Studio User Guide 167

Getting Started with Stylus Studio®
Managing Stylus Studio Performance
Stylus Studio uses the TEMP directory to store temporary files such as the translation in
UNICODE of the current XML or XSLT document. File systems are usually quite fast
when handling files that are in the range of a few hundred megabytes. Stylus Studio
performance should be smooth and quick when the TEMP windows environment variable
points to a location where

● There is a minimum of 1 gigabyte of free space.

● The host disk is reasonably fast.

Stylus Studio is regularly tested against files that are up to 120 MB. How well your
installation of Stylus Studio can create, open, and manipulate such large files, or even
larger files, depends on

● Available physical memory

● Dimension of the page file

● Current load of the machine

Troubleshooting Performance
Table 11, Performance Symptoms, summarizes performance symptoms you might
experience and where to find information on addressing them.

Changing the Schema Refresh Interval
As you edit an XML document, Stylus Studio displays a pop-up menu that lists the
elements and element attributes you can create. Stylus Studio retrieves this information
from the document’s schema. The frequency with which Stylus Studio retrieves this

Table 11. Performance Symptoms

Symptom See

XML editing is slow Changing the Schema Refresh Interval on page 168

Checking for Modified Files on page 169

Errors or crashes during XSLT
processing

Changing the Recursion Level or Allocated Stack Size on
page 170

Stylus Studio is slow to start Automatically Opening the Last Open Files on page 170
168 Stylus Studio User Guide

Managing Stylus Studio Performance
information can affect XML editing performance. The default refresh interval is 10
seconds.

If XML editing performance is slow, increase the refresh interval that Stylus Studio uses
to refresh the schema information.

◆ To change the refresh interval:

1. From the Stylus Studio menu bar, select Tools > Options.

The Options dialog box appears.

2. Click Module Settings > XML Editor > XML Settings.

The XML Settings page of the Options dialog box appears.

3. In the Refresh interval field, type a larger number.

4. Click OK.

Checking for Modified Files
When you are working with files that Stylus Studio must open through network
connections that might be slow, you might not want Stylus Studio to automatically check
for modified files. Turning off this option can improve XML editing performance.

◆ To turn off checking for modified files:

1. From the Stylus Studio menu bar, select Tools > Options.

The Options dialog box appears.

2. Click Application Settings if it is not already selected.

The Application Settings page of the Options dialog box appears.

3. If the Automatically check for externally modified files is selected, deselect it.

Alternatively, you can select Disable check on hidden files, which allows Stylus
Studio to skip these files. Hidden files are files that are in the Stylus Studio project or
the Other Documents folder but are not currently open in Stylus Studio.

4. Click OK.

Tip If the schema used by your document is almost never modified, you can safely
increase the interval to as much as 10,000 seconds.
Stylus Studio User Guide 169

Getting Started with Stylus Studio®
Changing the Recursion Level or Allocated Stack Size
If you are getting errors or crashes when you use the internal Stylus Studio XSLT
processor, there are two options you can change to fix this.

● The Maximum recursion level is the number of levels Stylus Studio allows you to
recurse on a template invocation.

● The Allocated stack size is the amount of memory allocated to the XSLT processing
thread stack.

◆ To change the recursion level or the allocated stack size:

1. From the Stylus Studio menu bar, select Tools > Options.

The Options dialog box appears.

2. Click Module Settings > XSLT Editor > XSLT Settings.

The XSLT Settings page of the Options dialog box appears.

3. Adjust the Maximum recursion level and the Allocated stack size as needed. For
information about how Stylus Studio uses these settings see “Options - Module
Settings - XSLT Editor - XSLT Settings” on page 1378.

4. Click OK.

See also “Managing Stylus Studio Performance” on page 168.

Automatically Opening the Last Open Files
When you start Stylus Studio, it automatically opens any files that were open the last time
you closed it. This feature can affect performance if many files were open when you last
closed Stylus Studio.

If Stylus Studio is taking a long time to start, you can do one of the following:

● Close most or all files before you shut down Stylus Studio.

● Turn off the option that automatically opens the files that were open the last time you
closed Stylus Studio.

◆ To prevent Stylus Studio from automatically opening documents:

1. From the Stylus Studio menu bar, select Tools > Options. The Options dialog box
appears.

2. Click Application Settings if it is not already selected. The Application Settings page
of the Options dialog box appears.
170 Stylus Studio User Guide

Configuring Java Components
3. If Open last documents automatically when Stylus Studio starts is selected, deselect
it. For information about how Stylus Studio uses this settings see “Options -
Application Settings” on page 1333.

4. Click OK.

Configuring Java Components
Several modules in Stylus Studio are written using Java, and therefore require either Java
runtime or Java compiler components to be installed on your computer. These Java
components, the Java Runtime Environment (JRE) and the Java Development Kit (JDK),
are available from Sun Microsystems and are installed separately from Stylus Studio.

You can install these components either before or after you install Stylus Studio. When
you start Stylus Studio, it attempts to identify the location of the Java runtime libraries
and compiler automatically.

This section identifies the Stylus Studio modules that require Java runtime and Java
compiler components, where you can download these Java components, and how to force
Stylus Studio to detect new or changed Java components.

This section covers the following topics:

● Stylus Studio Modules That Require Java

● Verifying the Current Java Virtual Machine

● Downloading Java Components

● Modifying Java Component Settings

Stylus Studio Modules That Require Java
The following modules in Stylus Studio require that Java runtime and/or Java compiler
components are installed on the machine on which you have installed Stylus Studio:

● Saxon XSLT and XQuery engines

● Built-n Java XSLT processor

● FOP

● Web Service Call Composer Axis client

● DataDirect XML Converters accessed via URL

● Sense:X in the Java editor
Stylus Studio User Guide 171

Getting Started with Stylus Studio®
Rather than trying to determine in advance which Stylus Studio modules you might use
in your XML application development, consider installing the JDK or JRE on your
machine.

Settings for Java Debugging

See “Debugging Java Files” on page 599 for more information on this topic.

Verifying the Current Java Virtual Machine
The Java Virtual Machine (JVM) interprets runtime commands and compiler instructions;
it is part of the Java installation. You can check to see the current version of the JVM
installation by selecting Help > About from the Stylus Studio menu:

The Java Virtual Machine field displays information about the JVM installed on your
machine.

Downloading Java Components
Java runtime and compiler components are available for download from Sun
Microsystems; they are packaged in the Java 2 Platform Standard Edition (J2SE).

Either of the following versions is compatible with Stylus Studio 2011:

● J2SE 1.4.2 (download it here: http://www.java.sun.com/j2se/1.4.2/download.html)

● J2SE 5.0 (download it here: http://www.java.sun.com/j2se/1.5.0/download.jsp)

Figure 99. Verifying the Current JVM Installation
172 Stylus Studio User Guide

Configuring Java Components
Modifying Java Component Settings
Properties for JVM and JDK components are displayed on the Java Virtual Machine page
of the Options dialog box, shown in Figure 100. When you start Stylus Studio, it
automatically detects the Java Virtual Machine (JVM) and compiler components installed
on your machine and sets the properties for these components accordingly.

Once these properties have values, Stylus Studio uses them until you either

● Use the auto detect feature to change them. You might want use auto detect if you
have been using Stylus Studio with the J2SE 1.4.2 and later install the J2SE 5.0, for
example.

● Change them manually. You can manually specify that Stylus Studio use a different
jvm.dll or javac.exe, for example.

How Auto Detect Works

The auto detect feature prompts Stylus Studio to fetch the settings from the registry setting
Current Version under the key HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Runtime
Environment to find the version, and then adds the version number to that same location
to get the settings.

Figure 100. Reset Java Properties in the Options Dialog Box
Stylus Studio User Guide 173

Getting Started with Stylus Studio®
Note that if you manually change your settings to use another local version of the JDK, it
may fail to load properly unless you also point the Current Version setting to match. This
is because the JVM itself might try to load DLLs from the location of the current version
instead of the location you specify.

About JVM Parameters

As a rule, you should never change the default values in the Parameter fields for the JVM
or the External JVM. This option exists to accommodate unusual configurations. In such
situations, Stylus Studio Technical Support might instruct you to change this value.

About JDK Parameters

The -g parameter instructs the compiler to add debugging information to the generated
.class file; it is set by default.

How to Modify Java Component Properties

◆ To modify Java component properties:

1. Start Stylus Studio if it is not already running, and select Tools > Options from the
menu.

The Options dialog box appears.

2. Select General > Application Settings > Java Virtual Machine.

3. If you want Stylus Studio to update Java component properties to the latest installed
version on you machine, click the Auto detect button.

Otherwise, make the changes manually.

4. Click OK.

5. If you made changes to any JVM properties, you need to restart Stylus Studio for
those changes to take effect.
174 Stylus Studio User Guide

Chapter 2 Editing and Querying XML
Stylus Studio makes it easy to create, edit, and query XML documents. Depending on the
structure of the data in your XML document, you can choose to work with raw XML text,
a DOM tree diagram, or a grid representation. Any changes you make in one view are
immediately visible in every other view. You can easily create an XML Schema or DTD
based on the content of your XML document if it is not already associated with a schema.

You can see other Stylus Studio video demonstrations here:
http://www.stylusstudio.com/xml_videos.html.

This section covers the following topics:

● “Creating XML Documents” on page 176

● “Using Document Wizards to Create XML” on page 177

● “Updating XML Documents” on page 178

● “Using the Text Editor” on page 181

● “Updating DOM Tree Structures” on page 195

● “Using the Grid Tab” on page 199

● “Diffing Folders and XML Documents” on page 215

● “Using Schemas with XML Documents” on page 246

● “Converting XML to Its Canonical Form” on page 249

● “Querying XML Documents Using XPath” on page 249

● “Printing XML Documents” on page 249

● “Saving XML Documents” on page 250

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the XML Editor video.
Stylus Studio User Guide 175

http://www.stylusstudio.com/videos/xmledit1/xmledit1.html
http://www.stylusstudio.com/videos/xmledit1/xmledit1.html
http://www.stylusstudio.com/xml_videos.html

Editing and Querying XML
Creating XML Documents
You can create XML documents in Stylus Studio manually, using the XML Editor, or
automatically, using document wizards, the Stylus Studio Custom XML Conversions
module, DataDirect XML Converters, and other features.

Using the XML Editor
To create an XML document using the XML Editor, select File > New > XML Document
from the Stylus Studio menu.

Stylus Studio displays a new, untitled document in the XML Editor. The document
contains only the XML declaration:

The XML Editor provides several views of an XML document, each on its own tab – Text,
Tree, Grid, and Schema. See “Updating an XML Document – Getting Started” on
page 50 for an overview of these XML editing tools. See “Updating XML Documents”
on page 178 for more detailed information.

Other Ways to Create XML
You can also create XML using

● Document wizards that convert HTML, DTD, and XML Schema to XML. See
“Using Document Wizards to Create XML” on page 177, later in this section.

● DataDirect XML Converters, which convert CSV, fixed-width, EDI, and other flat
file formats to XML. See “How XML Converters are Used in Stylus Studio” on
page 254.

● Custom XML conversions that you build using Stylus Studio’s Custom XML
Conversion module. See “Custom XML Conversions” on page 261.

<?xml version="1.0"?>

DataDirect XML Converters and the Stylus Studio Custom XML Conversions
module are available only in Stylus Studio XML Enterprise Suite.
176 Stylus Studio User Guide

Using Document Wizards to Create XML
Using Document Wizards to Create XML
Stylus Studio provides several document wizards that automatically create XML
documents from XML Schema, DTD, and HTML. This section describes how to work
with these document wizards; it covers the following topics:

● “How to Use a Document Wizard” on page 177

● “Creating XML from XML Schema” on page 177

● “Creating XML from DTD” on page 178

● “Creating XML from HTML” on page 178

How to Use a Document Wizard
Most document wizards operate in the same general fashion:

1. Select the document wizard you want to use.

2. Specify the file from which you want to create an XML document (an HTML file or
an XML Schema, for example).

3. Specify additional settings that will affect the resulting XML document (the root
node, for example).

4. Run the wizard.

Converted files are opened as new, untitled XML documents in the XML Editor.

All document wizards are listed in the Document Wizards dialog box. Select File >
Document Wizards to display this dialog box.

Creating XML from XML Schema
When you use the XML Schema to XML document wizard, you specify the XML Schema
from which you want to create an XML document, as well as its root node, and whether
or not you want to generate comments in the XML.

Note If the XML Schema contains an element defined using a built-in type, the instance of that
element in the XML document is created using the minimum value of the range specified
for that type. For example, if the XML Schema contains a <part> element defined as
type=”xs:integer”, the <part> element in the resulting XML document appears as
<part>-9223372036854775808</part>.
Stylus Studio User Guide 177

Editing and Querying XML
Creating XML from DTD
In addition to XML Schema, you can use a DTD to create an XML file. When you use the
DTD to XML document wizard, you specify the DTD from which you want to create an
XML document in the DTD File field. Next, specify the element that you want to be the
root element in the new XML document, and whether or not you want expand each
element only once (this results in a smaller XML document file).

Creating XML from HTML
You can create an XML document from an HTML file using the HTML to XML
document wizard. Simply specify the HTML file you want converted to XML and run the
document wizard.

Updating XML Documents

Stylus Studio provides Text, Tree, and Grid views for updating any XML document you
open. The view you choose for editing depends on how structured your data is and your
personal preferences. This section describes how to choose an XML document view to
work with and other features related to editing XML.

This section discusses the following topics:

● “Choosing a View” on page 179

● “Saving Your Work” on page 179

● “Ensuring Well-Formedness” on page 179

● “Reverting to Saved Version” on page 180

● “Updating Java Server Pages as XML Documents” on page 180

Tip Stylus Studio also has a document wizard that converts HTML to XSLT. See Creating a
Stylesheet from HTML on page 454.

The XML editor Grid tab is available only in Stylus Studio XML Enterprise Suite
and Stylus Studio XML Professional Suite.
178 Stylus Studio User Guide

Updating XML Documents
Choosing a View
You can add and modify the data and structure of an XML document in any view. When
you switch to a different view, any changes you made appear in the new view. To move
from view to view, click the Text, Tree, or Grid tab at the bottom of the document you are
working with.

To add contents to an empty XML document, consider the structure of the data you plan
to add. The Grid view is most useful for creating very structured data that includes
multiple instances of the same elements. The Tree view makes it easy to add many
different elements. In order to use it, however, the XML must be well-formed.

Each view of the document allows you to query the contents of the document. See
“Querying XML Documents Using XPath” on page 249.

A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

For More Information

To learn more about a specific XML view, see one of the following sections:

● “Using the Text Editor” on page 181

● “Updating DOM Tree Structures” on page 195

● “Using the Grid Tab” on page 199

Saving Your Work
The procedure for saving your work is the same regardless of which view you use to edit
XML – make sure your work is in the active window, and then select File > Save from the
Stylus Studio menu bar, or click Save in the Stylus Studio tool bar.

Ensuring Well-Formedness

◆ To ensure that your XML document is well formed, click the Tree tab at the bottom
of the XML editor window.

If the document is well formed, Stylus Studio displays the tree representation. If the
document is not well formed, Stylus Studio displays a message that indicates the reason

Watch it! You can view a video demonstration of the Grid tab by clicking the
television icon or by clicking this link: watch the XML Grid Editor video.
Stylus Studio User Guide 179

http://www.stylusstudio.com/videos/XMLGrid1/XMLGrid1.html
http://www.stylusstudio.com/videos/XMLGrid1/XMLGrid1.html
http://www.stylusstudio.com/xml_videos.html

Editing and Querying XML
the document is not well formed and the location of the error or omission. Correct the
document, and click the Tree tab.

If you are already viewing the Tree representation of your document, the document is well
formed. When you edit the Tree view, the XML that Stylus Studio generates is always
well formed.

Reverting to Saved Version
You might make some changes to an XML document and then decide that you do not
want to save them. In the Stylus Studio tool bar, click Reload . Stylus Studio displays
a message that warns you that you will lose any changes, and prompts you to confirm that
you want to reload the version of the document that is in the file system. After you
confirm, Stylus Studio displays the last saved version of the document.

Updating Java Server Pages as XML Documents

◆ To open a .jsp file as an XML document:

1. In the File Explorer, navigate to the JSP file you want to open.

2. Right click the file name, and select Open With from the shortcut menu.

3. Click XML Editor.
180 Stylus Studio User Guide

Using the Text Editor
Using the Text Editor
You use the Text tab of the XML editor to edit XML text. The Text tab provides the usual
tools you expect to find in a text editor. These tools are described in this section.

This section covers the following topics:

● Text Editing Features on page 182

● Use of Colors in the Text Tab on page 187

● Using the Spell Checker on page 189

● Moving Around in XML Documents on page 193

Figure 101. Text Tab in the XML Editor
Stylus Studio User Guide 181

Editing and Querying XML
Text Editing Features
This section describes some of the more common text editing tools and features in Stylus
Studio.

Simple Text Editing

Select the text you want to edit and then do any of the following:

● Click the right mouse button to display a pop-up menu of edit commands.

● Click the appropriate button in the Stylus Studio tool bar.

● Press the standard control keys to copy, cut, paste, undo, or redo.

You can select a portion of text and move it to a new location by dragging it. You can drag
text from one document to another. You can drag text from documents outside Stylus
Studio to a document in Stylus Studio.

Code Folding

Code folding is the ability to collapse three or more lines of code in XML-based editors.
For example, this code segment:

when collapsed, appears as this:

Code folding allows you to simplify the visual presentation of XML-based code; folding
does not affect the underlying code.

In editors in which code folding is supported, Stylus Studio displays a tree control in the
gutter to the left of editing canvas; this is the same area of the editor used to display line
numbers, debugging symbols, and back mapping symbols. By default, all code is
displayed.

<author>
 <first-name>Joe</first-name>
 <last-name>Bob</last-name>
 <award>Trenton Literary Review Honorable Mention</award>
</author>

<author>
182 Stylus Studio User Guide

Using the Text Editor
What You Can Fold

In XML-based editors, you can fold

● Internal DTD

● Comments

● CDATA

● XML elements

In the XQuery Source editor, you can fold

● Comments

● Expressions delimited by curly braces ({ and })

● XML elements

How to Fold Code

◆ To fold a segment of code, click the [-] symbol associated with that code.

When you fold code, Stylus Studio displays a boxed ellipsis symbol at the end of the line
of code you have folded, as shown here:

If you place the pointer in the ellipsis symbol, Stylus Studio displays a tool tip that shows
you the collapsed code. The amount of code that appears in the tool tip depends on the
area on your desktop you have given the Stylus Studio application.

Sense:X Speeds Editing

As you type, Sense:X prompts you with the possible tags that you can insert at a given
location based on the XML Schema associated with the document you are editing. As
soon as you type a tag’s open bracket, Stylus Studio displays a scrollable list of the

Figure 102. Example of Folded Code

Tip You can unfold a folded segment by double-clicking the tool tip or by clicking [+].
Stylus Studio User Guide 183

Editing and Querying XML
elements that are allowed at that location of the document. As shown in Figure 103, there
are two entries for book, for example:

If you choose the first book item (), Stylus Studio completes the <book tag for you.
If you choose the second book item (), Stylus Studio completes the entire XML
fragment for you, including all attributes and default values described in the associated
XML Schema, as shown in Figure 104:

Use the arrow key to move the selection, and press Enter to insert the value you want.

Indent

Indent XML tags to show the hierarchy relationships. Click Indent XML Tags . Stylus
Studio indents all text in the active XML document window.

Figure 103. Choose Element Name or Element Fragment

Figure 104. Complete XML Fragment Inserted Using Sense:X

Note After you click the Indent XML Tags button, you cannot automatically undo or redo any
changes you have been making. After you make more changes, you can press Ctrl+Z and
Ctrl+Y to automatically undo and redo those changes until you click Indent XML tags
again.
184 Stylus Studio User Guide

Using the Text Editor
Line Wrap

Stylus Studio automatically wraps lines whose length exceeds 16k characters. You can
turn off this feature by selecting Disable from the Line wrap field on the Editor General
page of the Options dialog box (Tools > Options).

You can override line wrap settings by selecting Edit > Wrap Lines from the Stylus Studio
menu or by clicking the wrap lines button on the tool bar().

When line wrapping is on, Stylus Studio wraps lines to fit in the available window; the
place at which the line wraps moves as the width of the window changes. Green arrows,
as shown in Figure 105, indentify lines that have wrapped.

Spell Checking

By default, Stylus Studio spell checks text as you type using an internal spell checker.
Words the spell checker believes are misspelled (or repeated) are underlined with a
squiggly line, as shown in Figure 106.

For more information, see Using the Spell Checker on page 189.

Figure 105. Green Arrows Identify Lines That Have Wrapped

Figure 106. Typographical Errors Are Highlighted by the Spell Checker
Stylus Studio User Guide 185

Editing and Querying XML
Font

You can change the font of the text display in Stylus Studio. This change affects only the
Stylus Studio display. Beyond personal preference, you might choose to change the font
for localization purposes – the available fonts are the fonts that can display the characters
in your XML file. For example, in a Japanese file, only two or three font names appear.
Click Font Change to display a list of fonts.

Comments

Select the text that you want to be a comment. In the Stylus Studio tool bar, click
Comment/Uncomment Selection . To remove comment tags, select the commented
text, and click Comment/Uncomment Selection.

Bookmarks

You can set bookmarks in the XML display. Bookmarks allow you to jump to important
lines in your file. See “Using Bookmarks” on page 594.

Search/Replace

Search for and replace text you specify. Click Find or Replace in the tool bar.
You can also enable Find by pressing Ctrl + F.

When you enable Find, Stylus Studio displays the word in which the cursor is located –
whether the cursor is within the word or immediately adjacent to it – in the Find what field

Tip To select an entire line, click the gray area to the left of the line you want to select.

Figure 107. Find Dialog Box
186 Stylus Studio User Guide

Using the Text Editor
of the Find dialog box. Similarly, any text you have selected – whole, partial, or multiple
words – is displayed in the Find what field.

Note that in addition to specifying case, you can also indicate whether or not you want to
use regular expressions in the Find what field and Replace with field. This allows you, for
example, to search for a line and replace it with multiple lines, as shown in the following
example.

See “Sample Regular Expressions” on page 298 for examples of regular expressions and
to learn about other sources of information.

Use of Colors in the Text Tab
Stylus Studio text editors use colors to distinguish the types of data in XML documents.
The default colors for the XML Editor are described in the Table 12.

Tip You can scroll through a list of the other words you have searched for by clicking the
down arrow when the Find what field is active.

Figure 108. Replacing Text Using Regular Expressions

Table 12. Text Colors in Stylus Studio

Color Type of Data

White Document background

Royal blue Markup

Black XML declaration and text node contents

Pale blue Schema definition
Stylus Studio User Guide 187

Editing and Querying XML
How to Change Colors

You can set colors for the text editors associated with different document types (XML,
XQuery, XSLT, and so on) individually.

◆ To change colors:

1. Select Tools > Options to display the Options dialog box.

2. Click Editor Format.

3. Select the editor type from the Editor drop-down list.

4. Set the font, size, and color for different document categories as desired.

5. Click OK to close the Options dialog box.

Purple Element names defined in the DTD

Red Attribute names

Dark blue Attribute values

Orange Element names not defined in the DTD

Table 12. Text Colors in Stylus Studio

Color Type of Data
188 Stylus Studio User Guide

Using the Text Editor
Using the Spell Checker
You can use the Stylus Studio Spell Checker with all of Stylus Studio’s text-based editors
(like editors for XQuery and XSLT, for example) to both actively and passively check
your documents for typographical errors such as misspellings and repeated words.

Default Spell Checking

The Spell Checker is on by default for most editors. This means that when you open a
document in a Stylus Studio text editor, and as you type in that document, Stylus Studio
checks the document for typographical errors. Words that the Spell Checker identifies as
possibly containing a typographical error are underlined with a red “squiggle”, like the
word Worx shown in Figure 106.

Manual Spell Checking

At any time, you can manually spell check a document by selecting Tools > Check
Spelling from the Stylus Studio menu. When you do this, Stylus Studio starts the Spell
Checker, which reads through the current document. When it finds a possible
typographical error, Stylus Studio displays the Spelling dialog box, as shown in
Figure 109.

Figure 109. Stylus Studio’s Spell Checker

Tip You can right-click a word with a squiggle and select Spell Checker Suggestions for to
display a list of suggestions for the word identified by the Spell Checker.
Stylus Studio User Guide 189

Editing and Querying XML
Using the Spelling dialog box, you can:

● Ignore the current occurrence of the word the Spell Checker has selected

● Ignore all occurrences of the word

● Replace the current occurence of the word

● Replace all occurrences of the word

● Add new words to the dictionary

● Edit existing dictionary content

Specifying Spell Checker Settings

You specify Spell Checker settings using the Spell Checking page of the Options dialog
box.

Spell Checker settings include

● Words to skip based on certain characteristics – you might decide to skip e-mail
addresses and URLs, for example. Skipped words are not considered by the Spell
Checker.

● Characteristics in words that you wish to ignore – you might not care about case or
accents marks for spelling purposes. In this case, two words that share the same

Figure 110. Options for the Spell Checker
190 Stylus Studio User Guide

Using the Text Editor
spelling, except for the characteristic you specify, are considered to be equivalent
(même and meme (accent), or BMW and bmw (case), for example).

● The type of dictionary you want the Spell Checker to use when providing alternatives
to the typographical errors it locates. Settings range from Abriged to Unabridged and
show the fewest to the most alternatives, respectively. The Abridged setting results in
fewer alternative suggestions for misspelled words than Standard (the default) or
Unabridged, for example, but it requires less time to spell check a given document.

● The layout of the keyboard you are using. The Spell Checker uses this information to
offer meaningful suggestions to words you might have mistyped.

How to Spell Check a Document

◆ To spell check document:

1. Select Tools > Check Spelling from the menu.

Stylus Studio starts checking the document for typographical errors. If it finds a
typographical error, it displays the Spelling dialog box.

2. Once you select an action, the Spell Checker continues checking the document.

When you have addressed all identified errors in the document (either by replacing,
correcting, or ignoring them), the Spell Checker stops.

If You Want To Then

Replace the misspelled word with the word
suggested by the Spell Checker

Click Replace. Click Replace All to
replace all occurrences of that word.

You can also replace the misspelled word
with another word selected from the
Alternatives list box, or with a word you
type in the Replace with field.

Ignore the misspelled word Click Ignore. Click Ignore All to ignore
all occurrences of that word.

Add the misspelled word to the personal
dictionary

Click Add.

Edit the personal dictionary Click Edit. See Using the Personal
Dictionary on page 192 for more
information.
Stylus Studio User Guide 191

Editing and Querying XML
Using the Personal Dictionary

The Stylus Studio Spell Checker comes with its own dictionary. You can create a
personal dictionary and fill it with your own entries. Personal dictionaries are used in
conjuction with the Spell Checker dictionary across all Stylus Studio editors.

To add entries to the personal dictionary, you can

● Type entries individually

● Import lists formatted as .txt files

● Automatically add entries while you check the document

The personal dictionary is stored in the c:\Documents and Settings\username\
Application Data\Stylus Studio directory.

◆ To add a word to the personal dictionary:

1. Start the Spell Checker and display the Personal Dictionary Editor dialog box (click
Edit on the Spelling dialog box).

2. Enter a word in the New Word field.

3. Click the Add button.

The word appears in the Words in Personal Dictionary list box.

4. Click the Close button.

◆ To import lists into the personal dictionary:

1. Start the Spell Checker and display the Personal Dictionary Editor dialog box (click
Edit on the Spelling dialog box).

2. Click the Import button.

The Open dialog box appears.

Warning Do not modify the files in this directory by hand. Use the Personal Dictionary Editor
dialog box to make any changes to the personal dictionary.

Tip You can also add any word identified as a misspelling to the personal dictionary by
pressing the Add button on the Spelling dialog box.

Note Lists you import into the personal dictionary must be unformatted .txt files, with each
entry on its own line. Do not use tab- or comma-separated files.
192 Stylus Studio User Guide

Using the Text Editor
3. Select the .txt file you want to import into the personal dictionary and click Open.

The words in the list you import appear in the Words in Personal Dictionary list box.

4. Click the Close button.

◆ To export the personal dictionary to a .txt file:

1. Start the Spell Checker and display the Personal Dictionary Editor dialog box (click
Edit on the Spelling dialog box).

2. Click the Export button.

The Save As dialog box appears.

3. Navigate to the directory in which you want to save the copy of the personal
dictionary.

4. Enter a name in the File name field.

5. Click Save.

The contents of the personal dictionary is saved to the text file.

6. Click the Close button.

Moving Around in XML Documents
Stylus Studio provides several tools for easily moving around in an XML document.

Line Numbers

To go to a particular line, click Go to a specified location in the Stylus Studio tool
bar. Stylus Studio displays the Go To dialog box. Type the number of the line you want
to go to and click OK. The cursor moves to the line you specified.

Stylus Studio displays line numbers and column numbers in the lower right corner of the
Stylus Studio window. If you want, you can set a Stylus Studio option that displays line
numbers to the left of each line in the editor you are using.

To do this, from the Stylus Studio menu bar, select Tools > Options. In the Options page
that appears, click Editor General. In the Editor field, select the editor in which you want
to display line numbers. Select the Show Line Numbers check box.
Stylus Studio User Guide 193

Editing and Querying XML
Bookmarks

To quickly focus on a particular line, insert a bookmark for that line. You can insert any
number of bookmarks. You can insert bookmarks in any document that you can open in
Stylus Studio.

To insert a bookmark, click in the line that you want to have a bookmark. Then click
Toggle Bookmark in the Stylus Studio tool bar. Stylus Studio inserts a turquoise box
with rounded corners to the left of the line that has the bookmark. To move from
bookmark to bookmark, click Next Bookmark or Previous Bookmark . See
“Using Bookmarks” on page 594.

Tags

To move to the closing tag for an element, click in the tag name for the element. In the
Stylus Studio tool bar, click Go to Matching Tag . Stylus Studio moves the cursor to
the closing tag for the element you clicked.

Find

In any view of an XML document, and in the XSLT Source view of a stylesheet, you can
click Find in the Stylus Studio tool bar. In the Find dialog box that appears, specify
the string you want to search for and click Find Next. Stylus Studio highlights the first
occurrence of the string you entered. In the Text view, you can specify that you want
Stylus Studio to highlight all instances.

Depending on which view you are examining, Stylus Studio allows you to specify
constraints on the search. The constraints you can specify include the following:

● Match whole word only

● Match case

● Find a regular expression

● Search inside only element tags, only element values, only attribute names, and/or
only attribute values

To learn more about regular expression syntax, visit
http://www.boost.org/libs/regex/doc/syntax.html.
194 Stylus Studio User Guide

http://www.boost.org/libs/regex/doc/syntax.html

Updating DOM Tree Structures
Updating DOM Tree Structures
To update the DOM tree for an XML document, click the Tree tab at the bottom of the
window that contains the document.

While you are editing, if the display does not appear to correctly represent the current tree,
click Reload Document in the main tool bar. If you want to perform a certain action
and Stylus Studio has grayed out the button for that action, try clicking Refresh first.

To save your file, select File > Save from the Stylus Studio menu bar or click Save in the
Stylus Studio tool bar.

This section discusses the following topics:

● “Displaying All Nodes in the Tree View” on page 196

● “Adding a Node in the Tree View” on page 196

● “Deleting a Node in the Tree View” on page 197

● “Moving a Node in the Tree View” on page 197

Figure 111. Tree Tab in XML Editor
Stylus Studio User Guide 195

Editing and Querying XML
● “Changing the Name or Value of a Node in the Tree View” on page 197

● “Obtaining the XPath for a Node” on page 198

Displaying All Nodes in the Tree View
To expand a tree so that you can see all the nodes in the tree, click the root node and then
press the asterisk (*) key in the numeric key pad. To expand any particular node, click that
node and press * in the numeric key pad.

The default tree view of your document does not include nodes that contain only blank
spaces, line feeds, or tabs. To toggle between the default view and a view that does display
all nodes, click White Space in the Stylus Studio tool bar. This view is most helpful
when you are operating on the DOM and need to know the exact structure of the tree.

Adding a Node in the Tree View
Along the left side of the window that contains your DOM tree, there are buttons that
represent the types of nodes you can add to your document. The procedure for adding a
node is similar for all types of nodes.

◆ To add an element:

1. Click the element that you want to be the parent of the new element, or click an
element that you want to be a sibling of the new element.

2. To add a child element, click New Element . To add a sibling element, hold down
the Shift key and click New Element.

Alternative: To add a child element, press Ctrl+E. To add a sibling element, press
Ctrl+Shift+E.

 If your XML document specifies a DTD, Stylus Studio displays a list of the elements
that you can add at that location. If your document is associated with an XML Schema
or does not specify a DTD, Stylus Studio prompts you to specify the name of the new
element.

3. Double-click the element you want to add, or type the name of the new element and
press Enter. If you added a child node, Stylus Studio adds it as the last child.

4. If the new element contains data, type a value for the new element and press Enter.
196 Stylus Studio User Guide

Updating DOM Tree Structures
Deleting a Node in the Tree View
Along the left side of the window that contains your DOM tree, there are buttons that
represent the types of nodes you can add to your document. The procedure for deleting a
node is similar for all types of nodes.

◆ To delete a node:

1. Click the node you want to delete.

2. Click Delete Node .

Moving a Node in the Tree View
Along the left side of the window that contains your DOM tree, there are buttons that
represent the types of nodes you can add to your document. The procedure for moving a
node is similar for all types of nodes.

◆ To move a node:

1. Click the node you want to move.

2. Click the up and down arrows at the top of the document window to move the node
up or down the tree.

Alternative: Drag the node to its new location.

Changing the Name or Value of a Node in the Tree View
Along the left side of the window that contains your DOM tree, there are buttons that
represent the types of nodes you can add to your document. The procedure for renaming
a node is similar for all types of nodes.

◆ To rename a node:

1. Click the node you want to rename.

2. Click Change Name . If your document specifies a DTD, Stylus Studio displays
a list of the possible names. If your document does not specify a DTD, Stylus Studio
opens an edit field.

3. Double-click the new name, or type the new name and press Enter.
Stylus Studio User Guide 197

Editing and Querying XML
◆ To change the value of a node:

To change the value of a node:

1. Click the node whose value you want to change.

2. Click Change Value . Stylus Studio displays an update field.

3. Type the new value and press Enter.

Obtaining the XPath for a Node

◆ To obtain the XPath expression that returns a particular node:

1. In the XML editor, click the Tree tab.

2. Right-click the node for which you want the XPath expression.

3. In the shortcut menu that appears, click Copy XPath Query to Clipboard.

4. Press Ctrl+V to paste the XPath expression where you want it.
198 Stylus Studio User Guide

Using the Grid Tab
Using the Grid Tab

The Grid view of an XML document is useful for structured data – it is a convenient way
to view and work with documents that contain multiple instances of the same type of
element.

The XML Editor Grid tab is available only in Stylus Studio XML Enterprise Suite
and Stylus Studio XML Professional Suite.

Figure 112. Grid View of books.xml
Stylus Studio User Guide 199

Editing and Querying XML
This section describes the features of the Grid tab and how to use it to edit XML
documents. This section covers the following topics:

● “Layout of the Grid Tab” on page 200

● “Features of the Grid Tab” on page 201

● “Moving Around the Grid Tab” on page 205

● “Working with Rows” on page 207

● “Working with Columns” on page 208

● “Working with Tables” on page 211

A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

Layout of the Grid Tab
The Grid tab consists of a tool bar and a display area. The tool bar has buttons to perform
actions and operations on both the grid itself and on the underlying XML document
represented in the grid. An example of the former is the ability to show the child elements
of the document’s root element; they are hidden by default. An example of the latter is the
ability to add a new instance of an element or to change a value. These operations are also
accessible from the XML > Grid Editing menu, as well as from the grid shortcut menu
(right-click on the grid).

The tool bar also includes a query field, which allows you to enter an XPath expression
to query the XML document. Results are displayed in the Query Output window, which
appears when you run the query if it is not already displayed. See “Querying XML
Documents Using XPath” on page 249 for more information on this feature.

The display area shows the XML document, both its structure and content, rendered in a
tabular, or grid format.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the XML Grid Editor video.
200 Stylus Studio User Guide

http://www.stylusstudio.com/videos/XMLGrid1/XMLGrid1.html
http://www.stylusstudio.com/videos/XMLGrid1/XMLGrid1.html
http://www.stylusstudio.com/xml_videos.html

Using the Grid Tab
Features of the Grid Tab
This section describes the features of the Grid tab. It covers the following topics:

● “Expanding and Collapsing Nodes” on page 201

● “Collapsing Empty Nodes” on page 202

● “Renaming Nodes” on page 203

● “Resizing Columns” on page 204

● “Showing Row Tag Names” on page 204

Expanding and Collapsing Nodes

When you first display a document in the Grid tab, the document is collapsed so that it
shows just the root element (here it is <books>) and its name attribute (My books), as shown
in Figure 113.

A plus sign displayed to the left of the node name indicates that this node has child nodes.
You can click the plus sign to display a subgrid that displays the child nodes, as shown in
Figure 114.

Figure 113. Default Display – Document Elements Are Collapsed

Figure 114. Click Plus Signs to Expand Collapsed Tables
Stylus Studio User Guide 201

Editing and Querying XML
You can continue to drill down in this fashion to view all values.

◆ To expand a node, click the plus sign ().

Collapsing Empty Nodes

Some nodes in a document are simply containers – they have no content of their own. An
example of a container node is the <authors> element in books.xml. The <authors>
element is simply a container for one or more <author> elements, as shown in this excerpt
of books.xml:

To streamline the display, Stylus Studio hides the tables that represent container nodes.
Information about container nodes is displayed in the child node’s header. Figure 115
shows the default display for the author element. Notice that the header,
book/authors/author, contains information about the container node, authors.

<authors>
<author>David A. Chappel</author>
<author>Tyler Jewell</author>

</authors>

Figure 115. Table Headers Show Full Path
202 Stylus Studio User Guide

Using the Grid Tab
If you want, however, you can display the tables associated with container nodes, as
shown in Figure 116.

The table associated with the authors node now appears in the grid; it is empty (it has no
rows) because it is a container. The elements it contains are displayed in their own table,
authors/author.

◆ To display container nodes, click Simplified View ().

This action is also available from the XML > Grid Editing menu and from the grid shortcut
menu.

Renaming Nodes

You can rename container nodes directly in the grid.

◆ To rename a node:

1. Double-click the header that represents the node you want to rename.

The node name is selected.

2. Type the name you want to use for the node.

3. Press Enter (or click elsewhere in the grid or grid background).

Figure 116. Container Nodes Are Hidden by Default
Stylus Studio User Guide 203

Editing and Querying XML
Resizing Columns

When you expand a node, Stylus Studio displays it in uniform columns. You can resize
columns to any width you prefer by dragging the handle on the right side of the column
header, as shown in Figure 117.

◆ To resize a column, drag the handle on the right side of the column header.

Showing Row Tag Names

In the grid view of a structured XML document, each child element of a node corresponds
to a row in a table. For example, the <books> node of books.xml contains nine child
elements; each row is an instance of the <book> element. To preserve space in the grid, the
tag names of child elements are not displayed as a separate column in the table. Rather,
as shown in Figure 114, this information is displayed in the table header itself.

If you want, you can display the tag name for child elements in their own columns, as
shown in Figure 118.

Figure 117. Resize Columns by Dragging the Right Handle

Figure 118. Displaying the Root’s Child Element
204 Stylus Studio User Guide

Using the Grid Tab
◆ To toggle the display of child element names, click Toggle Row Tag Name ().

This action is also available from the XML > Grid Editing menu.

Moving Around the Grid Tab
You can move around the grid using the mouse (click where you want to go) and the
keyboard. Keyboard navigation is presented in the following table.

Selecting Items in the Grid
When you select a cell in a table:

● The row is selected; you can perform row-oriented actions like changing the row’s
order in the table. You can also select a row by clicking the plus sign to the left side
of the row.

● The column is selected; you can perform column-oriented actions like adding a new
column or renaming an existing one.

● The cell gets focus.

Table 13. Keyboard Navigation in the Grid

Key Action

Up/Down arrow keys Moves the row highlight in the direction of the arrow key you press.

Left/Right arrow keys Moves the focus from one cell to the next, in the direction of the
arrow key you press.

Page Up Moves the row highlight to the root node’s attribute.

Page Down Moves the row highlight to the last row in the document.

Tab Moves the focus forward to the next cell in the row; moves to the
first cell of the next row when you hit the last cell in a row.

Shift + Tab Moves the focus backward to the previous cell in the row; moves to
the last cell of the previous row when you hit the first cell in a row.

Tip Pressing Enter places a selected cell in Edit mode.
Stylus Studio User Guide 205

Editing and Querying XML
How Grid Changes Affect the XML Document
When you make a change to the document structure or content on the Grid tab, those
changes are reflected immediately in the underlying XML document. You can see your
changes affect the document on the Text tab.

Consider the following excerpt from books.xml.

If you move the rows in the authors table, for example, as shown in Figure 119,

the underlying XML changes accordingly:

Types of Changes that Affect the Document

The following changes, all of which can be made using Grid tab, affect the underlying
XML document:

● Adding, deleting, reordering rows

● Adding, deleting, reordering, and renaming columns

● Adding, deleting, reordering, and sorting tables

● Changing element and attribute values

● Renaming container elements

Changes you make affect the current instance only. For example, in the example shown
in Figure 119, only that instance of the nested table is affected. If you add a column to
books/book, however, every instance of books/book gets that new column.

<authors>
<author>David A. Chappel</author>
<author>Tyler Jewell</author>

</authors>

Figure 119. Moving a Row Affects XML

<authors>
<author>Tyler Jewell</author>
<author>David A. Chappel</author>

</authors>
206 Stylus Studio User Guide

Using the Grid Tab
Working with Rows
Stylus Studio provides several features to help you work with table rows in the Grid tab.
Changes you make to tables in the Grid tab, such as adding a new row or modifying a
value, are reflected in the underlying XML document.

This section covers the following topics:

● “Reordering Rows” on page 207

● “Adding and Deleting Rows” on page 207

Reordering Rows

You can move rows up and down within the same table. Changes you make to row order
affect the element order in the underlying XML document.

◆ To move a row:

1. Select the row you want to move.

2. Click the Move Up () or Move Down () button to move the row to the desired
location in the table. These actions are also available from the XML > Grid Editing
menu and from the grid shortcut menu.

Adding and Deleting Rows

You can add and delete rows in a table. Changes you make to the table in this way affect
the number of instances of the element in the table. When you add a row, you can insert
it in the table above or below the currently selected row.

◆ To add a row:

1. Select the row next to which you want to insert a new row.

2. Click the Insert Row Before () or Insert Row After () button to add the new row
to the table. These actions are also available from the XML > Grid Editing menu and
from the grid shortcut menu.

The row is added to the table.

Tip You can move rows up and down within a table.
Stylus Studio User Guide 207

Editing and Querying XML
◆ To delete a row:

1. Select the row you want to delete.

2. Click Delete (). This action is also available from the XML > Grid Editing menu
and from the grid shortcut menu.

The row is deleted from the table.

Working with Columns
Stylus Studio provides several features to help you work with table columns in the Grid
tab. Changes you make to tables in the Grid tab, such as adding a new column or
reordering existing columns, are reflected in the underlying XML document.

This section covers the following topics:

● “Selecting a Column” on page 208

● “Adding Columns” on page 209

● “Deleting Columns” on page 209

● “Reordering Columns” on page 209

● “Renaming Columns” on page 210

● “Changing a Value” on page 211

Selecting a Column

Column operations can be performed when you select any cell in a column. When a cell
(and, therefore, its column) is selected, it is highlighted with a yellow outline. As shown
in Figure 120, the <title> column is selected – the cell containing Java Message Service
is the one that is highlighted.

◆ To select a column, click any cell in the column you wish to select.

Figure 120. Selected Cells are Highlighted in Yellow
208 Stylus Studio User Guide

Using the Grid Tab
Adding Columns

You can add two types of columns to tables in the Grid tab – attribute columns and
element columns. The procedure for adding both types of columns is the same. When you
add a column, it is inserted immediately after the last column of its type. You can move
columns after you create them.

◆ To add a column:

1. Select the row in which you want to add a column.

2. Click Add Attribute Column () or Add Element Column (). These actions are
also available from the XML > Grid Editing menu and from the grid shortcut menu.

The column is added to the table.

3. If you want, move the column to a new location in the row. See “Reordering
Columns” on page 209.

Deleting Columns

◆ To delete a column:

1. Select a cell in the column you want to delete.

A yellow border appears around the cell you select.

2. Click Delete Column (). This action is also available from the XML > Grid Editing
menu and from the grid shortcut menu.

The column is deleted from the table.

Reordering Columns

You can reorder columns in the grid by dragging them to the position you desire.

◆ To reorder a column:

1. Place the pointer on the left handle in the column header.

2. Press and hold mouse button one.
Stylus Studio User Guide 209

Editing and Querying XML
The cursor changes shape, as shown here.

3. Drag the column to the location in the row you want.

4. Release the mouse button.

The column is placed in the new location within the row.

Renaming Columns

You can rename columns in the grid. This has the effect of renaming the corresponding
attribute or element name in the underlying XML document.

◆ To rename a column:

1. Select a cell in the column you want to rename.

A yellow border appears around the cell you select.

2. Click Rename Column (). This action is also available from the XML > Grid Editing
menu and from the column shortcut menu.

The column is renamed.

Figure 121. Moving a Column

Note You cannot rename the root element from the Grid tab.
210 Stylus Studio User Guide

Using the Grid Tab
Changing a Value

You can change element and attribute values.

◆ To change a value:

1. Double-click the cell whose value you want to change.

The cell field becomes editable, as shown here.

2. Edit the value as required.

3. Press Enter.

Working with Tables
Stylus Studio provides several features to help you work with tables in the Grid tab.
Changes you make to tables in the Grid tab, such as adding a nested table, are reflected in
the underlying XML document.

This section covers the following topics:

● “Adding a Nested Table” on page 212

● “Moving a Nested Table” on page 213

● “Deleting a Table” on page 213

● “Sorting a Table” on page 214

● “Copying a Table as Tab-Delimited Text” on page 214

Figure 122. Changing a Value
Stylus Studio User Guide 211

Editing and Querying XML
Adding a Nested Table

You add nested tables to a document in the Grid tab using the Add Nested Table dialog
box, shown in Figure 123. This dialog box allows you to specify the path to the root for
the new table, a row element name, and the number of rows.

A nested table is created as a child of the current element. The nested table shown in
Figure 124, myTable, was created as a child of the <book> element.

Nested tables are created with two default rows, which use the element name you provide
in the Row Element Name field of the Add Nested Table dialog box. Rows get a default
text value of Row n text, where n is an incrementing value starting with 1. You specify
the number of rows using the Number of rows field.

Figure 123. Add Table Dialog Box

Figure 124. Default Nested Table
212 Stylus Studio User Guide

Using the Grid Tab
◆ To add a nested table:

1. Select the element to which you want to add a nested table.

2. Click Add Nested Table (). This action is also available from the XML > Grid
Editing menu and from the grid shortcut menu.

The Add Nested Table dialog box appears.

3. Optionally, specify the path to the root. If you leave this field blank, the nested table
is created as a child of the current element.

4. Enter a row element name.

5. Optionally, change the number of default rows.

6. Click OK.

The nested table is added to the document and appears in the grid.

Moving a Nested Table

You can change the order of nested tables within a row.

◆ To move a nested table:

1. Select the heading of the nested table you want to move.

2. Click the Move Up () or Move Down () button to move the table to the desired
location. These actions are also available from the XML > Grid Editing menu and from
the grid shortcut menu.

Deleting a Table

◆ To delete a table:

1. Select the heading of the table you want to delete.

2. Click Delete (). This action is also available from the XML > Grid Editing menu
and from the grid shortcut menu.

The table is deleted from the document.
Stylus Studio User Guide 213

Editing and Querying XML
Sorting a Table

You can sort tables on any column in ascending or descending order.

◆ To sort a table:

1. Select a cell in the column on which you want to sort the table.

2. Click the Sort Ascending () or Sort Descending () button to sort the table rows
in ascending or descending order, respectively. These actions are also available from
the XML > Grid Editing menu and from the grid shortcut menu.

The table rows are sorted based on the order you select.

Copying a Table as Tab-Delimited Text

You can copy a tab-delimited text version of a table to the clipboard. This makes it
possible to paste document contents from the grid into spreadsheets and other editors that
can manage tab-delimited files. Figure 125 shows books/book in books.xml pasted into
Microsoft Excel, for example.

Note that when you use this feature, the entire table is copied – column headings (element
and attribute names) are not distinguished from cell contents (element and attribute
values) in the spreadsheet.

Tip You can also display sort options by right-clicking the column heading.

Figure 125. Pasting a Table into a Spreadsheet
214 Stylus Studio User Guide

Diffing Folders and XML Documents
◆ To copy a tab-delimited table to the clipboard:

1. Select the heading of the table you want to copy.

2. Select XML > Grid Editing > Copy as Tab-Delimited from the menu. This action is also
available from the grid shortcut menu.

Diffing Folders and XML Documents

During application development, it can be useful to be able to compare two or more XML
documents, or to compare the contents of two folders, in order to identify the type and
number of differences between them. The process of comparing one document (or folder)
with another is referred to as diffing. Stylus Studio provides utilities for diffing folders and
documents.

A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

This section covers the following topics:

● “Overview” on page 216

● “Diffing Folders” on page 221

● “The XML Diff Viewer” on page 225

● “Diffing a Pair of XML Documents” on page 232

● “Diffing Multiple Documents” on page 234

● “Modifying Default Diff Settings” on page 239

● “Running the Diff Tool from the Command Line” on page 243

XML differencning is available only in Stylus Studio XML Enterprise Suite and
Stylus Studio XML Professional Suite.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the XML Diff video.
Stylus Studio User Guide 215

http://www.stylusstudio.com/videos/xmldiff1/xmldiff1.html
http://www.stylusstudio.com/videos/xmldiff1/xmldiff1.html
http://www.stylusstudio.com/xml_videos.html

Editing and Querying XML
Overview
Stylus Studio’s Diff tool lets you easily compare two or more versions of the same
document in the XML Diff Viewer (as shown in Figure 126), or the contents of two
folders (as shown in Figure 130).

Customizable color-coding lets you quickly determine how one document differs from
another – green, for example, identifies objects (such as elements and attributes) that are
present in the target document, but which do not exist in the source document. When you
hover the pointer over symbols displayed in the side bars of the source and target
document windows, Stylus Studio displays a tool tip that indicates the specific nature of
the change.

This section covers the following topics:

● “Sources and Targets” on page 217

● “The Diff Configuration File” on page 217

● “What Diffs Are Calculated?” on page 217

● “Tuning the Diffing Algorithm” on page 218

● “When Does the Diff Run?” on page 219

Figure 126. Example of Diffed Documents in the XML Diff Viewer
216 Stylus Studio User Guide

Diffing Folders and XML Documents
● “Running the Diff Manually” on page 220

● “Symbols and Background Colors” on page 220

Sources and Targets

When you use Stylus Studio to diff documents (or folders), you select a source and a
target. Stylus Studio considers the source document or folder to be the baseline, or current
standard; the target document or folder is assumed to be some other version (it might be
older or newer, for example) of the source. The Stylus Studio Diff tool illustrates how this
other version, the target, differs from the source (or sources) you have selected.

The Diff Configuration File

You can save the information associated with a given XML diff session in a diff
configuration file. Diff configuration files make it easy to perform a diff on the same set
of XML documents over time. Examples of the information saved with the diff
configuration file include the URLs of the source and target documents, and any settings
made on the XML Diff menu or tool bar. Diff configuration files are created with a .dff
extension.

Changes made to the source and target documents are detected by Stylus Studio the next
time you open the diff configuration file, allowing you to diff the files at that time.
(Whether or not the diff is run automatically when you open the diff configuration file
depends on Autorun Diff settings on the Engine page of the Options dialog box. See
“When Does the Diff Run?” on page 219 for more information.)

What Diffs Are Calculated?

This section describes how Stylus Studio diffs XML documents and folders.

Documents – The Stylus Studio Diff engine compares source and target documents in
their entirety. If you want, you can use the Engine page of the Options dialog box to
exclude certain items from the diff calculation. These items include:

● Comments

● Text

Tip You can open source and target documents in the XML Editor from the XML Diff Viewer
– right click on the XML Diff Viewer background and select the document you want to
edit from the short-cut menu of source and target documents displayed by Stylus Studio.
This feature is context-sensitive – if you right-click on a node that has been removed, the
target document will not be listed, for example.
Stylus Studio User Guide 217

Editing and Querying XML
● Entities

● Attributes

● Processing instructions

You can also specify whether or not you want Stylus Studio to:

● Use URIs to compare namespaces

● Expand entity references

● Ignore text formatting characters (new lines, carriage returns, and tabs)

See “Modifying Default Diff Settings” on page 239 to learn how to set these and other
diff options.

Folders – Options for diffing XML documents do not affect how Stylus Studio diffs
folders. When diffing folders, Stylus Studio compares one folder’s contents with another.
See “Diffing Folders” on page 221for more information on this topic.

Tuning the Diffing Algorithm

The purpose of any diffing tool is to identify the list of logical operations required to
change the source document into the target document. Examples of logical operations
include additions, revisions, and deletions. Even diffs between simple XML documents
can yield a long list, sometimes with redundant operations. Ideally, the list of operations
should be reduced to make it as economical as possible; that is, the list should be able to
answer the question, What are the fewest number of changes required to turn the source
into the target?

Calculating such a list can be time-consuming and resource intensive, and these costs
might not be worth the benefits to a given user. For this reason, Stylus Studio provides
settings that let you tune the diffing algorithm used by the XML Diff engine. Tuning
settings are displayed in the Performance group box on the Engine page of the Options
dialog box.

Figure 127. Performance Settings Let You Tune the Diffing Algorithm
218 Stylus Studio User Guide

Diffing Folders and XML Documents
You can

● Select a tuning that optimizes the algorithm to provide the most economical set of
changes possible (Optimize change description). As described earlier, this
calculation, though it yields the best results, can be costly in terms of time and
processing resources.

● Select a tuning that optimizes the algorithm to provide the set of changes in the
shortest time possible (Optimize calculation time).

● Let Stylus Studio decide (Autodetect). By default, Stylus Studio tries to provide the
most economical set of changes possible, but if it determines that processing
resources are limited or that the calculation will take too much time, it reverts to the
algorithm tuning that is optimized for speed.

Handling Large Documents

The Optimize for large documents with few changes setting helps speed the diffing of
large (greater than 1MB) documents. This setting can be used in conjunction with any of
the algorithm tuning settings and is on by default.

When Does the Diff Run?

Stylus Studio runs the diff automatically, as soon as you specify the target document or
folder. Whether or not subsequent changes cause Stylus Studio to automatically
recalculate the diff is determined by the Autorun Diff settings on the Engine page of the
Options dialog box. Changes that can make a diff recalculation necessary include adding
new source and target documents, changing the underlying source and target documents
themselves, or to changes to certain Engine settings.

Options That Affect When the Diff Runs

These settings, on the Engine page of the Options dialog box, determine when and
whether Stylus Studio automatically recalculates the diff.

● On changes – Certain types of changes to the diff configuration file require Stylus
Studio to recalculate the diff. These changes include:

■ Adding a new source document

■ Changing the target document

■ Changing the Use URI to compare namespaces setting

■ Changing the Expand entity references setting
Stylus Studio User Guide 219

Editing and Querying XML
If the On changes setting is on, Stylus Studio automatically runs the diff when any
of these changes occurs.

● If files modified – If you make and save changes to a source or target document,
Stylus Studio automatically runs the diff if this setting is on.

See “Modifying Default Diff Settings” on page 239to learn more about setting these and
other Diff options.

Running the Diff Manually

You can run the diff manually by clicking the Calculate diff button (). Stylus Studio
activates this button when it detects the need to recalculate the diff, and the On changes
or If files modified settings are off. These settings, as described in “When Does the Diff
Run?” on page 219, cause Stylus Studio to run the diff automatically.

You can also run the diff from the command line. See “Running the Diff Tool from the
Command Line” on page 243.

Symbols and Background Colors

Stylus Studio uses symbols and background colors to alert you to differences in diffed
documents and folders. The following table summarizes the symbols and default
background colors, and the types of changes they represent.

Note These settings do not affect the diffing of folders.

Table 14. Default Colors Used for Diffing Files and Folders

Symbol Background Color Identifies

Light green Added items; appears in the target document and
identifies an item that is present in the target but
absent from the source

Light red Removed items; appears in the source document and
identifies an item that is present in the source but
absent from the target.

Light yellow Changed items; can appear in both source and target
documents.

Light gray Collapsed item containing changes (such as an added,
changed, or removed node).
220 Stylus Studio User Guide

Diffing Folders and XML Documents
You can change the background colors on the Presentation page of the Options dialog
box.

Combined Symbols

As described in Table 14, Default Colors Used for Diffing Files and Folders,, Stylus
Studio displays a turquoise block () when a node that you have collapsed contains
changes. Sometimes, the node itself has changes. In this case, Stylus Studio combines two
symbols – one indicating the change of a child within the collapsed node, and one to the
node itself. Consider the following illustration:

Here, the city node displays a combined symbol – the turquoise box indicates that a
change exists within the collapsed node; the minus sign indicates that the city node is not
present in the source document. Expanding the city node makes the scope and nature of
the changes explicit:

Additional Symbols for Diffing Multiple Sources

Stylus Studio uses other symbols in the target document window when you diff multiple
source documents. See “Symbols Used in the Target Document Window” on page 235.

Diffing Folders
Stylus Studio allows you to diff two folders. As shown in Figure 130, the Diff Folders
dialog box displays the contents of each folder; symbols and colors, described in

Figure 128. Sample of a Collapsed Node with Changes

Figure 129. Expanded Node with Changes

Tip Hover the mouse point over these symbols to display tool tips that describe the nature of
the change.
Stylus Studio User Guide 221

Editing and Querying XML
“Symbols and Background Colors” on page 220, identify the types of changes in the
respective folders.

This section covers the following topics:

● “Features” on page 222

● “How to Diff Folders” on page 223

● “How to Diff Documents from the Diff Folders Dialog Box” on page 225

Features

The Diff Folders dialog box has several features that make it easy to diff folders and the
XML documents they contain:

● A splitter lets you change the width of the source and target folder windows. This can
be especially useful if you are working with a folder that has nested directories.

● A file type filter limits the display to files with a .xml extension; if you choose, you
can display (and diff) all file types, as shown in Figure 130.

● An Abort button, shown here, appears at the bottom of the Diff Folders dialog box if
the operation you are performing (loading or diffing a directory with a large number

Figure 130. The Diff Folders Dialog Box After a Diff

Splitter

Filter for file type
222 Stylus Studio User Guide

Diffing Folders and XML Documents
of files, for example) is taking more time than usual. Clicking the Abort button
cancels the operation.

● The Diff Files button allows you to perform a diff of XML documents in the source
and target folders. See “How to Diff Documents from the Diff Folders Dialog Box”
on page 225for more information on this topic.

How to Diff Folders

◆ To diff folders:

1. Select Tools > Show Differences In > Folders from the Stylus Studio menu.

The Diff Folders dialog box appears.

Figure 131. Abort Button Lets You Cancel Long Load Operations

Tip This feature is also part of the XML Diff Viewer.

Choose Folder buttons
Stylus Studio User Guide 223

Editing and Querying XML
2. Click the Choose Source Folder button ().

The Select Source Folder dialog box appears.

3. Expand the Desktop tree and navigate to the folder you want to use as the source
folder for the diff.

4. Click Open.

The folder is displayed in the Source folder window of the Diff Folders dialog box.

5. Repeat Step 2 through Step 4 for the target folder.

Stylus Studio performs the diff as soon as you select the target folder for comparison.

6. Optionally, use the Show files of type drop-down list to filter the display to show only
those files of the type you specify. (By default, Stylus Studio shows XML files – files
with a .xml extension.)
224 Stylus Studio User Guide

Diffing Folders and XML Documents
How to Diff Documents from the Diff Folders Dialog Box

You can diff XML documents in the source and target folders directly from the Diff
Folders dialog box.

◆ To diff two files from the Diff Folders dialog box:

1. Click the file you want to diff.

The document is shown as selected in both the Source folder and Target folder
windows. In this illustration, the document authors_new.xml was selected.

If you select a document that cannot be diffed, you will not see the selection in the
opposite window.

2. Click the Diff Files button.

Stylus Studio displays the XML Diff Viewer window.

For more information on diffing documents, see “Diffing a Pair of XML Documents” on
page 232.

The XML Diff Viewer
This section describes the XML Diff Viewer and its features, including the different
views available for comparing documents, the XML Diff Viewer tool bar, and tools for
loading documents.

This section covers the following topics:

● “Split View - Tree” on page 226

● “Split View - Text” on page 227

● “Merged View” on page 228

Tip Notice that, even though the file names are different, Stylus Studio is able to infer that
authors_new.xml and authors_mods.xml are actually the same document.
Stylus Studio User Guide 225

Editing and Querying XML
● “View Symbols and Colors” on page 229

● “The XML Diff Viewer Tool Bar” on page 229

● “Tools for Working with Documents” on page 232

Split View - Tree

You use the XML Diff Viewer to compare two or more XML documents. By default, the
XML Diff Viewer displays the diffed documents on the Split View - Tree tab. This view,
shown in Figure 132, shows the documents side-by-side using a tree/node representation.

In split views (there is also a split view that shows documents in XML), source documents
are displayed on the left, the target document on the right. A splitter between the two
panes allows you to change the width of the source and target document panes by
dragging the splitter to the left and right.

Figure 132. XML Diff Viewer – Split View - Tree
226 Stylus Studio User Guide

Diffing Folders and XML Documents
Split View - Text

The Split View - Text tab also shows source and target documents side-by-side in plain
XML.

Figure 133. XML Diff Viewer – Split View - Text
Stylus Studio User Guide 227

Editing and Querying XML
Merged View

If you prefer, you can select the Merged View tab, which folds the nodes from the source
and target documents into a single window, as shown in Figure 134.

The merged view displays changed items in pairs – the item from the target document
appears first, the item from the source document is shown second, as shown in
Figure 135.

In this example, the line through the <au_lname> element in the source document,
Hennings, indicates that it has changed to White in the target document.

Figure 134. XML Diff Viewer – Merged View

Figure 135. Close-up of Merged View
228 Stylus Studio User Guide

Diffing Folders and XML Documents
View Symbols and Colors

All views use the same symbols and color schemes to identify the types of changes
detected by the Stylus Studio diff calculation – by default, green for added items, yellow
for changed items, and red for removed items. In addition, the text font and size are
controlled by the settings for the XML Editor on the Editor Format page of the Options
dialog box.

See “Symbols and Background Colors” on page 220 for more information on this topic,
and to learn how you can assign custom colors to the results of standard differencing
operations.

The XML Diff Viewer Tool Bar

The XML Diff Viewer tool bar, shown in Figure 136, provides tools to help you

● Manually start the diff calculation

● Navigate source and target documents

● Change default display and diff settings

● Show or ignore differences in document items such as text nodes and attributes

The following table identifies the individual tools and tells you where to find more
information.

Figure 136. The XML Diff Tool Bar

Table 15. XML Diff Tool Bar Buttons

Tool Button Description

Calculates the differences in the documents you have selected. This button
is active only when Stylus Studio detects the need to calculate differences.
This button is disabled if you have selected On changes and If files
modified settings. See “Engine Settings” on page 241.

Skips to the next (previous) diff in the currently selected document. You
must select a line in the document to enable these buttons.
Stylus Studio User Guide 229

Editing and Querying XML
By default, Stylus Studio displays collapsed documents when the diff is run.
You can override this setting using the tool bar button, or you can change it
permanently on the Options. page. See “Engine Settings” on page 241.

By default, Stylus Studio collapses any unchanged blocks to simplify the
display. You can override this setting using the tool bar button, or you can
change it permanently on the Options. page. See “Engine Settings” on
page 241.

By default, Stylus Studio uses URIs to compare namespaces when diffing
documents. You can override this setting using the tool bar button, or you can
change it permanently on the Options. page. See “Engine Settings” on
page 241.

Note that changing this setting requires documents to be diffed again.

By default, Stylus Studio expands entity references when diffing documents.
You can override this setting using the tool bar button, or you can change it
permanently on the Options. page. See “Engine Settings” on page 241.

Note that changing this setting requires documents to be diffed again.

By default, Stylus Studio considers text formatting characters (new lines,
carriage returns, tabs) when diffing documents. You can override this setting
using the tool bar button, or you can change it permanently on the Options.
page. See “Engine Settings” on page 241.

By default Stylus Studio shows differences in comments. You can override
this setting using the tool bar button, or you can change it permanently on the
Options. page. See “Engine Settings” on page 241.

Note that this feature affects only the display, and not the calculation, of
comment differences.

By default Stylus Studio shows differences in text blocks. You can override
this setting using the tool bar button, or you can change it permanently on the
Options. page. See “Engine Settings” on page 241.

Note that this feature affects only the display, and not the calculation, of text
block differences.

Table 15. XML Diff Tool Bar Buttons

Tool Button Description
230 Stylus Studio User Guide

Diffing Folders and XML Documents
By default Stylus Studio shows differences in attributes. You can override
this setting using the tool bar button, or you can change it permanently on the
Options. page. See “Engine Settings” on page 241.

Note that this feature affects only the display, and not the calculation, of
attribute differences.

By default Stylus Studio shows differences in processing instructions. You
can override this setting using the tool bar button, or you can change it
permanently on the Options page. See “Engine Settings” on page 241.

Note that this feature affects only the display, and not the calculation, of
processing instruction differences.

By default Stylus Studio shows differences in entities. You can override this
setting using the tool bar button, or you can change it permanently on the
Options page. See “Engine Settings” on page 241.

Note that this feature affects only the display, and not the calculation, of
entity differences.

By default Stylus Studio shows differences in entity references. You can
override this setting using the tool bar button, or you can change it
permanently on the Options page. See “Engine Settings” on page 241.

Note that this feature affects only the display, and not the calculation, of
entity differences.

Allows you to change the font of documents displayed in the XML Diff
Viewer.

Table 15. XML Diff Tool Bar Buttons

Tool Button Description
Stylus Studio User Guide 231

Editing and Querying XML
Tools for Working with Documents

The XML Diff Viewer provides several tools for working with source and target
documents:

● Add/Remove document buttons. When you click the add or set document button,
Stylus Studio displays the Open dialog box. The add button for source documents
displays a green plus sign on it () to alert you to the fact that you can add multiple
source documents when diffing XML documents. You can specify only a single
target document, however.

You use the remove button, the folder with the red minus sign on it (), to remove
the current source document from the XML diff calculation.

● Drop-down list. You use the drop-down list to change the current document in the
XML Diff Viewer. When you change the current doc in a multi-document diff, the
target document display – specifically, the symbols and colors used to identify
documents – typically changes, as well. See “Symbols Used in the Target Document
Window” on page 235 for more information.

Removing a Target Document

You cannot remove a target document. You can specify a different target document by
clicking the set target button () again. This replaces the current target document with
the document you select.

Diffing a Pair of XML Documents
This section describes how to use Stylus Studio to diff a pair of XML documents.

Before continuing with this section, you should read “Overview” on page 216, which
describes basic information about the Stylus Studio Diff tool, and “The XML Diff
Viewer” on page 225, which describes features of the XML Diff Viewer and how to use
them.

Tip If Stylus Studio determines that the load or diff operation for a given XML document
will take more than a moment, it displays a message and an Abort button at the
bottom of the XML Diff Viewer window. You can click the Abort button to terminate
the operation at any time. The message and the button are removed from the XML
Diff Viewer window once the operation is complete or cancelled.
232 Stylus Studio User Guide

Diffing Folders and XML Documents
How to Diff a Pair of Documents

◆ To diff a pair of documents:

1. Select Tools > Options > Show Differences > Files from the Stylus Studio menu.

Stylus Studio displays the XML Diff Viewer.

2. In the source document window, click the add button () to add the source
document.

Stylus Studio displays the Open dialog box.

3. Navigate to the document you want to load in the XML Diff Viewer.

4. Click Open.

5. Repeat Step 2 through Step 4 for the target document, using the set button for the
target document window ().

By default, Stylus Studio runs the diff calculation automatically when you select the
target document. If the default On changes setting has changed, you need to run the
diff calculation manually by clicking the Calculate diff button ().

Tip You can drag and drop a file into the entry field to load the document in the XML Diff
Viewer.
Stylus Studio User Guide 233

Editing and Querying XML
Diffing Multiple Documents
This section describes how to use Stylus Studio to diff multiple XML documents.

Before continuing with this section, you should read “Overview” on page 216, which
describes basic information about the Stylus Studio Diff tool, and “The XML Diff
Viewer” on page 225, which describes features of the XML Diff Viewer and how to use
them.

This section covers the following topics:

● “Document Focus” on page 234

● “Symbols Used in the Target Document Window” on page 235

Document Focus

Diffing multiple XML documents is much the same as diffing a pair of documents – you
specify the source documents (one at a time), a target document, and Stylus Studio
calculates the diff.

Note When you diff multiple source documents against the target, Stylus Studio considers the
target document to be the baseline, and the XML Diff Viewer shows how the source
documents vary from the target.
234 Stylus Studio User Guide

Diffing Folders and XML Documents
When you diff multiple documents, however, only one source document can have focus
at a time. Consider the following illustration, which shows three source documents
(source1.xml, source2.xml, and source3.xml) and a target document (target.xml).

In this example, the source1.xml document currently has focus. You set the focus on a
given source document by selecting that document from the drop-down list at the top of
the source document window.

When a source document has focus:

● Diffs are displayed for that document only, even if you have selected the Merged View
tab for display.

● Clicking the remove document button () removes that document from the XML
diff calculation.

Symbols Used in the Target Document Window

When diffing multiple documents, Stylus Studio uses an additional set of symbols in the
target document window. These symbols, which are displayed in the side bar of the XML
Diff Viewer window alongside the standard set of symbols described in “Symbols and
Background Colors” on page 220, indicate the ways in which the change identified in the

Figure 137. Example of Document Focus

s o u r c e 2 . x m l

s o u r c e 1 . x m l

t a r g e t . x
m l

s o u r c e 3 . x m l
Stylus Studio User Guide 235

Editing and Querying XML
current source document differs from changes to the same node in other source
documents.

As shown in Figure 138, symbols in the column closest to the document tree identify the
changes relative to the currently selected source. Here, the edit symbol () indicates that
the value in the target document, White, differs from that in the currently selected source
(which happens to be Black in this example).

The first column of symbols characterize changes in the currently selected source relative
to other source documents. Here, for example, the red exclamation point () indicates
that there are conflicting modifications in other source documents – that is, other source
documents contain a value other than Black. As shown in Figure 139, when you click on
a symbol in the first column, Stylus Studio displays

● A message describing the precise nature of the change

● A menu that identifies the documents in which the change occurs.

Clicking on a document in this menu changes the current focus to that source document,
allowing you to easily navigate to the same node in a different document.

Figure 138. Example of Symbols Used When Diffing Multiple Documents

Figure 139. Easily Navigate to Changed Nodes in Other Source Documents

Change relative
to current target

Change in current source

and current source

relative to other source
documents
236 Stylus Studio User Guide

Diffing Folders and XML Documents
The additional symbols used by Stylus Studio when diffing multiple documents are
described in Table 16.

Consider the example in Figure 140, which illustrates diffing three documents. In this
example, the node in question is circled in red.

Table 16. Symbols Used to Specify Changes in Source Documents

Symbol Description Meaning

Yellow circle Modified in other documents – The object in the target and
the current source document are the same, but another source
document is different.

Red exclamation
point

Conflicting modification in other documents – The object in
the current source differs from that in the target document.
Other source documents differ from both the current source
and target.

Yellow diamond Same modification in other documents – The source
documents all differ from the target document in the same
way.

Yellow equal sign Unchanged in other documents – The current source
document differs from the target, but other source
documents are the same as the target.

Figure 140. Diffing Three Documents

s o u r c e 2 . x m l

s o u r c e 1 . x m l

t a r g e t . x
m l

s o u r c e 3 . x m l

< a b c >

< a b c >

< x y z >

< 1 2 3 >
Stylus Studio User Guide 237

Editing and Querying XML
Notice that:

● source1.xml currently has focus.

● source1.xml and the target document node have the same value (<abc>)

● The node in question varies in both of the remaining source documents (it is <abc> in
one and <abc> in the other).

Table 17 shows the symbols that might appear based on changing values to the node in
question. The example illustrated in Figure 140 is shown in the first row. As values in the
source documents change, Stylus Studio changes the diff symbol accordingly.

How to Diff Multiple Documents

◆ To diff multiple documents:

1. Select Tools > Options > Show Differences > Files from the Stylus Studio menu.

Stylus Studio displays the XML Diff Viewer.

2. In the source document window, click the add button () to add the first source
document.

Stylus Studio displays the Open dialog box.

3. Navigate to the document you want to load in the XML Diff Viewer.

4. Click Open.

5. Repeat Step 2 through Step 4 for additional source documents.

Table 17. Symbols Used to Specify Changes in Source Documents

Symbol target.xml source1.xml source2.xml source3.xml

<abc> <abc> <xyz> <123>

<abc> <xyz> <jkl> <mno>

<abc> <xyz> <xyz> <xyz>

<abc> <xyz> <abc> <abc>

Note Changing the target-source pairing, that is, changing the current source document, affects
the symbols that are displayed.

Tip You can drag and drop a file into the entry field to load the document in the XML Diff
Viewer.
238 Stylus Studio User Guide

Diffing Folders and XML Documents
6. Repeat Step 2 through Step 4 for the target document, using the set button for the
target document window ().

By default, Stylus Studio runs the diff calculation automatically when you select the
target document. If the default On changes setting has changed, you need to run the
diff calculation manually by clicking the Calculate diff button ().

Modifying Default Diff Settings
Default settings for the behavior of the Diff engine and the appearance of diffed
documents and folders are on the Engine and Presentation pages, respectively, of the
Options dialog box. The Engine page, shown here, has settings that determine the
conditions under which Stylus Studio runs the diff automatically, which items in a
document (comments and text, for example) you want the diff engine to ignore, and
settings that allow you to choose diffing algorithm tunings optimized for change
description or time, for example.

Figure 141. Engine Options Page for XML Diff
Stylus Studio User Guide 239

Editing and Querying XML
Settings on the Engine page are reflected in the Diff editor tool bar, and in the XML Diff
menu, shown here.

This section covers the following topics:

● “Opening the Options Dialog Box” on page 240

● “Engine Settings” on page 241

● “Presentation Options” on page 243

Opening the Options Dialog Box

◆ To open the Options dialog box:

1. Click Tools > Options on the Stylus Studio menu.

The Options dialog box appears.

2. If necessary, expand the tree for Module Settings > XML Diff.

Figure 142. XML Diff Menu

Tip You can override Engine page settings using the Diff editor tool bar or the XML Diff menu.
Overrides do not change the settings on the Engine page.
240 Stylus Studio User Guide

Diffing Folders and XML Documents
3. Click the page that contains the settings you want to modify.

4. To save a changed setting, click OK. Click Cancel to revert to close the dialog box
and revert to the previous settings.

Engine Settings

This section describes the settings that affect the behavior and performance of the Diff
engine.

General

The fields in the General group box affect the initial display of diffed documents and the
conditions, if any, under which Stylus Studio runs the diff automatically.

● Automatically expand all diffs – By default, Stylus Studio collapses the display of the
diffed documents. If you select this option, all nodes containing diffs are expanded
when the diff is run.

● Collapse unchanged blocks – By default, Stylus Studio collapses any block that does
not contain any changes to save space in the XML Diff Viewer window. These blocks
are displayed as <unchanged> in the document tree. You might prefer to have the entire
document structure visible, to provide context for changed nodes, for example.

● Autorun diff – By default, Stylus Studio runs the diff operation if you make a change
to one of the settings on the Engine page of the Options dialog box. You can also
specify that Stylus Studio run the diff operation when the source or target documents
change. If you select If files modified, Stylus Studio runs the diff operation when you
save a source or target file. If neither of these options is selected, you must run the
diff manually. See “When Does the Diff Run?” on page 219 for more information on
this topic.

Engine Options

The fields in the Engine Options group box affect how Stylus Studio diffs source and
target documents.

● Use URI to compare namespaces – Controls whether or not URIs are used to
compare namespaces in source and target documents.

● Expand entity references – Controls whether or not entity references, which in some
cases can include files external to the source or target document, are expanded by the
Stylus Studio diff engine for purposes of comparing one block with another.
Stylus Studio User Guide 241

Editing and Querying XML
● Ignore text formatting characters – Controls whether or not text formatting
characters (new line, carriage return, and tab) are ignored when comparing source and
target documents. This option is off by default.

● Show differences in – Provides granular control of what items in XML documents
are diffed. There are separate settings for comments, text, entities, attributes, and
processing instructions.

Performance

Diffing large, numerous, or complex documents can be time-consuming. Stylus Studio
provides controls that let you choose algorithm tunings that have been optimized for
change description or calculation time.

● Autodetect – Stylus Studio determines which algorithm tuning to use based on the
number, content, complexity, and size of the source and target documents. Stylus
Studio first tries to use the tuning that is optimized for change description; if it
determines that processing resources are limited, it reverts to the algorithm tuning
optimized for speed. This setting is on by default.

● Optimize change description – Provides the most economical set of changes
possible. This calculation, though it yields the best results, can be costly in terms of
time and processing resources.

● Optimize calculation time – Provides the set of changes in the shortest time possible.

● Optimize for large documents with few changes – Helps speed the diffing of large
(greater than 1MB) documents by folding similar blocks before comparing nodes.
This setting can be used in conjunction with any of the algorithm tuning settings and
is on by default.

Tip The default setting, Autodetect and Optimize for large documents with few changes,
yields the best results when time and processing resources are not considerations.
242 Stylus Studio User Guide

Diffing Folders and XML Documents
Presentation Options

Presentation options allow you to modify the settings for the background colors Stylus
Studio uses to identify the types of changes detected in diffed documents and folders

You can change the background colors for the following:

● Added items

● Removed items (that is, items that are present in the target, but are not present in the
source, for example)

● Changed items (the same element or attribute, but a different name, for example)

● Collapsed items with changes

Running the Diff Tool from the Command Line
In addition to using the Diff tool from the Stylus Studio user interface, Stylus Studio also
provides a commandl line utility, StylusDiff.exe. This command line utility allows you
to perform many of the same functions, and to use many of the same options, as the
graphical Diff tool.

Figure 143. You Can Change Colors Used to Identify Document Changes
Stylus Studio User Guide 243

Editing and Querying XML
Restrictions

The following restrictions exist for using StylusDiff.exe:

● You cannot use StylusDiff.exe to diff folders

● StylusDiff.exe can diff only one pair of documents at a time

Usage

The StylusDiff.exe utility has the following usage:

StylusDiff -source <sourceURI> -target <targetURI>
[-expandPrefixes/collapsePrefixes] [-expandERs/collapseERs]
[-comments/nocomments] [-attributes/noattributes] [-text/notext] [-pi/nopi]
[-er/noer] [-entities/noentities] [-formatting/noformatting] [-fold/nofold]
[-auto/best/fast]

Table 18 describes the usage for the StylusDiff command. For a complete description of
these and other options that affect the XML Diff engine, see “Engine Settings” on
page 241.

Table 18. StylusDiff Command Line Parameters

Parameter Description

-source <sourceURI> The path of the XML document you want to use as the source
document in the diff. Required.

-target <targetURI> The path of the XML document you want to use as the target
document in the diff. Required.

-output <outputURI> Saves the differences between the source and target files, if
any, to the file you specify. Output files are saved with a .dff
extension. Optional.

-expandPrefixes
-collapsePrefixes

Whether you want the XML Diff engine to use the URI
(-expandPrefixes) or ignore the URI (-collapsePrefixes)
when comparing namespaces. The default is
-collapsePrefixes.

-expandERs
-collapseERs

Whether you want the XML Diff engine to compare entity
references (-collapseERs) or values referenced by entity
references (-expandERs). The default is -expandERs.
244 Stylus Studio User Guide

Diffing Folders and XML Documents
-comments
-noComments

Whether you want the XML Diff engine to compare comments
(-commments) or to ignore comments (-noComments). The
default is -comments.

-attributes
-noAttributes

Whether you want the XML Diff engine to compare attributes
(-attributes) or to ignore attributes (-noAttributes). The
default is -attributes.

-text
-noText

Whether you want the XML Diff engine to compare text
(-text) or to ignore text (-noText). The default is -text.

-pi
-noPI

Whether you want the XML Diff engine to compare
processing instructions (-pi) or to ignore processing
instructions (-noPI). The default is -pi.

-er
-noER

Whether you want the XML Diff engine to compare entity
references (-er) or to ignore entity references (-noER). The
default is -er.

-entities
-noEntities

Whether you want the XML Diff engine to compare entities
(-entities) or to ignore entities (-noEntities). The default
is -entities.

-formatting
-noFormatting

Whether you want the XML Diff engine to compare formatting
characters (-formatting) or to ignore formatting characters
(-noFormatting) when comparing text nodes. The default is
-formatting.

-fold
-noFold

Whether you want the XML Diff engine to fold similar blocks
before diffing (-foldUnchangedBlocks) or to expand and diff
nodes (-diffUnchangedBlocks). The default is
-foldUnchangedBlocks.

-auto
-best
-fast

Controls that let you choose between diffing algorithm tunings
that have been optimized for time (-fast) and thoroughness (-
best). A third choice, -auto, lets Stylus Studio determine
which tuning to use. The default is -auto.

Table 18. StylusDiff Command Line Parameters

Parameter Description
Stylus Studio User Guide 245

Editing and Querying XML
Using Schemas with XML Documents
Stylus Studio allows you to associate one or more schemas with each XML document. A
schema can be a DTD or an XML Schema.

There are several ways to associate a schema with an XML document:

● To associate an external schema with a document, ensure that an XML document is
active. Then, from the Stylus Studio menu bar, select XML > Associate XML with
Schema.

● To define an internal DTD, specify it in the XML editor Text tab or Schema tab.

● To have Stylus Studio generate a schema, in the XML editor, click the Schema tab.
If the XML document has some contents, Stylus Studio prompts you to indicate
whether you want Stylus Studio to generate a schema from the contents. See “Having
Stylus Studio Generate a Schema” on page 247.

This section discusses the following topics:

● “Associating an External Schema With a Document” on page 246

● “Having Stylus Studio Generate a Schema” on page 247

● “Validating XML Documents” on page 247

● “Updating a Document’s Schema” on page 248

● “Removing the Association Between a Document and a Schema” on page 248

Associating an External Schema With a Document

◆ To associate an external schema with an XML document:

1. Open the XML document you want to associate with a schema. See “Opening Files
in Stylus Studio” on page 130.

2. From the Stylus Studio menu bar, select XML > Associate XML with Schema.

3. In the Open dialog box that appears, navigate to and select the schema you want to
associate.

4. Click Open. The selected schema is now associated with the document.

To associate an XML document with an XML Schema, the XML document must contain
a root element.
246 Stylus Studio User Guide

Using Schemas with XML Documents
After you associate a schema with a document, you can view a tree representation of the
schema in the XML editor window. Click the Schema tab. See “Updating a Document’s
Schema” on page 248.

Having Stylus Studio Generate a Schema
In the XML editor, you can click the Schema tab to view the schema for your document.
If your document does not specify a schema, Stylus Studio displays the Schema Not
Found dialog box. This dialog box prompts you to indicate whether you want Stylus
Studio to create a schema for your document based on its contents.

You can select Generate XML Schema or Generate DTD. If you select Generate XML
Schema, you must specify an absolute path for the file that contains the new schema.

If you select Generate DTD, you must indicate whether you want the DTD to be internal
or external. If it is internal, Stylus Studio inserts it immediately after the XML declaration.
If it is external, you must specify or select an absolute path for the file that contains the
new DTD.

After you click OK, Stylus Studio displays the new schema in the Schema tab.

Validating XML Documents
At any time, you can validate your XML document against its schema. Click Validate
Document in the window of the document you want to validate.

Stylus Studio displays a message that indicates whether or not your document is valid. If
your document does not conform to its schema, Stylus Studio displays a list of error
messages that describe the inconsistencies. This list includes line and column numbers
that indicate the location of the error. When you click in an XML document, Stylus Studio
shows the line and column number in the bottom right corner of the Stylus Studio
window.

When Stylus Studio validates a document, it also checks for well-formedness.
Stylus Studio User Guide 247

Editing and Querying XML
Stylus Studio uses font color to indicate valid and invalid element names. Purple fonts
indicate valid elements. Orange fonts indicate elements that are not in the schema.

Updating a Document’s Schema
How you update your document’s schema depends on whether the schema is internal or
external. If the schema is an internal DTD, you can update it in the Schema tab of the
XML editor.

If the schema is not an internal DTD, you can update it only in the DTD editor or the XML
Schema editor. You can, however, view the schema in the Schema tab of the XML editor.

When Stylus Studio displays the schema for your document, you can also view the
properties for each node in the schema. If the Properties window is not already in view,
select View > Properties. Click on any node in the schema view to see the properties for
that node.

To view the text of an external schema or to edit an external schema, you must display it
in the DTD editor or the XML Schema editor. To do this, select XML > Open Associated
Schema from the Stylus Studio menu bar, or click Open Schema in the Stylus Studio
tool bar.

Instructions for updating a DTD are in “Defining Document Type Definitions” on
page 703. Instructions for updating an XML Schema are in “Creating an XML Schema in
Stylus Studio” on page 608. If you update a schema in Stylus Studio and that schema is
associated with an XML document that is open in Stylus Studio, Stylus Studio refreshes
the schema information for the open XML document.

Removing the Association Between a Document and a Schema
To remove the association between a document and an external schema, you must edit the
XML document in the Text or Tree tab. Remove the text or nodes that specify the external
schema.

To remove an internal DTD from a document, delete the text or nodes that specify the
internal DTD.

Note Stylus Studio uses Apache's Xerces XML Parser to validate XML documents. Error
messages about invalid documents are generated by the Xerces XML Parser. Stylus
Studio has no control over the contents of these messages. If you have trouble
understanding such a message, try searching the W3C XML Schema Recommendation
for the main phrase in the error message.
248 Stylus Studio User Guide

Converting XML to Its Canonical Form
Converting XML to Its Canonical Form
By default, Stylus Studio creates XML that conforms to the W3C XML 1.0
recommendation. You can also convert any XML document to its canonical form. When
you convert XML to its canonical form, the resulting document conforms to the W3C
Canonical XML 1.0 recommendation.

◆ To convert an XML document to its canonical form:

1. Open the XML document you want to convert to canonical XML.

2. Select Edit > Make Canonical XML from the Stylus Studio menu.

Alternative: Click the Make Canonical XML button () on the tool bar.

The XML document is converted to its canonical form.

You can undo this operation (Edit > Undo) if necessary.

Querying XML Documents Using XPath
You can use the XML Path Language (XPath) to query XML documents to obtain a
subset of the information in that document. You can also query XML Schema and XSLT,
provided you open the XSLT using the XML Editor. (You cannot query DTD schema
because it is not XML.)

In Stylus Studio, you query XML documents using the XPath Query Editor. To learn
more about XPath and how to use the XPath Query Editor, see “Writing XPath
Expressions” on page 729.

Printing XML Documents
You can print the raw XML text view of your document. You cannot print the other views
of your document.

◆ To print a document:

1. In your XML document, click the Text tab.

2. In the Stylus Studio tool bar, click Print or press Ctrl+P.

Tip Although you can undo conversion to canonical form, consider using Save As to create
a copy of the XML document prior to conversion.
Stylus Studio User Guide 249

Editing and Querying XML
◆ To preview your document before you print it, select File > Print Preview from the
Stylus Studio menu bar.

◆ To specify print options for your document before you print it, select File > Print
Setup from the Stylus Studio menu bar.

Saving XML Documents
When you save a document, Stylus Studio saves it in the encoding that is specified in the
initial XML processing instruction.

◆ To save an XML document:

1. Ensure that the window that contains your XML document is the active window.

2. From the Stylus Studio menu bar, select File > Save.

Alternatives: Press Ctrl+S or click Save in the Stylus Studio tool bar.

Options for Saving Documents
The Application Settings page of the Options dialog box contains two options that affect
when and how documents are saved in Stylus Studio. You can choose to have Stylus
Studio

● Save modified documents every few minutes. This option is off by default, and has a
default setting of 10 minutes.

● Create a backup copy of a document when it is saved.

More About Backup Files

Backup copies are created with a *.bak extension appended to the original document
name when saved to the Stylus Studio file system. For example, the backup copy of
books.xml would be books.xml.bak. If you are saving to an external file system (such as
Raining Data® TigerLogic® XDMS), the file system manages the backup file name.

Backup files are written to the same file system as the original document. They are not
displayed in the Project window, and they appear in the File Explorer window only if you
change the filter to display *.bak files.
250 Stylus Studio User Guide

Saving XML Documents
Opening a Backup File

You can open a backup file

● From the File Explorer window, by double-clicking the file name or selecting Open
or Open With from the file’s shortcut menu, for example

● From the Project window, by selecting the file and then selecting either

❍ Open Latest Backup from the file’s shortcut menu (right-click to display), or

❍ Project > Open Document’s Latest Backup from the Stylus Studio menu
Stylus Studio User Guide 251

Editing and Querying XML
252 Stylus Studio User Guide

Chapter 3 Converting Non-XML Files to XML
Stylus Studio uses DataDirect XML Converters to convert incoming streams of data from
native formats to outgoing streams of XML, and vice-versa. XML Converters support
standard file formats, including EDI, CSV, binary, and many others. XML Converters also
support the conversion of custom or proprietary formats that you specify using a custom
XML conversion definition.

This chapter describes how to use DataDirect XML Converters to convert standard and
proprietary files to XML in Stylus Studio, how to create your own custom XML
conversion definitions, and how to use files you convert on-the-fly elsewhere in Stylus
Studio – as a source for XQuery and XSLT design, for example.

You can read about other video demonstrations for the custom XML conversion definition
module here: http://www.stylusstudio.com/learn_convert_to_xml.html#converttoxml.

A complete list of all the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

This chapter covers the following topics:

● “Introduction” on page 254

● “Custom XML Conversions” on page 261

● “Creating a Custom XML Conversion Definition” on page 262

DataDirect XML Converters and custom XML conversions are available only in
Stylus Studio XML Enterprise Suite.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the Introduction to the Custom XML
Conversions module video.
Stylus Studio User Guide 253

http://www.stylusstudio.com/videos/convert-to-xml1/convert-to-xml1.html
http://www.stylusstudio.com/videos/convert-to-xml1/convert-to-xml1.html
http://www.stylusstudio.com/videos/convert-to-xml1/convert-to-xml1.html
http://www.stylusstudio.com/learn_convert_to_xml.html#converttoxml
http://www.stylusstudio.com/xml_videos.html

Converting Non-XML Files to XML
● “The Custom XML Conversion Definition Editor” on page 265

● “Parts of an Input File” on page 276

● “Working with Regions” on page 278

● “Working with Fields” on page 287

● “Controlling XML Output” on page 295

● “Using Custom XML Conversion Definitions in Stylus Studio” on page 306

● “The Converter URI Scheme” on page 309

● “Working with EDI Conversions” on page 316

● “Custom XML Conversion Definitions Properties Reference” on page 320

Introduction
DataDirect XML Converters are high-performance Java and .NET components that
provide bi-directional, programmatic access to virtually any non-XML file including
EDI, flat files, and other legacy and proprietary formats. DataDirect XML Converters
allow developers to seamlessly stream any non-XML data as XML to industry-leading
XML processing components or to any application. They support StAX, SAX,
XmlReader, XmlWriter, DOM and I/O streaming interfaces, and can be embedded
directly for translation purposes, or as part of a chain of programs including XSLT and
XQuery, or even inside XML pipelines. DataDirect XML Converters maximize developer
productivity and provide a fast, scalable solution for converting between EDI and other
legacy formats and XML.

How XML Converters are Used in Stylus Studio
The DataDirect XML Converters conversion engine is used throughout Stylus Studio to
convert non-XML files to XML and vice-versa. You can access DataDirect XML
Converters:

● When you open and save files

● In the EDI to XML module (see Chapter 4 “Converting EDI to XML” for more
information on this module)

● As XML pipeline ConvertToXML and ConvertFromXML nodes (see Chapter 14
“Building XML Pipelines” for more information)

● Using the converter:URI scheme
254 Stylus Studio User Guide

Introduction
Example

When you open or save a file in Stylus Studio, you have the option of converting that file
to or from XML using DataDirect XML Converters, as shown in the following
illustration:

In the Open dialog box and elsewhere in Stylus Studio, you can choose an XML
Converter for a

● Specific file format (like EDI, CSV, dBase, or RTF, for example). See “Types of
XML Converters” on page 256 for a complete list of standard files supported by the
XML Converters.

● Custom file definition created using the Stylus Studio Custom XML Conversion
Definition Editor. You can create custom XML conversion definitions to handle
proprietary file formats or extensions to formats already supported by DataDirect
XML Converters.

XML Converters Run-Time Components
DataDirect XML Converters are also available as a standalone run-time component on
both Java and .NET platforms. DataDirect XML Converters are bundled with Stylus
Studio XML Enterprise Suite.

This chapter describes how to use DataDirect XML Converters in Stylus Studio. To learn
about the DataDirect XML Converters standalone components for Java and .NET, see the

Figure 144. Open Using XML Converters Check Box
Stylus Studio User Guide 255

Converting Non-XML Files to XML
DataDirect XML Converters documentation at
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp.

Other Ways to Convert Files to XML
In addition to using XML Converters, you can convert files to XML using Stylus Studio
document wizards – Stylus Studio document wizards help you convert XML Schema,
DTD, and HTML to XML. See “Using Document Wizards to Create XML” on page 177
for more information.

Types of XML Converters
DataDirect XML Converters support numerous file formats, as shown in the following
table.

Table 19. Types of Files Handled by XML Converters

File Type Description

Base-64 Converts any file, text or binary (such as an image), into a
XML document with a single element containing the Base-64
encoded content of the input file.

Binary Similar to the Base-64 XML Converter, except with
hexadecimal output. Other options allow output in other
bases, such as decimal or octal or even binary.

Comma-separated
value (CSV)

Converter for comma-separated values (CSV) files. Supports
multiple encodings and options to tune the quote and escape
characters. Supports delimiters besides commas.

Custom Custom or proprietary file formats described using a Stylus
Studio custom XML conversion definition.

dBase Support for dBase II, III, III+, IV, and V formats.

Data Interchange
Format (DIF)

Data Interchange Format (DIF) is a spreadsheet-based file
format. There are also XML Converters for SDI and SYLK.

DotD Support for Progress Software’s OpenEdge text dump file
format.
256 Stylus Studio User Guide

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Introduction
EDI Automatically detects and parses ATIS, Cargo-IMP,
EANCOM, EDIFACT, Edig@s, HIPAA, HL7, NCPDP,
PADIS, TRADACOMS, and X12 EDI message types, with
options for custom message types and message extensions to
cover proprietary EDI-based formats.

JavaProps Support for Java .properties file format, which are used for
program configuration, translation, and data storage.

JSON Uses the algorithms on the JSON.org website to read from
XML and write to JSON (JavaScript Object Notation), and
vice-versa.

Line Reads in text one line at a time, wrapping an element around
each line and escaping any embedded & or > or < symbols.

Pyx Support for this line-oriented notation for expressing tree-
oriented data.

RTF Converts rich-text format (RTF) into XML, and vice versa.

SDI Super Data Interchange (SDI) is another popular spreadsheet-
based file format. There are also XML Converters for DIF and
SYLK.

SYLK SYLK (Symbolic Link) is another popular spreadsheet-based
file format. There are also XML Converters for DIF and SDI.

TAB Tab-separated values format commonly associated with MS
Excel spreadsheets.

WinIni Converter for Windows .ini configuration files.

WinWrite Converter for Microsoft WinWrite files; renders XHTML.

Table 19. Types of Files Handled by XML Converters

File Type Description
Stylus Studio User Guide 257

Converting Non-XML Files to XML
XML Converters Can Be Configured
Each of the DataDirect XML Converters has numerous properties that allow you to
configure the converter to suit your needs, like those for the EDI XML Converters shown
here:

Some XML Converters, for example, let you specify the line separator character, escape
character, root element name, and other aspects of the output format.

See Chapter 4, XML Converters Properties, in the DataDirect XML Converters User’s
Guide and Reference for more information. Documentation for DataDirect XML
Converters is available:

● In the \doc folder for DataDirect XML Converters where you installed Stylus Studio
– \components\XML Converters for .NET\doc, for example

● On the DataDirect XML Converters web site:
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Figure 145. Select XML Converter Dialog Box
258 Stylus Studio User Guide

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Introduction
Using XML Converters to Open a Non-XML File as XML

◆ To open a non-XML file as XML using XML Converters:

1. Select File > Open from the Stylus Studio menu.

Stylus Studio displays the Open dialog box.

2. Navigate the file system that contains the file you want to open as XML. If necessary,
change the value in the Files of type field to filter the files that are displayed.

3. Select the Open using XML Converters check box.

4. Click the Open button.

Stylus Studio displays the Select XML Converter dialog box. (See Figure 145.)

5. Select the XML Converters you want to use to convert your non-XML file to XML.

6. Optionally, change the default values of the conversion properties to be used when
converting your file. See Chapter 4, XML Converters Properties, in the DataDirect
XML Converters User’s Guide and Reference if you need help with this step:
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp.

7. Click OK.

Stylus Studio converts the file you specified in step 2 to XML using the DataDirect
XML Converters you selected in step 5. The file is displayed in a new instance of the
XML Editor.

Figure 146. Open Using XML Converters Check Box
Stylus Studio User Guide 259

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Converting Non-XML Files to XML
Saving an XML File in Another Format
Most DataDirect XML Converters are bi-directional – you can use them to convert native
file formats to XML, and vice versa. (Custom XML conversions you define using the
Stylus Studio Custom XML Conversion Definition Editor convert proprietary files to
XML only.) In order to save an XML file in another format, however, the XML file you
are saving needs to have an XML Schema consistent with that expected by the XML
Converters. There are a number of ways to achieve this in Stylus Studio:

● Save back a previously converted file. Imagine using the CSV XML Converters to
convert bikes.txt to bikes.xml. You could modify the data in bikes.xml and save it
back using the CSV XML Converters. Stylus Studio could save the XML file as CSV
as long as you made no changes to the document structure (adding no new elements
or attributes, for example).

● Use a Document Wizard to create an XML Schema from an EDI message type (ATIS,
Cargo-IMP, EANCOM, EDIFACT, Edig@s, HIPAA, HL7, NCPDP, PADIS,
TRADACOMS, or X12, for example), and use that XML Schema as the target
document in an XQuery or XSLT mapping. The XML document resulting from the
XQuery or XSLT transformation based on that XML Schema would conform to the
XML Schema expected by the EDI XML Converters.

For more information on Document Wizards, see “Using Document Wizards to
Create XML” on page 177. For more information about working with EDI files as
XML, see “Working with EDI Conversions” on page 316.
260 Stylus Studio User Guide

Custom XML Conversions
Custom XML Conversions
In Stylus Studio, you can create a custom XML conversion definition that allows the
DataDirect XML Converters engine to convert proprietary files and extensions to
standard formats to XML.

You create a custom XML conversion definition by selecting an input file and then using
the Custom XML Conversion Definition Editor, shown in Figure 147, to specify the
properties you want to use to convert that file – and other files that share the same format.

The Custom XML Conversion Definition Editor displays information read from the input
file, as well a number of other properties you can specify (such as whether or not you want
element names based on the file’s first row, for example) that are used when the file is
converted from its native format to XML.

Figure 147. Custom XML Conversion Definition Editor
Stylus Studio User Guide 261

Converting Non-XML Files to XML
When to Create a Custom XML Conversion Definition
Consider creating a custom XML conversion definition any time

● You need to convert a file that does not conform to one of the standard file types
already supported by DataDirect XML Converters

● You want to exercise more control over the XML that is output by the conversion

Converting Non-Conforming EDI

The Custom XML Conversion Definition Editor lets you create custom conversion
definitions for many file types, including EDI. You can learn more about using the
Custom XML Conversion Definition Editor to convert custom EDI formats here:
“Working with EDI Conversions” on page 316.

However, Stylus Studio and XML Converters both support the Standard Exchange
Format (SEF), which allows you to defined extensions to EDI standards. The Stylus
Studio EDI to XML module allows you to easily create SEF files to manage conversion
of custom EDI formats. Its graphic user interface can simplify the process of converting
non-conforming EDI to XML – and vice versa. See Chapter 4 “Converting EDI to XML”
for more information.

Creating a Custom XML Conversion Definition
This section describes how to create and save a custom XML conversion definition (.conv
file) in Stylus Studio.

Choosing an Input File
The input file you specify when creating a custom XML conversion definition can be any
type. If you plan to use the custom XML conversion definition to convert other non-XML
files of this type, the input file should be representative of that broader class of files – files
with the same extension (.txt, for example), encoding, numbers and types of regions, and
so on. You can always fine-tune the custom XML conversion definition to accommodate
characteristics that are not embodied in the input file, but as a general rule, use a file that
is as close to others of its type as possible.

Stylus Studio’s heuristics are also used to determine the field separator character being
used (if any), the delimiting character being used (if any), and so on. The assumptions
262 Stylus Studio User Guide

Creating a Custom XML Conversion Definition
Stylus Studio makes are reflected in the Properties window in the Custom XML
Conversions Editor once the input file is opened.

Specifying File Settings
Stylus Studio also allows you to specify the file’s

● Encoding (Windows-1252 or ANSI, for example)

● Layout (line-oriented or fixed-width, for example)

Unless you are certain of the file’s encoding and layout, consider leaving the default
settings as they are – Stylus Studio will determine encoding and layout properties when
it reads the file.

How to Create a Custom XML Conversion Definition

◆ To create a custom XML conversion definition (.conv file):

1. Select File > New > Custom XML Conversion from the Stylus Studio menu.

The New Custom XML Conversion Definition dialog box appears.

2. Click the browse button () and select the file you want to use to configure the
custom XML conversion definition settings. See “Choosing an Input File” on
page 262 if you need help with this step.

Figure 148. New Custom XML Conversion Definition Dialog Box
Stylus Studio User Guide 263

Converting Non-XML Files to XML
The Open dialog box appears. By default, the Files of Type field filter is set to display
.txt, .edi, .csv, .tab, .log, and .bin files.

3. Click the Open button.

Stylus Studio displays the file URL in the first field of the New Custom XML
Conversion Definition dialog box.

4. Optionally, change the default file encoding and layout settings. See “Specifying File
Settings” on page 263 if you need help with this step.

5. Click OK.

Stylus Studio displays the file you selected in the Custom XML Conversion Editor.

6. Examine the file and its properties as it was read into the Custom XML Conversion
Editor by Stylus Studio.

7. Modify the file layout, its regions, and its fields as needed. See “Working with
Regions” on page 278 and “Working with Fields” on page 287 if you need help with
this step.

8. Modify the properties that govern XML output as needed. See “Controlling XML
Output” on page 295 if you need help with this step.

9. Click the Preview Results button ().

Stylus Studio displays the Save As dialog box.

10. Enter a name for the custom XML conversion definition and click Save.

11. If the results are not what you expect, return to step 7 and to step 8. You might also
considering revisiting the input file, making fundamental changes there, and then
reloading it.

The steps in this process are described in greater detail in the following sections.

Tip The file you select should be representative of other files of this type that you wish
to convert to XML using the custom XML conversion definition you are creating.

Tip Once you have created and saved a custom XML conversion definition, you can use it to
open other non-XML files of the same type, just as you would with any other DataDirect
XML Converter. See “Using XML Converters to Open a Non-XML File as XML” on
page 259 for more information.
264 Stylus Studio User Guide

The Custom XML Conversion Definition Editor
The Custom XML Conversion Definition Editor
You use the Custom XML Conversion Editor, shown in Figure 149, to build a custom
XML conversion definition. The Custom XML Conversion Editor appears when you
create a new custom XML conversion definition, or open an existing one (a .conv file).

The input file is displayed in a document pane; properties that both describe the existing
file (encoding and size, for example) and define the XML output that will be generated
when converting this file (root and field element names, and whether or not you want the
XML to be indented, for example) are displayed in the Properties window. The schema
pane shows a representation of the XML Schema that will be output for the converted file.
Finally, in addition to current row and column position, note that the status bar also shows
the Unicode value of the current character.

Figure 149. Custom XML Conversion Editor
Stylus Studio User Guide 265

Converting Non-XML Files to XML
This section describes the main features of the Custom XML Conversion Editor,
including how it interacts with the XML Converters engine. This section covers the
following topics:

● “Document Pane” on page 266

● “Properties Window” on page 273

● “Schema Pane” on page 275

Document Pane
The document pane displays the input file’s layout, including spaces, field separators, and
control characters. The input file’s appearance in the document pane is determined, in
part, by its format.

This section covers the following topics:

● “Example – .txt Files” on page 266

● “Display of Delimiting and Control Characters” on page 268

● “Field Names” on page 269

● “Document Pane Display Features” on page 270

● “Moving Around the Document” on page 272

Example – .txt Files

Stylus Studio uses slightly different displays for character-separated and fixed-width .txt
files. Consider this file, which uses commas as the field separator:

Make,Model,Year,Mileage
BMW,R1150RS,2004,14274
Kawasaki,GPz1100,1996,60234
Ducati,ST2,1997,24000
Moto Guzzi,LeMans,2001,12393
BMW,R1150R,2002,17439
Ducati,Monster,2000,15682
Aprilia,Futura,2001,17320
266 Stylus Studio User Guide

The Custom XML Conversion Definition Editor
Figure 150 shows how this character-separated input file appears in the Custom XML
Conversion Editor’s document pane. By default, Stylus Studio aligns columns and fills
the empty cells of the shorter rows with a light blue to aid readability:

You can remove these spaces from the display and view the file in its native format by
clicking the Align Fields button () on the tool bar, or by selecting
CustomXMLConversion > Align Fields on the menu. This results in the layout shown in
Figure 151.

Fixed-width files are displayed in a slightly different fashion. Consider this fixed-width
input file:

Figure 150. Character-Separated File with Aligned Fields

Figure 151. Character-Separated File without Aligned Fields

Deep-sea octopus Bathypolypus arcticus http://www.dal.ca/~ceph/TCP/barctic.html
Blue-ringed octopus Hapalochlaena lunulatahttp://www.dal.ca/~ceph/TCP/lunulata.html
Caribbean reef octopusOctopus briareus http://www.dal.ca/~ceph/TCP/obriar.html
Giant octopus Octopus dofleini http://www.dal.ca/~ceph/TCP/giant.html
Common octopus Octopus vulgaris http://www.dal.ca/~ceph/TCP/Octopusvulgaris.html
Red octopus Octopus rubescens http://www.dal.ca/~ceph/TCP/redocto.html
Octopus Salutii Octopus salutii http://www.dal.ca/~ceph/TCP/Osalutii.html
Octopus Macropus Octopus macropus http://www.dal.ca/~ceph/TCP/Omacropus.html
Stylus Studio User Guide 267

Converting Non-XML Files to XML
In a fixed-width file, the empty cells represent actual values (spaces) in the input file. In
the second row of this input file, for example, there are three spaces between the first and
second columns:

Display of Delimiting and Control Characters

Stylus Studio displays delimiting and control characters in a way that distinguishes them
from plain text values.

● Delimiting characters, like the comma used in the example in Figure 150, are
displayed with a dark blue background. For files that include sub-fields or arrays (like
EDI, for example), the sub-field separator character is shown in a different shade of
blue. Sub-sub-fields delimiting characters are shown in a shade of purple.

● Control characters (line feeds and carriage returns, for example) are shown using their
abbreviated ASCII value. A carriage return (0x0D) line feed (0x0A) is shown as ,
for example. ASCII abbreviations are aligned vertically, to preserve space, as shown
in this representation of the ASCII value for tab (0x09): .

Stylus Studio understands all Unicode characters,. When editing Line-Oriented
Region and Field Name values in the Properties window, you can enter mnemonic
values for the C1 and C0 control characters in the following ranges:

■ C0 control characters with a value from >= 0x00 to <= 0x1F

■ C1 control characters with a value from >=0x80 to <= 0x9F

For example, you could enter TAB or HT in the Field Separator field in the Properties
window, and Stylus Studio would correctly interpret that value. For a list of
commonly used control characters, see “Specifying Control Characters” on page 351.

● Characters that are discarded from output (like line terminators such as CR and LF
and comment lines) are displayed against a gray background.

Figure 152. Fixed-Width File
268 Stylus Studio User Guide

The Custom XML Conversion Definition Editor
You can hide control characters by clicking the Toggle Control Characters button ()
on the tool bar, or by selecting ConvertToXML > Toggle Control Characters from the
menu.

Field Names

User-defined field names – values that Stylus Studio uses to create the element names in
converted XML – are displayed in green, as shown here:

You can edit these names

● In-place, by double-clicking the field name

● In the Field Element Name field of the Properties window

If the field names are taken from a row within the file itself, Stylus Studio displays a blue
arrow in the document pane margin to indicate this.

See “Naming Fields” on page 287 to learn more about naming fields for XML output by
custom XML conversion definitions.

Figure 153. User-defined Field Names are Shown in Green

Figure 154. Blue Arrow Indicates Field Names Taken from the File
Stylus Studio User Guide 269

Converting Non-XML Files to XML
Document Pane Display Features

In addition to aligning fields in character-delimited files, the Custom XML Conversion
Editor’s document pane has several other features that aid readability.

Ruler

You can display a ruler that identifies each column:

To display the ruler, click the Toggle Ruler button () on the tool bar, or select
CustomXMLConversion > Toggle Ruler from the menu.

Displaying Pattern Matches

You can define match patterns using regular expressions to control which rows are
converted to XML and, optionally, the name to use for these rows. You can highlight rows
that match the patterns that you have defined, as shown here:

To highlight matching rows, click the Highlight Matching Rows button () on the tool
bar, or select CustomXMLConversion > Highlight Matching Rows from the menu.

Figure 155. Ruler Helps Identify Columns

Figure 156. Matching Rows Are Displayed in Yellow
270 Stylus Studio User Guide

The Custom XML Conversion Definition Editor
Matching rows are displayed in light yellow, with a green check in the pane’s margin. A
red X identifies rows that do not match the current pattern. Gray squares identify rows
that match a pattern other than the pattern defined for the row that currently has focus. See
“Specifying Multiple Match Patterns” on page 299 for more information on this feature.

See “Pattern Matching” on page 297 to learn more about using regular expressions to
define match patterns.

Grid Lines

The document pane displays both vertical and horizontal lines by default; you can
hide/show them independently. In the example shown in Figure 157, horizontal lines are
hidden from the display:

To hide horizontal and vertical grid lines, click the Toggle Horizontal Grid Lines ()
and/or Toggle Vertical Grid Lines () buttons on the tool bar, or select ConvertToXML >
Toggle Horizontal Grid Lines and/or Toggle Vertical Grid Lines from the menu.

Fonts

By default, the input document is displayed using the Courier New font in 12pt. You can
change the display font to suit your personal preference using the Edit > Change Font and
Edit > Font Size menus.

Tip Only rows that match the same pattern that the current row matches are highlighted. Also,
tooltips appear when you hover the pointer over the match symbols. These tooltips
display the pattern that the row matches.

Figure 157. You Can Hide Horizontal and Vertical Grid Lines

Tip Hiding horizontal lines while displaying the ruler is an effective way to quickly scan
columns.
Stylus Studio User Guide 271

Converting Non-XML Files to XML
Moving Around the Document

You can move the cursor around the document using

● The Space bar on your keyboard

● The directional arrows and Page Up, Page Down, Home, and End keys on your
keyboard

● Your mouse (click on the character on which you want to place the cursor)

● The Go To dialog box

Using Go To

You use the Go To dialog box to jump to a specific location in the file you are using to
create your custom XML conversion definition. You can use it to move the cursor to a
specific

● Position in the file

● Region

● Position or row within a region

● Column within the current row

When you first display the Go To dialog box, values in the Go To fields reflect the cursor’s
current location within the file. The values in the Maximum fields display the maximum
values for each category (file size, number of regions, and so on) for the portion of the file
read into the Custom XML Conversion Editor Editor by Stylus Studio.

Figure 158. Use the Go To Dialog Box to Navigate the Document
272 Stylus Studio User Guide

The Custom XML Conversion Definition Editor
◆ To display the Go To dialog box, select Edit > Go To from the menu.

Properties Window
The Properties window, like the one shown in Figure 159, displays information about the
input file, as well as settings that Stylus Studio will use convert files to XML.

Information in the Properties window includes

● Information read or inferred from the input file when it is first opened in the Custom
XML Conversion Editor. Examples include the file name, file size, and number of
characters that were read. Some values, such as the type of encoding, can be edited.
Informational fields that cannot be edited are identified with a blue circle: .

● Values you want the XML Converters engine to use when converting this input file
and other files of this type to XML. Output properties include the root element name,
the namespace and namespace prefix, and the field element name. These fields are
identified with a green arrow over a document icon: .

Figure 159. Properties Window for a .txt File
Stylus Studio User Guide 273

Converting Non-XML Files to XML
How Properties are Organized

Properties displayed in the Properties window are organized in the following categories:

● Input File – read-only information read or inferred from the input file, and editable
properties that affect XML output. These properties affect the file as a whole when it
is converted to XML. Input file properties are identified by this icon: .

● XML Output URL – properties that affect the XML document created by the custom
XML conversion definition, including the name you want to use for the root element,
and whether or not you want to indent the XML. Output URL properties are identified
by this icon: .

● Region Type – read-only information inferred from the input file, and editable
properties that affect XML output. Examples include line terminating and escape
characters. These properties affect a contiguous portion of the file (that is, a given
line-oriented or fixed-width region) when it is converted to XML. Region properties
are identified by this icon: .

● Row Element Name – properties that affect which rows of the input file are output to
XML and how they are output, including the name you want to use for the row. Row
properties are identified with this icon: .

● Field Element Name – read-only information read or inferred from the input file, and
editable properties that affect XML output. These properties affect only fields in a
given region of the file when it is converted to XML. Field properties are identified
by this icon: .

Properties for Fixed-Width and Line-Oriented Input Files

Fixed-width and line-oriented input files have different properties – line-oriented
properties include the line terminator and field separator characters, and fixed-width files
have a row length, for example. See “Custom XML Conversion Definitions Properties
Reference” on page 320 to learn more about individual properties.

Note Informational properties, that is, properties that do not affect XML output, are displayed
with the following icon: . These properties are displayed when you click the Toggle
Informational Properties button.
274 Stylus Studio User Guide

The Custom XML Conversion Definition Editor
Schema Pane
The schema pane displays a representation of the XML Schema for the XML document
that will be output when the input file is converted to XML.

You can double-click on a row element to display the Set Node and Match Pattern dialog
box, shown in Figure 161. This functionality provides an alternative to editing the row
name and specifying a match pattern in the Properties window. (To learn more about
patterns and how to use them in your custom XML conversion definitions, see “Pattern
Matching” on page 297.)

You can also edit schema node names directly in the schema pane – just click twice to
place the node name in edit mode.

See “Rows” on page 277 to learn more about specifying conversion properties for rows.

Figure 160. Schema Pane Shows Output Schema Representation

Figure 161. Set Node and Match Pattern Dialog Box
Stylus Studio User Guide 275

Converting Non-XML Files to XML
Parts of an Input File
Input files displayed in the Custom XML Conversion Editor’s document pane consist of
regions, rows, and fields. Each section has its own set of properties. Some, like Region
Type, are read or inferred from the file; others, like Region Element Name, are values you
provide that affect the XML output.

This section covers the following topics:

● “Regions” on page 276

● “Rows” on page 277

● “Fields” on page 278

Regions
A region is the largest organizational component in an input file. Regions are interpreted
by Stylus Studio when the input file is first read into the Custom XML Conversion Editor.
You can use the editor to define your own, as well.

An input file can contain one or more regions; every input file has at least one region that
starts at offset 0. Multiple regions are common in binary files, which often contain a fixed-
size header and then one or more records containing the actual data. Regions are fixed in
size and cannot repeat.

In the Custom XML Conversion Editor, regions are numbered, starting with 1, followed
by the row number. For example, in an input file with two regions, you might see rows
labeled as follows: 1:1, 2:1, 2:2, 2:3, and so on, as shown here:

Figure 162. Rows in Regions Are Numbered Independently
276 Stylus Studio User Guide

Parts of an Input File
Region Types

Regions can be fixed-width or line-oriented. You can also set the Region Type property
to No-output. Regions that are marked as No-output are grayed out in the Custom XML
Conversion Editor, and they are not converted to XML.

Managing Regions

Stylus Studio provides tools that let you create new regions, and join one region with
another. You can also change a region’s type, define different line terminators across
regions, and mark a region so that it is excluded from output. For information on these
and other topics, see “Working with Regions” on page 278.

Rows
A row is equivalent to a record, line, or tuple in the input file; a row is made up of fields.
An example of a row is an employee record; examples of fields in an employee record
include employee_id, last_name, first_name, and so on.

Every region can have one or more rows. (A region cannot be empty.) In addition, a region
can have multiple row types. Rows are selected for conversion to XML based on the
match patterns expressed in the Match Pattern field of the Properties window. See
“Omitting Regions and Fields, and Rows” on page 296 for more information.

Rows in a fixed-width region have the same width as the region itself; fields within each
row are defined by a fixed number of columns. Stylus Studio uses a default value of 80
characters for row length in fixed-width regions, but you can adjust this as required from
within the Custom XML Conversion Editor. See “Adjusting Fixed-Width Regions” on
page 281 for more information.

In a fixed-width region, you can

● Explicitly specify the fields within a row

● Adjust the size of the fields you specify

In a line-oriented region, fields are separated by a separator character or string. These
characters are inferred by Stylus Studio when it first reads the file, but you can change
these and other characters if needed.

See “Working with Fields” on page 287 for more information.
Stylus Studio User Guide 277

Converting Non-XML Files to XML
Fields
A field is one or more columns in a row that contains data. Each different row type has its
own independent set of fields. An example of a field in an employee record is
employee_id.

Stylus Studio supports many data types (string, Boolean, number, date, time, and so on)
and recognizes many different input formats (like different date formats, for example).
Properties vary based on data type – the Base property, for example, is applicable only to
Number data types.

You can define your own fields in fixed-width input files. See “Defining Fields” on
page 290 for more information.

Component and Sub-Component Fields

Some file formats, including many EDI dialects, allow fields to be subdivided into arrays,
sub-fields, or composite fields. Collectively, these fields are referred to as component
fields in custom XML conversion definitions, and they are fully supported, both in terms
of recognition and output. You can name the container element using the Component
Element Name and Sub-Component Element Name properties.

Working with Regions
This section describes some of the features you can use to work with input file regions. It
covers the following topics:

● “Converting the Region Type” on page 279

● “Adjusting Fixed-Width Regions” on page 281

● “Defining and Joining Regions” on page 283

● “Controlling Region Output” on page 286
278 Stylus Studio User Guide

Working with Regions
Converting the Region Type
The Region Type field in the Properties window displays information about the type of
region Stylus Studio inferred when the file was first read. Its value is either Fixed-width,
Line-oriented, or No-output.

Regions with CR/LF control characters are interpreted as line-oriented regions. There
might be occasions, however, when you want to change the region type from line-oriented
to fixed-width, or vice versa. This section describes the tools you can use to change a
region from one type to another.

Consider the following file fixed-width file:

It is a simple .txt file with fields (Make, Model, and so on) that have been created using
spaces. Each new row was created using the Enter key in the text editor, resulting in
CR/LF control characters at the end of each line that cause Stylus Studio to interpret the
file as a single line-oriented region, like this:

For display purposes, we can remove the spaces Stylus Studio has inserted for readability
(the cells with the light blue shading) by clicking the Align Fields () button. This

Tip Information about No-output regions is not displayed in the Properties window.

Make Model Year Mileage
BMW R1150RS 2004 14274
Kawasaki GPz1100 1996 60234
Ducati ST2 1997 24000
MotoGuzzi LeMans 2001 12393
BMW R1150R 2002 17439
Ducati Monster 2000 15682
Aprilia Futura 2001 17320

Figure 163. Fields are Aligned by Default
Stylus Studio User Guide 279

Converting Non-XML Files to XML
results in a display that resembles the source (Figure 164), but Stylus Studio still
considers the region to be line-oriented.

When you convert a line-oriented region to a fixed-width region, Stylus Studio removes
spaces it added for readability and depicts only the spaces in the original input file used
to create the fields and the field values themselves, as show in Figure 165.

By default, Stylus Studio displays fixed-width files using an 80-character row. This
accounts for the input files appearance when it is first displayed as a fixed-width file – if
you scan the document, you can see that all of the file’s original information, including
the CR/LF control characters has been retained, but that the formatting differs – the
original input file had eight rows; now it has four rows of 80 characters.

Figure 164. Turning Off Align Fields Can Aid Readability

Figure 165. Line-Oriented Regions Converted to Fixed-Width

Tip You can adjust the width of fixed-width regions. See “Adjusting Fixed-Width Regions”
on page 281.
280 Stylus Studio User Guide

Working with Regions
How to Convert a Region Type

◆ To convert a region type:

1. Place the cursor anywhere in the region you want to change.

2. Click the Convert to Fixed-Width Region () or Convert to Line-Oriented Region
() button. These actions are also accessible from the CustomXMLConversion
menu and the shortcut menu in the Custom XML Conversion Editor.

3. If you have converted a line-oriented region to a fixed-width region, adjust the row
length as needed. See “Adjusting Fixed-Width Regions” on page 281.

Adjusting Fixed-Width Regions
If you specify the layout of the file you are converting as fixed-width, Stylus Studio uses
a default row length of 80 characters. (If you let Stylus Studio determine the file layout,
Stylus Studio will attempt to determine record length based on the line terminating
character, if any.) You might need to adjust the row length of a region if your input file
uses a different row length, or when converting a line-oriented region, like the one shown
in Figure 166, to fixed-width.

There are several ways to specify the row length for a fixed-width region:

● Using the Row Length property – simply change the default value, 80, to the value
that is appropriate for the current region and press Enter.

● Dragging the document pane to the left or right – move the pointer to the right border
of the document pane. When it changes shape, press and hold mouse button 1 and
drag the right border of the grid until the input file’s fields are aligned.

● Holding the Shift key and pressing the right arrow (to add width) or the left arrow (to
decrease width).

Figure 166. Line-Oriented Region
Stylus Studio User Guide 281

Converting Non-XML Files to XML
Each of these methods lets you explicitly set the row length. Alternatively, you can
specify a Line Terminator character manually, as shown in Figure 167.

Specifying a Line Terminator character means that the rows in the region can be of
variable length, based on the where the specified Line Terminator character occurs in the
record.

Example

After converting the line-oriented region shown in Figure 166 to fixed-width, it looks like
this:

Figure 167. Manually Setting the Line Terminator Character

Tip When you specify a Line Terminator character for a fixed-width region, the value shown
in the Row Length property represents the value of the longest row in the region.

Figure 168. Line-Oriented Region Converted to Fixed-WIdth
282 Stylus Studio User Guide

Working with Regions
Figure 166 shows the same fixed-width file after it has been resized by dragging the
document pane.

Defining and Joining Regions
An input file can contain any number of regions; fixed-width and line-oriented regions
can exist in the same file. The Custom XML Conversion Editor provides tools that allow
you to define new regions and join existing ones.

This section covers the following topics:

● “Defining a Region” on page 283

● “Joining Regions” on page 286

Defining a Region

When you define a region in an input file, Stylus Studio splits the region at the current
cursor location. The new region starts with the character on which the cursor resided when
the region was defined, but it can be of either type – fixed-width or line-oriented –
regardless of the type of the original region.

Consider the following input file:

Figure 169. Resized Fixed-Width Region

Bike Inventory Overview 2004-10-01 09:00:07EDT
Make,Model,Year,Mileage
BMW,R1150RS,2004,14274
Kawasaki,GPz1100,1996,60234
Ducati,ST2,1997,24000
Moto Guzzi,LeMans,2001,12393
BMW,R1150R,2002,17439
Ducati,Monster,2000,15682
Aprilia,Futura,2001,17320
Stylus Studio User Guide 283

Converting Non-XML Files to XML
By default, Stylus Studio reads this as a file with a single region. You might decide you
want your XML to distinguish headers from actual records and treat the two accordingly
(not generating headers as XML, for example).

When you define a new region, the Custom XML Conversion Editor renumbers all the
rows, using a region:row number format. In addition, each region is displayed with its
own field name row, which is displayed in light green with the default field element name,
field, as shown in Figure 170.

Field and row values are independent across regions. For example, the <row> element
might be <reg1>, <reg2>, and so on for each of the regions in an input file.

◆ To define a region:

1. Place the cursor in the document pane on the character with which you want to start
the new region.

2. Click the Start New Region Here () button, or select CustomXMLConversion >
Start New Region Here from the Stylus Studio menu.

Figure 170. Regions Are Numbered and Colored Differently
284 Stylus Studio User Guide

Working with Regions
Stylus Studio displays the Start New Region dialog box.

3. Choose the type of region you want to create (line-oriented, fixed-width, or no-
output).

4. Choose where you want the new region to start (at the current row, or at a specific
number of bytes from the start of the file).

5. Click OK.

Figure 171. Start New Region Dialog Box

Tip If the .conv file you are creating will be used with different input files, it is possible
that the line lengths could vary from file to file, changing the byte offset. Consider
using the row setting (the default) for the Begin New Region property in this case.
Stylus Studio User Guide 285

Converting Non-XML Files to XML
Joining Regions

You can join regions that you define as well as regions that Stylus Studio interpreted when
it first read the input file. You can join the current region to either adjacent region – the
previous region, or the next region.

The region type after the join operation depends on whether you are joining with the
previous region or the next region.The region you are joining assumes the type of the
region to which it is being joined.

◆ To join a region:

1. Place the cursor anywhere in the region you want to join with another region.

2. Click the Join with Previous Region () or Join with Next Region () button.
These actions are also accessible from the CustomXMLConversion menu and the
shortcut menu in the Custom XML Conversion Editor.

Stylus Studio joins the region you specified in step 1with the adjacent region.

Controlling Region Output
By default, Stylus Studio generates output for all fixed-width and line-oriented regions.
No-output regions are never converted to XML. In addition to pattern matching, which
controls whether or not individual rows in a region are output based on a pattern you
define, you can omit entire regions from output by selecting Yes from the Omit from
Output drop-down list in the Region Type section of the Properties window.

Table 20. Region Type After Joining Regions

Region Joined With Resulting Region Type

Next The region you are using to perform the join

Previous The region to which you are joining
286 Stylus Studio User Guide

Working with Fields
Working with Fields
This section describes some of the features you can use to work with input file fields. It
covers the following topics:

● “Naming Fields” on page 287

● “Defining Fields” on page 290

● “Component and Sub-Component Fields” on page 293

Naming Fields
Every field in an input file – including fields in the same region and row – can have its
own field element name. All field element names (<field> is the default) include the
namespace prefix in the XML output if one was specified.

Field names are determined by two properties – Element Name Source in the Region
Type properties, and Field Element Name, as shown in Figure 172.

The Element Name Source indicates the origin of the field name used in the XML output
when converting the input file. The Field Element Name property specifies the actual
value used to name the <field> element.

Figure 172. Sources for Field Names in XML Output
Stylus Studio User Guide 287

Converting Non-XML Files to XML
Using the Element Name Source Property

There are three values for the Element Name Source property:

● User-Supplied – Specifies that you will supply names for the <field> element. You
can do this by editing the Field Element Name property, or by double-clicking the
field element name in the document pane to edit the field name directly in the
document pane.

The default value of the Field Element Name property is field. If you use other values
for the Element Name Source property, Stylus Studio provides the values for the Field
Element Name property.

User-Supplied is the default setting for the Element Name Source property.

● From First Row – You can use this setting to take <field> element names from the
first row in the region. If you have used the Rows to Skip property to skip rows in a
region, the first available region is used to supply the <field> element names.

Consider the following input file:

If you set Element Name Source to From First Row, the XML output uses Make,
Model, and Year for the <field> element names, as shown here:

You can specify any row as the source for field names using the Get Field Names from
This Row from the row’s shortcut menu.

Make:Model:Year
BMW:R1150RS:2004
MZ:Scorpion:1995
Ducati:ST2:1997

<?xml version="1.0" encoding="utf-8"?>
<root>

<row>
<Make>BMW</Make>
<Model>R1150RS</Model>
<Year>2004</Year>

</row>
<row>

<Make>MZ</Make>
<Model>Scorpion</Model>
<Year>1995</Year>

</row>
<row>

<Make>Ducati</Make>
<Model>ST2</Model>
<Year>1997</Year>

</row>
</root>
288 Stylus Studio User Guide

Working with Fields
● WS-EDI Standard – This setting allows rows and fields to be named based on the WS-
EDI Standard level 0. See http://www.ws-edi.org for more information on this
standard.

More About Using Rows for Field Names

When you use an existing row as the source for field names in the XML output, Stylus
Studio changes the display of that row in the document pane to a darker blue to indicate
this, as shown here:

In addition, preceding rows in that region, if any, are grayed out, and the value of the
Rows to Skip field in the Region Type properties changes to reflect this.

In the event that the first row has fewer names than there are fields in one or more
subsequent lines in the file, Stylus Studio names the extra fields <fieldn>, where n is the
field number relative to other fields in the row. Also, if the values in the row are not valid
XML identifiers, they are converted using the following rules:

● Whitespace and nulls are trimmed from both ends

● SQL/XML rules are used, except that underscores (“_”) are not converted to _x005F_
symbols

● Beyond these exceptions, strict rules are used. See section 9.1 (page 91) of
http://www.sqlx.org/SQL-XML-documents/5FCD-14-XML-2004-07.pdf.

How to Name Fields

◆ To provide user-supplied field names:

1. Display the Properties window if it is not already displayed (click View > Properties
on the Stylus Studio menu).

2. Place the cursor anywhere in the field you want to name.

The Field Element Name property displays the current value for the field.

3. Type the new name in the Field Element Name property and press Enter.

Figure 173. Using a Row for Field Names
Stylus Studio User Guide 289

http://download.sonicsoftware.com/stylusstudio/catalogs/www.ws-edi.org/
http://www.sqlx.org/SQL-XML-documents/5FCD-14-XML-2004-07.pdf

Converting Non-XML Files to XML
Alternative:

1. Double-click the field name in the document pane.

The field name field becomes editable.

2. Type a new value for field and press Enter.

◆ To specify alternate sources for field names:

1. Display the Properties window if it is not already displayed (click View > Properties
on the Stylus Studio menu).

2. Select the field name source you want to use from the Element Name Source drop-
down list.

3. Press Enter.

Defining Fields
You can define fields in any region in a fixed-width input file, as shown in Figure 175.
Once you have defined a field, you can change its size by simply dragging it to any
column in the grid.

Each field you define is treated as a separate element in the XML output by the custom
XML conversion definition. The input file shown in Figure 175, for example, would

Figure 174. You Can Edit the Field Name Directly in the Document Pane

Figure 175. Line Identifying a Field in a Fixed-Width Input File
290 Stylus Studio User Guide

Working with Fields
result in XML with two <field> elements, one consisting of the make of motorcycle, and
one consisting of the model, year, and mileage. You can use the field feature to exercise
control over the XML – defining separate fields for make, model, year, and mileage, for
example.

Consider the following input file:

By default, each row is considered to have a single field, containing Make, Model, Year, and
Mileage, resulting in XML output like this:

Make Model Year Mileage
BMW R1150RS 2004 14274
Kawasaki GPz1100 1996 60234
Ducati ST2 1997 24000
MotoGuzzi LeMans 2001 12393
BMW R1150R 2002 17439
Ducati Monster 2000 15682
Aprilia Futura 2001 17320

<?xml version="1.0" encoding="utf-8"?>
<root>

<row>
<field>Make Model Year Mileage

</field>
</row>
<row>

<field>BMW R1150RS 2004 14274

</field>
</row>

...
Stylus Studio User Guide 291

Converting Non-XML Files to XML
If you specify fields for Model, Year, and Mileage, the XML output by the custom XML
conversion definition looks like this:

Neither approach is always correct, but this feature gives you the ability to define the type
of XML output that is appropriate for your use.

◆ To define a field:

1. Place the cursor in the document pane on the character with which you want to start
the new field.

2. Click the Begin Field in This Column () button. This action is also accessible from
the CustomXMLConversion menu and the shortcut menu in the Custom XML
Conversion Editor.

Stylus Studio displays a thin orange line that identifies the start of the newly defined
field.

◆ To remove a field:

The procedure for removing a field is the same as the procedure for defining one – place
the cursor on any character adjacent to the field line you want to remove and click the
Begin Field in This Column () button.

<?xml version="1.0" encoding="utf-8"?>
<root>

<row>
<field>Make</field>
<field>Model</field>
<field>Year</field>
<field>Mileage

</field>
</row>
<row>

<field>BMW</field>
<field>R1150RS</field>
<field>2004</field>
<field>14274

</field>
</row>

...

Tip Of course, in this example, the next logical step might be to use the first row (Make, Model,
Year, and Mileage) as the field names as described in “Naming Fields” on page 287.
292 Stylus Studio User Guide

Working with Fields
Creating Notes for Fields

Stylus Studio allows you to create notes on individual fields. These notes are for reference
purposes only; they are not output in the XML.

◆ To create notes for a field:

1. Click the entry field for the Notes property.

The Notes dialog box appears.

2. Type the notes you want to associate with the field and click the OK button.

Component and Sub-Component Fields
Some file formats – many EDI variants, for example – allow fields to be subdivided into
arrays, sub-fields, or composite fields. Collectively, these fields are referred to as
component fields in custom XML conversion definitions. Typically, the headers of these
files contain information about the character used to specify component fields. Stylus
Studio uses this information to set the default value for the Field Component Separator
property and render XML output accordingly.

Tip The Notes property is in the Field Element Name > Source Data Type tree in the
Properties window. These properties appear only for rows for which a match pattern
exists. See “Pattern Matching” on page 297 for more information on this topic.

Figure 176. Notes Dialog Box

Tip If a field has a note defined for it, it is displayed in a tooltip which appears when you
hover the mouse pointer over the field in the Custom XML Conversion Editor.
Stylus Studio User Guide 293

Converting Non-XML Files to XML
Consider the following input file, which uses a semi-colon (;) to specify component fields:

Using the first row to supply the field names and default Component Element Name
(component), the custom XML conversion definition creates the following XML output
(first two elements shown for brevity):

The <component> elements are created as subelements of the <Color> and <Seat> elements.

For line-oriented regions in files containing component fields, you can change the default
Field Component Separator property, and the Component Element Name and
Component Element Name properties, that is, the name you want to use for the
component fields’ container elements.

Make;Model;Year;Color;Seat
BMW;R1150RS;2004;grey,metallic;black,vinyl
MZ;Scorpion;1995;green,clearcoat;black,vinyl
Ducati;ST2;1997;red,clearcoat;black,leather

<?xml version="1.0" encoding="utf-8"?>
<root>

<row>
<Make>BMW</Make>
<Model>R1150RS</Model>
<Year>2004</Year>
<Color>

<component>grey</component>
<component>metallic</component>

</Color>
<Seat>

<component>black</component>
<component>vinyl</component>

</Seat>
</row>
<row>

<Make>MZ</Make>
<Model>Scorpion</Model>
<Year>1995</Year>
<Color>

<component>green</component>
<component>clearcoat</component>

</Color>
<Seat>

<component>black</component>
<component>vinyl</component>

</Seat>
</row>

...
294 Stylus Studio User Guide

Controlling XML Output
Controlling XML Output
Custom XML conversion definitions provide several ways for you to control the XML
output. Most XML output is specified using properties displayed in the Properties
window. Some XML output, such as the number of regions or the number of fields in a
row, are specified using the Custom XML Conversion Editor.

This section describes the properties used to control some of the most common output
operations. See “Custom XML Conversion Definitions Properties Reference” on
page 320 for detailed information on all properties.

This section covers the following topics:

● “Specifying Element Names” on page 295

● “Specifying Format” on page 296

● “Omitting Regions and Fields, and Rows” on page 296

● “Pattern Matching” on page 297

● “Using Lookup Lists” on page 302

● “Using Key=Value Characters” on page 305

Specifying Element Names
You can specify names for the following nodes in an XML document output by a custom
XML conversion definition:

● Root element – The default for the <root> element is root. You can change the default
using the Root Element Name property.

● Region element – The default for the <region> element is region. You can change the
default using the Region Element Name property. Different regions can have different
names.

● Namespace – You can specify names for both the namespace prefix and the
namespace using the Namespace and Namespace Prefix properties, respectively. The
namespace prefix you specify is added to every element name.

● Row element – The default for the <row> element is row. You can change the default
using the Row Element Name property. Rows in different regions can have different
names.

● Field element – The default for the <field> element is field. You can change the
default using the Field Name property. Each field can have its own name. If your input
file defines subelements. you can use the Component Element Name and Sub-
Component Element Name properties to provide a name for the containing element.
Stylus Studio User Guide 295

Converting Non-XML Files to XML
Specifying Format
There are several ways to exercise control over the format of the XML document output
by a custom XML conversion definition.

● Indenting – By default, Stylus Studio indents the XML generated by a custom XML
conversion definition. You can remove indenting by changing the value of the Indent
XML? property to False.

● Whitespace – The Normalize Whitespace property converts tabs, carriage returns,
and line-feeds to spaces. Leading and trailing whitespaces are then removed, and any
two or more consecutive whitespaces are collapsed to a single space.

● XML Schema – The XML Schema Document property allows you to specify the
XML Schema you want to associate with the XML output. There are also fields that
allow you to specify System and Public DTDs.

Omitting Regions and Fields, and Rows
Stylus Studio allows you to omit specific regions and fields from an input file when it is
converted to XML.

● Omitting regions – The Omit from Output property lets you omit an entire region
from XML output. (Regions with a Region Type of No-output are always omitted
from XML output.)

● Omitting fields – The Omit from Output property lets you omit a field from XML
output. You can omit a field

■ Only when it is empty. This is the default.

■ When it is empty or evaluates to a zero value.

■ Always, regardless of its value

■ Never, regardless of its value

● Comments – You can filter rows using the Comment String property – if the
beginning of a row matches the string you enter for this property, Stylus Studio
ignores the row when converting the input file to XML. You can also specify patterns
that rows must match in order for them to be converted to XML. See “Pattern
Matching” on page 297 for more information.
296 Stylus Studio User Guide

Controlling XML Output
Pattern Matching
You can use regular expressions to specify match patterns for the rows in the input file.
Only those rows in the input file that match the pattern you specify are output to XML
when the file is converted. The simplest way to define a match pattern is to use the Match
Pattern property in the Row Element Name section of the Properties window.

Example

Consider the following input file:

If you specify a simple regular expression, say, ^B, for the Match Pattern property, Stylus
Studio displays the input file in the Custom XML Conversion Editor as shown in
Figure 177 – green check marks identify the rows that match the pattern, and red X’s
identify the rows that do not. (You can also display matching rows in a contrasting color
by clicking the Highlight Matching Rows button. See “Document Pane Display Features”
on page 270 for more information about this feature.)

Note that the match pattern also appears as a new node in the schema pane. This new
node, the only one defined for the custom XML conversion definition at this point, uses
the default row element name (row) and the value of the expression.

Make,Model,Year,Mileage
BMW,R1150RS,2004,14274
Kawasaki,GPz1100,1996,60234
Ducati,ST2,1997,24000
Moto Guzzi,LeMans,2001,12393
BMW,R1150R,2002,17439
Ducati,Monster,2000,15682
Aprilia,Futura,2001,17320

Figure 177. Match Pattern – Definition and Display
Stylus Studio User Guide 297

Converting Non-XML Files to XML
Since the match pattern selects only those rows that begin with the letter B, the custom
XML conversion definition creates the following XML document when it is run against
the input file:

See “Working with Nodes” on page 300 to learn about adding the row element
name/match pattern pairs that define them.

Sample Regular Expressions

The following table presents some commonly used regular expressions.

Go to http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html to
learn about the specific regular expression implementation supported in Stylus Studio. Go

<?xml version="1.0" encoding="utf-8"?>
<root>

<row>
<Make>BMW</Make>
<Model>R1150RS</Model>
<Year>2004</Year>
<Mileage>14274</Mileage>

</row>
<row>

<Make>BMW</Make>
<Model>R1150R</Model>
<Year>2002</Year>
<Mileage>17439</Mileage>

</row>

Expression Matches

^ABC Match all lines starting with “ABC”

^[Aa][Bb][Cc] Match all lines starting “ABC”, “abc” or
any mix of upper and lowercase (“Abc”,
for example)

AAA Match all lines containing “AAA”

^(DEF | GHI) Match all lines starting with “DEF” or
“GHI”

XYZ$ Match all lines ending with “XYZ”

XYZ\$ Match all lines containing “XYZ”
298 Stylus Studio User Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Controlling XML Output
to http://www.boost.org/libs/regex/doc/syntax.html for additional examples of regular
expression usage.

Specifying Multiple Match Patterns

You can specify multiple match patterns for a single file. If we define a new match pattern,
^K, this results in a new node (<row> “^K”) in the schema pane, which now displays both
nodes (see Figure 178). When an input file is converted, Stylus Studio matches the
patterns in the order in which the nodes that represent them are defined in the schema.
Blank patterns are always matched last.

When you define multiple match patterns, the document pane displays a gray square
alongside rows that match a pattern other than the one, if any, associated with the
currently selected row. In Figure 178, for example, row 3 is the currently selected row; it
matches the pattern ^K we have defined. Because row 3 is the active row, Stylus Studio
displays gray squares in rows 2 and 6 (which match the pattern B defined previously).

Figure 178. Gray Squares Identify Rows That Match Other Patterns
Stylus Studio User Guide 299

http://www.boost.org/libs/regex/doc/syntax.html

Converting Non-XML Files to XML
Working with Nodes

In addition to defining nodes using the Match Pattern field of the Properties window, you
can also use the Set Node and Match Pattern dialog box, shown here:

This dialog box allows you to

● Define a new node – even one that does not match a row in the current input file. For
example, we could define a match pattern for Triumph motorcycles (<row> “^T”) even
though there are no Triumph motorcycles in the input file.

● Clone an existing node – this allows you to copy an existing node and modify its
match pattern to create a new node.

● Edit an existing node. (You can also do this in the Properties window, of course.)

When you open the dialog box, the Row Element Name and Match Pattern fields contain
default values that reflect the currently selected row in the document pane or node in the
schema pane.

Defining a New Node

◆ To define a new node:

1. Select a row in the document pane or a node in the schema pane.

2. Select CustomXMLConversion > Add Node and Pattern from the Stylus Studio
menu.

Alternative: Select Add Node and Pattern from the document pane or schema pane
shortcut menu.

The Set Node and Pattern dialog box appears.

3. Change the default values in the Row Element Name and Match Pattern fields.

4. Click OK.

Figure 179. Set Node and Match Pattern Dialog Box
300 Stylus Studio User Guide

Controlling XML Output
Cloning a Node

◆ To clone a node:

1. Select the node in the schema pane that you want to clone.

Alternative: Select the row in the document pane that is represented by a row element
name/match pattern pair you want to clone.

2. Select CustomXMLConversion > Clone Node and Pattern from the Stylus Studio
menu.

Alternative: Select Clone Node and Pattern from the document pane or schema pane
shortcut menu.

The Set Node and Pattern dialog box appears.

3. Change the default values in the Row Element Name and Match Pattern fields as
needed.

4. Click OK.

Editing a Node

◆ To edit a node:

1. Select the node in the schema pane that you want to edit.

Alternative: Select the row in the document pane that is represented by a row element
name/match pattern pair you want to edit.

2. Select CustomXMLConversion > Edit Node and Pattern from the Stylus Studio
menu.

Alternative: Select Edit Node and Pattern from the document pane or schema pane
shortcut menu.

Alternative: Double-click the node.

The Set Node and Pattern dialog box appears.

3. Change the default values in the Row Element Name and Match Pattern fields as
needed.

4. Click OK.
Stylus Studio User Guide 301

Converting Non-XML Files to XML
Removing a Node

When you remove a node, you are deleting the row element name/match pattern pair from
the custom XML conversion you are defining.

◆ To remove a node:

1. Select the node in the schema pane that you want to remove.

Alternative: Select the row in the document pane that is represented by a row element
name/match pattern pair you want to remove.

2. Select CustomXMLConversion > Remove Node and Pattern from the Stylus Studio
menu.

Alternative: Select Remove Node and Pattern from the document pane or schema
pane shortcut menu.

Alternative: Press the Delete key.

A warning message appears.

3. Click Yes to remove the node, otherwise click No.

Using Lookup Lists
You can define lookup lists for individual fields. When Stylus Studio converts the input
file, it replaces the string in the input file (the lookup) with the value you have defined for
it in the Lookup List dialog box. Figure 180 shows an example of a lookup list that has
been defined for a Status field:

Figure 180. Sample Lookup List
302 Stylus Studio User Guide

Controlling XML Output
For any Status fields in the input document with a value of, say, 100, Stylus Studio would
convert that value to Continue in the XML document it outputs; values of 202 would be
converted to Accepted; and so on.

Input file values that do not match a lookup are emitted in the XML document as-is,
allowing exceptional values to be decoded. For example, you might have a temperature
lookup list with these values for a <Temperature> field:

32 | Freeze

212 | Boil

All other temperatures would be emitted as-is.

Defining Lookup Lists

Lookups are case-sensitive, so, for example, a lookup of bmw would not match any of the
Make fields in the following sample file:

You can define lookup lists only for fields in rows for which a match pattern (even a blank
match pattern, as is the default) exists. Finally, you can paste comma- and tab-delimited
text directly into the lookup list. This allows you to easily reuse existing lookup tables
without having to re-enter text.

◆ To define a lookup list:

1. Select a row for which a match pattern exists.

2. Click the Lookup List entry field in the Properties window.

Make,Model,Year,Mileage
BMW,R1150RS,2004,14274
Kawasaki,GPz1100,1996,60234
Ducati,ST2,1997,24000
Moto Guzzi,LeMans,2001,12393
BMW,R1150R,2002,17439
Ducati,Monster,2000,15682
Aprilia,Futura,2001,17320
Stylus Studio User Guide 303

Converting Non-XML Files to XML
The Lookup List dialog box appears.

3. Enter lookup/value pairs in the corresponding entry fields.

4. When you are done, click OK.

Figure 181. Lookup List Dialog Box
304 Stylus Studio User Guide

Controlling XML Output
Working with Lookup Lists

The following table summarizes the functions of the Lookup List dialog box, which allow
you to work with new and existing lookup lists.

Using Key=Value Characters
The Key=Value Character Region property allows you to set the separator for key=value
pairs as seen in the input file. When Stylus Studio converts an input file to XML, it uses
the value on the left side of the key=value character for the element name, and the value
on the right for the element value. Consider the following input file:

Table 21. Lookup List Dialog Box Buttons

Button Function

OK Commits the lookup list to the custom
XML conversion.

Cancel Closes the Lookup List dialog box
without committing any changes.

Copy Copies the lookup list.

Paste Pastes comma- and tab-separated text into
the lookup list. Replaces existing content,
regardless of which row you have selected

Append Adds comma- and tab-separated text to the
end of the lookup list. Existing lookup list
content is preserved.

Insert Adds a new row to the lookup list.

Delete Removes the selected row from the lookup
list.

Note Copy, Paste, and Append use the system clipboard and insert at the current cursor
location. Any blank rows are discarded when you save the lookup list.

Triumph Inventory,Year and Quantity
Yr2003=24
Yr2004=12
Yr2005=15
Stylus Studio User Guide 305

Converting Non-XML Files to XML
If you set the Key=Value Character property to =, Stylus Studio creates the following
XML document when you preview the custom XML conversion:

Using Custom XML Conversion Definitions in Stylus
Studio

You can use custom XML conversion definitions to open any file as XML anywhere in
Stylus Studio. For example, you might want to use a text file (.txt) as the source
document for XQuery Mapper. When you open a file using a custom XML conversion
definition, the XML Converters engine converts that file to XML on-the-fly, using the
settings defined in the custom XML conversion definition you select.

You can also use the DataDirect XML Converters API to invoke a custom XML
conversion definition (or an XML Converter). See the documentation for DataDirect
XML Converters for more information:
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp.

How to Open a File Using a Custom XML Conversion Definition
You can use the Open dialog box to open a file using a custom XML conversion definition
in Stylus Studio.

◆ To open a file using a custom XML conversion definition from the Open dialog box:

1. Display the Open dialog box (select File > Open from the Stylus Studio menu, for
example).

<?xml version="1.0" encoding="utf-8"?>
<root>

<row>
<field>Triumph Inventory</field>
<field>Year and Quantity</field>

</row>
<row>

<Yr2003>24</Yr2003>
</row>
<row>

<Yr2004>12</Yr2004>
</row>
<row>

<Yr2005>15</Yr2005>
</row>

</root>
306 Stylus Studio User Guide

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Using Custom XML Conversion Definitions in Stylus Studio
2. Navigate to the directory that contains the file you want to open using the custom
XML conversion definition and select the file.

3. Check the Open using XML Converter check box and click the Open button.

Stylus Studio displays the Select XML Converter dialog box.

Figure 182. Check Box to Open Files Using XML Converters

Figure 183. Select XML Converter Dialog Box
Stylus Studio User Guide 307

Converting Non-XML Files to XML
4. If you are using a custom XML conversion definition (.conv), select Custom XML
Conversions. Then, use the browse button in the Value field to locate the custom
XML conversion definition you want to use. Go to step 5.

5. Click OK.

The file is converted to XML and appears in the editor from which you displayed the
Open dialog box in step 1.

Figure 184. Selecting a Custom XML Conversion Definition

Tip You can use the same basic procedure, from the Save As dialog box, to save a file using
a custom XML conversion definition. See “Saving an XML File in Another Format” on
page 260.
308 Stylus Studio User Guide

The Converter URI Scheme
The Converter URI Scheme
You can use the converter: URI scheme to reach a variety of data sources using DataDirect
XML Converters and custom XML conversion definitions.

Where You Use Converter URIs
You can use converter URIs as the argument in XQuery and XSLT 2.0 doc() functions,
and in XSLT 1.0 document() functions.

Specifying a Converter URI
To specify a converter: URI, you need to specify

● The XML Converter you want to use – EDI, CSV, dBase, custom XML conversion
definition (.conv file), and so on.

● Values for any XML Converters properties (separator or escape characters, for
example) for which you do not want to use the default values. Options for custom
XML conversions are part of the custom XML conversion definition and are not
specified.

● The file to be converted.

Example – Converter URI with a DataDirect XML Converters™

A converter: URI that invokes the DataDirect XML Converter for comma-separated
values (CSV) to convert the three.txt file in the Stylus Studio\examples directory to
XML might look like this:

converter:CSV:newline=lf:first=yes:?file:///c:/StylusStudio/examples/
three.txt

The instructions to the XML Converters engine from this instance of the converter:URI
are described the following table.
Stylus Studio User Guide 309

Converting Non-XML Files to XML
Properties that use default values (a comma is the default separator character for the CSV
XML Converter, for example) do not have to be specified in a converter:URI.

Example – Converter URI with a Custom XML Conversion Definition

A converter URI that references a custom XML conversion definition might look like
this:

converter:///myConverter.conv?file:inventory.txt

This converter uses myConverter.conv to convert the file inventory.txt to some format
(specified in the custom XML conversion definition when it was built using the Custom
XML Conversion Definition Editor in Stylus Studio). Note that individual configuration
properties are not specified – they are part of the definition described in the .conv file.

Converter URI Syntax
The converter URI syntax is the same whether you are using them for DataDirect XML
Converters or custom XML conversion definitions.

converter:name:[property_name=value: | property_name=value: | ...]?file:file
URL

Where:

● name is the name of the DataDirect XML Converters or the .conv file name of a
custom XML conversion definition.

Table 22. URI Scheme Example

Instruction Converter URI String

Use the Comma-Separated Values XML
Converter converter

converter:csv

The line separator in the source file is a
line feed

newline=lf

The values in the first row of the source
file should be used to supply field names

first=yes

The source file is three.txt file:///c:/StylusStudio/examples/three.txt
310 Stylus Studio User Guide

The Converter URI Scheme
The names for XML Converters names are displayed in Stylus Studio; see “Where
Converter URIs are Displayed in Stylus Studio” on page 312. They are also described
in the DataDirect XML Converters documentation; see
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp.

● property_name is the name of a DataDirect XML Converters™ property. You need to
specify a property and its value only if you want to configure the converter to use
something other than the default value. You do not specify properties for custom
XML conversion definitions.

XML Converters™ properties are displayed in Stylus Studio; see “Where Converter
URIs are Displayed in Stylus Studio” on page 312. They are also described in the
DataDirect XML Converters documentation; see
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp.

● file URL is the URL of the file you want to convert.

XML Converter Properties
While the format of the converter:URI is the same from one XML Converter to another,
XML Converters have different properties. For example, the XML Converter for dBase
files has settings that the XML Converter for binary files does not.

In addition, property names in converter URLs appear in an abbreviated format – the Line
separator property is called newline in a converter:URI.

XML Converters properties are displayed in the Select XML Converter dialog box, as
shown in Figure 183. See the DataDirect XML Converters User’s Guide and Reference
for complete properties reference information:
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp.
Stylus Studio User Guide 311

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Converting Non-XML Files to XML
Where Converter URIs are Displayed in Stylus Studio
Converter URIs are displayed in the following places in Stylus Studio:

● The URI field of the EDI to XML editor:

You use the EDI to XML editor to create conversion files that you can save and reuse.
See Chapter 4 “Converting EDI to XML” for more information.

Figure 185. Converter:URI displayed in the EDI to XML Editor
312 Stylus Studio User Guide

The Converter URI Scheme
● The URI field of the Select XML Converter dialog box displays the converter:URI for
the XML Converters or custom XML conversion definition you have selected.

Note that XML Converters name and properties used in the converter:URI vary from
the full names displayed in the Select XML Converter dialog box. In addition, note
that only properties whose default value you change in the Value field are displayed
in the URL field.

● The Project window (select Show Full URL from the Project window shortcut menu)
displays the converter:URI used to create an XML document:

Figure 186. Converter:URI Displayed in the Select XML Converter Dialog Box

Figure 187. Converter:URI Displayed in Project WIndow
Stylus Studio User Guide 313

Converting Non-XML Files to XML
You can use any of these sources for the converter:URI strings you want to use in your
XQuery and XSLT code. See “Using Stylus Studio to Build a Converter URI” on
page 314 for more information.

Using Stylus Studio to Build a Converter URI
If you have Stylus Studio 2010 or higher XML Enterprise Suite, you can use Stylus Studio
to construct converter URLs. Converter URIs can be complex – property names and their
values vary from one XML Converters to another, for example – so using Stylus Studio
to construct them can reduce errors in your applications.

Using the URI in the Select XML Converter Dialog Box

◆ To construct a converter URI using the URI in the Select XML Converter dialog box:

1. Use the XML Converters to open a file as an XML document in Stylus Studio. See
“Using XML Converters to Open a Non-XML File as XML” on page 259or “How to
Open a File Using a Custom XML Conversion Definition” on page 306 if you need
help with this step.

2. Before clicking OK to complete the conversion, copy the converter:URI in the URI
field of the Select XML Converter dialog box (see Figure 186).

3. Click OK to complete the conversion. (You can click Cancel if you are peforming this
procedure just to obtain the converter:URI.)

4. Paste the converter URI in your XSLT or XQuery code as needed.

Tip Converter URIs in the Select XML Converter dialog box are already escaped and can be
used as-is. Converter URIs taken from the Project window must be escaped manually
when you paste them into your XSLT or XQuery code.
314 Stylus Studio User Guide

The Converter URI Scheme
Using the URI in the Properties Window

◆ To construct a converter URI using the URI in the Properties window:

1. Use the XML Converters to open a file as an XML document in Stylus Studio. See
“Using XML Converters to Open a Non-XML File as XML” on page 259or “How to
Open a File Using a Custom XML Conversion Definition” on page 306 if you need
help with this step.

2. Open a new document in any Stylus Studio text editor (for example, File > New > XML
Document).

The purpose of this step is to provide an editor into which you can drag-and-drop the
the document you created in step 1 in order to display the associated converter:URI.

3. Drag the document you created in step 1from the Project window and drop it into the
text editor you opened in step 2.

The complete URI appears in the text editor.

4. Copy the complete converter URI.

5. Paste the converter URI in your XSLT or XQuery code as needed.

Note: Escape characters as required for strings in Java programs. For example,
escape=\:quotes='" becomes escape=\\:quotes='\" (the single quote does not need to be
escaped).

Tip New documents are placed in the Other Documents folder in the Project window by
default.

Figure 188. Copying a URL to a Text Editor
Stylus Studio User Guide 315

Converting Non-XML Files to XML
Working with EDI Conversions
You can convert EDI to XML (and vice versa) in Stylus Studio using the built-in
DataDirect XML Converters for EDI. The XML Converters for EDI handles most
versions of EDI standard dialects (see Supported EDI Dialects on page 316)
automatically, and it optionally performs validation of content, structure, and code list
values.

This section describes more about the level of support for converting EDI to XML (and
vice versa) in Stylus Studio.

This section covers the following topics:

● “Supported EDI Dialects” on page 316

● “Converting Custom EDI Message Types” on page 317

● “Documentation for DataDirect XML Converters” on page 319

● “XML Schemas for Custom EDI Message Types” on page 319

● “Validating XML from/to EDI” on page 320

Supported EDI Dialects
DataDirect XML Converters supports the following EDI dialects:

● ATIS

● Cargo-IMP

● EANCOM

● EDIFACT

● Edig@s

● HL7

● NCPDP

● PADIS

● TRADACOMS

● X12

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the EDI to XML Mapping video. A
complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.
316 Stylus Studio User Guide

http://www.stylusstudio.com/videos/convert-to-xml2/convert-to-xml2.html
http://www.stylusstudio.com/xml_videos.html
http://www.stylusstudio.com/videos/convert-to-xml2/convert-to-xml2.html

Working with EDI Conversions
Visit http://www.datadirect.com/products/data-integration/datasources/edi-
standards/index.ssp to learn detailed information about version and message support for
all suppored EDI dialects.

Converting Custom EDI Message Types
DataDirect XML Converters supports the Standard Exchange Format (SEF). SEF allows
you to describe structure of an EDI document based on an extension (or restriction) to a
standard EDI message type. You can instruct the EDI XML Converter to read your SEF
extension file and use it when converting your proprietary EDI to XML.

Working with SEF Files

You can build a SEF file based on the SEF specification. A copy of the SEF standard
specification has been placed on the DataDirect Technologies web site:
http://www.datadirect.com/docs/sef161.pdf

A far easier way is to use the Stylus Studio EDI to XML module to create a SEF file. Using
graphical tools, the EDI to XML editor allows you to

● Take advantage of the XML Converters’ repository of numerous EDI dialects and
versions

● Create a SEF file based on a sample EDI document or an EDI dialect

● Customize an EDI dialect to suit your needs – changing a segment from mandatory
to optional, for example

● Modify XML Converters properties

● Preview conversions of custom EDI to XML

See Chapter 4 “Converting EDI to XML” for more information.

Process Overview

The process for converting a custom EDI message type includes the following steps:

1. Create a SEF file (mycustomEDI.sef, for example) that describes how the custom EDI
message type differs from the EDI standard on which it is based – its extensions or
restrictions, in other words. The purpose of this document is to teach the DataDirect
XML Converters engine about the differences between your custom EDI message
type and the EDI standard message type on which it is based.
Stylus Studio User Guide 317

http://www.datadirect.com/products/data-integration/datasources/edi-standards/index.ssp
http://www.datadirect.com/products/data-integration/datasources/edi-standards/index.ssp
http://www.datadirect.com/docs/sef161.pdf

Converting Non-XML Files to XML
2. Open the EDI file you want to convert to XML. Select File > Open, and then select
the Open Using XML Converter check box.

3. Select the EDI XML Converter in the Select XML Converter dialog box.

4. Specify the file URL for the SEF file (mycustomEDI.sef , for example) in the
Extension map file property. See “Specifying the SEF File Location” on page 318 if
you need help with this step.

5. Click OK to convert your custom EDI message type to XML.

Specifying the SEF File Location

You can specify the location of the SEF file in the Extension map file property using

● An absolute URL (c:/mypath/mycustomEDI.sef, for example)

● A relative path (mydir/mycustomEDI.sef, for example)

Note that if you are using a relative path, it must be relative to the same directories in
which the DataDirect XML Converters executables are installed:

● For XML Converters for .NET – Stylus Studio installation
directory\compontents\XML Converters for .NET\bin\XMLConverters.dll

● For XML Converters for .Java – Stylus Studio installation directory\compontents\XML
Converters for Java\lib\XMLConverters.jar

In environments in which the location of the XMLConverters.* file cannot be determined,
you must specify the location. For example:

Figure 189. Specifying a Custom EDI Message Type
318 Stylus Studio User Guide

Working with EDI Conversions
● For XML Converters for .NET – set the registry key HKLM/Software/DataDirect/XML
Converters 5.0/ProductLocation

● For XML Converters for Java – set the system property
com.ddtek.xmlconverter.bindir, or com.ddtek.xmlconverter.libdir

Documentation for DataDirect XML Converters
Documentation for DataDirect XML Converters is available in several locations and
formats for XML Converters for both Java and .NET.

Stylus Studio Installation

You can find XML Converters documentation in the following folders where you
installed Stylus Studio:

● .NET

■ \compontents\XML Converters for .NET\doc – PDF version of the User’s Guide
and Reference and Installation Guide

■ \compontents\XML Converters for .NET\help – HTML version of the User’s
Guide and Reference

● Java

■ \compontents\XML Converters for Java\doc – PDF version of the User’s Guide
and Reference and Installation Guide

■ \compontents\XML Converters for .NET\help – HTML version of the User’s
Guide and Reference

DataDirect Technologies Web Site

You can find XML Converters documentation on the DataDirect Technologies web site:

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

XML Schemas for Custom EDI Message Types
Warning This functionality has been deprecated in favor of support for the Standard Exchange

Format (SEF). Use SEF files to describe the XML Schema for custom EDI message
types. For more information, see Chapter 4 “Converting EDI to XML”.
Stylus Studio User Guide 319

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Converting Non-XML Files to XML
Validating XML from/to EDI
Stylus Studio provides the EDI to XSD document wizard to convert various EDI dialects
and message types to XML Schema. Such an XML Schema can be useful if you are
converting XML to EDI, because it allows you to ensure that the EDI created by the
DataDirect XML Converters for EDI conforms to a particular EDI message type standard.

You can also use the XML Schema created by the EDI to XSD document wizard to
validate data after you have converted EDI to XML, when URL-based error checking is
disabled, to determine how well the incoming stream conforms to the EDI standards.

See Creating XML Schema from EDI on page 617 for more information on using this
document wizard.

Custom XML Conversion Definitions Properties
Reference

This section provides reference information for properties displayed in the Properties
window of the Custom XML Conversion Editor. It covers the following topics:

● “Input File Properties” on page 321

● “XML Output URL Properties” on page 322

● “Region Type Properties” on page 324

● “Row Element Name Properties” on page 327

● “Field Element Name Properties” on page 328

● “Data Type Properties (by data type)” on page 330

● “Specifying Control Characters” on page 351
320 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
Input File Properties
Table 23. Input File Properties

Property Description Editable Affects XML

Input File The URL of the file you are using as
the input file.

Yes. You can
select a new
input file from
this field.

No

Input
Encoding

Encoding detected by Stylus Studio. Yes No

Physical
Size

The size of the input file in bytes. No No

Portion
Loaded

The size of the input file in bytes
loaded into Stylus Studio.

No No

Characters
Loaded

The number of characters loaded. For
especially large files, Stylus Studio
does not read the entire file as only a
sample is required to define a custom
XML conversion definition. The
finished custom XML conversion
definition, however, reads any file you
open it with in its entirety.

No No

Character
Unicode
Value

The Unicode value of the character
under the cursor.

No No
Stylus Studio User Guide 321

Converting Non-XML Files to XML
XML Output URL Properties
Table 24. XML Output File Properties

Property Description Editable Affects XML

XML Output
URL

The URL to which you want the XML
output when the custom XML
conversion definition is run. Optional.
If no value is specified, stdout is used.

Yes Yes

Output
Encoding

The Encoding you want to use for the
XML output by the custom XML
conversion definition. The default is
RAW.

Yes Yes

Root
Element
Name

The name you want to assign to the
root element in the XML output.
Optional.

Yes Yes

Namespace
Prefix

The string you want to use for the
namespace prefix in the XML output.
Optional

Yes Yes

Namespace The namespace you want to use for the
XML document output by the custom
XML conversion definition.

Yes Yes

DOCTYPE
System ID

The URL of the System DTD you want
to associate with the XML document
output by the custom XML conversion
definition.

Yes Yes

DOCTYPE
Public ID

The Public ID of the DTD you want to
associate with the XML document
output by the custom XML conversion
definition.

Yes Yes

XML
Schema
Document

The URL of the XML Schema
document you want to associate with
the XML document output by the
custom XML conversion definition.

Yes Yes
322 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
XML
Schema
Namespace

The namespace you want to use with
the XML Schema document.

Yes Yes

Indent
XML?

Whether or not you want to indent the
XML output.

Yes Yes

Table 24. XML Output File Properties

Property Description Editable Affects XML
Stylus Studio User Guide 323

Converting Non-XML Files to XML
Region Type Properties
Note Each region has its own field and row properties. In addition, some properties apply only

to line-oriented regions. These properties are marked with an asterisk.

Table 25. Region Properties

Property Description Editable Affects XML

Region Type The type of the region that currently
has focus.

Yes. You can
change the
region type
from this field.

No

Region
Element
Name

The name you want to assign to this
region in the XML output. Optional.

Yes Yes

Element
Name
Source

Whether the source for the element
names in this region is user-supplied,
is taken from the first row in the
region, or is based on the WS-EDI
standard.

Yes Yes

Rows to Skip The number of rows, starting at the
beginning of the region, you want to
omit from output.

Yes Yes

Omit from
Output

Whether or not you want to omit the
entire region from output.

Yes Yes

Size The region’s size in characters. No No

Portion of
File

The starting and ending offsets of the
current region.

No No

Row Count The number of rows in the current
region.

No No

Row
Length+

The number of characters in the
current row.

No No

Line
Terminator*

The type of line terminator character
detected by Stylus Studio.

Yes No
324 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
Separator* The type of field separator character
detected by Stylus Studio.

Yes No

Delimiter
Pairs*

Sets of delimiting characters detected
by Stylus Studio.

Yes No

Comment
String

String used by the custom XML
conversion definition – if the
beginning of a row matches the string
in this field, the converter interprets
the row as a comment and does not
output it in the XML.

Yes Yes

Escape
Characters*

Allows you to distinguish escape
characters from separators – if a
character in the input file is preceded
by an Escape Character, that character
is not treated as delimiting character,
separator, or subsequent escape
character.

Yes Yes

Toss
Characters*

Characters outside delimiting
characters that should be ignored.

Yes Yes

Key=Value
Character

Allows you to set the separator for
key=value pairs as seen in the input
file.

Yes Yes

Component
Separator*

The type of character used to separate
sub-fields detected by Stylus Studio. If
this character appears in a string, the
string is split into sub-fields when the
input file is converted to XML.

Yes Yes

Sub-
Component
Separator*

The type of character used to separate
sub-fields detected by Stylus Studio. If
this character appears in a string, the
string is split into sub-fields when the
input file is converted to XML.

Yes Yes

Table 25. Region Properties

Property Description Editable Affects XML
Stylus Studio User Guide 325

Converting Non-XML Files to XML
* This property is for line-oriented regions only.
+ This property is for fixed-width regions only.

Region
Terminator

The type of region terminator
character detected by Stylus Studio.
The region will be processed until this
string is encountered; after that point,
all remaining data in the region is
skipped. The next region, if present,
will be handled immediately.

Yes No

Collapse
Consecutive
Field
Separators*

Whether or not multiple consecutive
field separators should be treated as
one. For example, if this property is set
to Yes, X,,Y,,Z is treated as X,Y,Z.
This property is most useful when
spaces are used as delimiting
characters.

Yes Yes

Double
Delimiter to
Escape

Whether or not to treat a pair of
delimiting characters within a
delimited string as escaped characters.
For example, if this property is set to
Yes, “abc”“xyz” is treated as
abc”xyz.

Yes Yes

Table 25. Region Properties

Property Description Editable Affects XML
326 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
Row Element Name Properties
Table 26. Row Properties

Property Description Editable Affects XML

Row
Element
Name

The name you want to assign to all
rows in the region. The default value is
row.

Yes Yes

Match
Pattern

A regular expression you can use to
filter rows in a region. Only rows that
match the pattern you specify are
output to XML.

Yes Yes

Current Row
Length

The length of the current row. No No

Fields in
Current Row

The number of fields in the current
row.

No No

Max Fields
in Row

The number of fields in the row that
contains the largest number of fields.

No No
Stylus Studio User Guide 327

Converting Non-XML Files to XML
Field Element Name Properties
Note Each region has its own field and row properties. In addition, some properties apply only

to line-oriented regions. These properties are marked with an asterisk.

Table 27. Field Properties

Property Description Editable Affects XML

Field
Element
Name

The name you want to use for field
elements in the XML output. The
default value is field.

Yes Yes

Component
Element
Name

The name you want to use for sub-
fields detected by Stylus Studio (based
on the Component Separator
character) in the XML output. The
default value is component.

Yes Yes

Sub-
Component
Element
Name

The name you want to use for sub-
fields detected by Stylus Studio (based
on the Sub-Component Separator
character) in the XML output. The
default value is subcomponent.

Yes Yes

Source Data
Type

The data type of the current field.
Stylus Studio provides support for the
following data types:

String, Boolean, number, date, time,
byte, short, integer, long, float, double.
Note that some properties are type-
specific.

See “Data Type Properties (by data
type)” on page 330 for information on
properties that are associated with
specific data types.

No Yes

Target Data
Type

Not currently used.
328 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
* This property is for line-oriented regions only.

Number The number of the field in which the
cursor is located. Starting with 1 from
the left-most field.

No No

Cursor
Position

The offset of the cursor’s current
location from the start of the current
field.

No No

Offset The offset of the start of the current
field. Measured from the start of the
row.

No No

Length The length of the current field in
characters.

No No

Max Field
Length *

The length of the longest of all the
instances of this field.

No No

Value The value of the current field.

This value also appears in the status
bar.

No No

Table 27. Field Properties

Property Description Editable Affects XML
Stylus Studio User Guide 329

Converting Non-XML Files to XML
Data Type Properties (by data type)

This section describes the properties that are specific to a given data type.

Common Properties

All data types support these properties:

Table 28. Common Properties

Property Description
Affects
XML

Lookup List This property lets you build a substitution table for
output. It includes a two-column table. At runtime,
any item which evaluates to a value in the left
column is replaced by the corresponding value in the
right column in the output stream. A blank value on
the left can be used to set a default value for the field.
Note that this is applied before the test to determine
if the data should be qualify for Omit from Output.

Yes

Notes Allows you to add internal comments for a field. It is
not used by custom XML conversion definitions.

No

Omit from Output Allows a field to be omitted from XML output based
on its presence or value. Valid values include:

● Only When Empty. This is the default.

● When Empty or Zero. Does not emit an element
containing the value if it evaluates numerically
to zero.

● Always. Always hides the field from the output.

● Never. Always includes the field in the output

Yes

XML Output Form Determines whether the value is emitted into the
output stream as an element or as an attribute. The
default is element.

Yes
330 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
BCD Datatype Properties

Binary Coded Decimal (BCD) is a set of ways to pack one or two decimal digits into each
byte. These are various related types of machine-specific encodings for numbers. The
Comp3 and Zoned types are different implementations of this idea.

Table 29. BCD Properties

Property Description Editable Affects XML

Architecture Select the architecture that matches the
machine type that the data originated on,
or was designed for, from this list:

● NBCD Signed

● NBCD Unsigned

● Excess-3

● BCD 2421

● BCD 84-2-1

● IBM 1401 Signed

● IBM 1401 Unsigned

Yes Yes

Packed The name you want to use for sub-fields
detected by Stylus Studio (based on the
Component Separator character) in the
XML output. The default value is
component.

Yes Yes

Scaling
Factor
(10^n)

The name you want to use for sub-fields
detected by Stylus Studio (based on the
Sub-Component Separator character) in
the XML output. The default value is
subcomponent.

Yes Yes
Stylus Studio User Guide 331

Converting Non-XML Files to XML
Binary Datatype Properties

Binary data in raw form.

Boolean Datatype Properties

True/false values, with support for three-valued-logic (true/false/unknown or null). The
following steps are taken to determine the value of a boolean field:

1. If the field contains all binary zeros, it is false.

2. If the field contains all binary ones (that is, all 0xFF values), it is true.

3. If the field is one byte long and contains a 0x01 value, it is true.

4. If the first or last byte in the field contains a 0x01 and all of the other bytes are 0x00,
it is true.

5. If the contents of the field match any of the items in the True Value Match List or
False Value Match List, then the value is true or false respectively.

Table 30. Binary Properties

Property Description Editable Affects XML

Rendering How the data is written to XML:

● Base-64 Encoding – writes the data
in a form compatible with the W3C
XML Schema base64Binary type
(default)

● Hexadecimal Encoding – writes the
data in a form compatible with the
W3C XML Schema hexBinary type

● – Octal Encoding – writes the data
as a series of octal triplets

● # Literal Encoding – copies the data
as-is to the output stream, which
may not render as valid XML

Yes Yes
332 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
6. If none of these rules apply, the value is considered unknown.

Table 31. Boolean Properties

Property Description Editable Affects XML

True Value
Match List

A semicolon (";") -separated list of
values. If the input value matches any of
them in step 5, it is considered true and
the value from the True Output As
property is emitted. The default list is:

● y

● t

● yes

● true

● .y.

● .t.

The comparisons are not case-sensitive.

Yes Yes

False Value
Match List

A semicolon (";") -separated list of
values. If the input value matches any of
them in step 5, it is considered false and
the value from the False Output As
property is emitted. The default list is:

● n

● f

● no

● false

● .n.

● .f.

The comparisons are not case-sensitive.

Yes Yes

True Output
As

If the value is determined to be true then
this value is output. The default is "Yes".

Yes Yes

False Output
As

If the value is determined to be false then
this value is output. The default is "No".

Yes Yes
Stylus Studio User Guide 333

Converting Non-XML Files to XML
Unknown
Output As

If the value cannot be determined as true
or false, then this value is output. The
default is "?".

Yes Yes

Left
Padding,
Right
Padding

These two properties control what sort of
padding is to be found on either side of
the field and then removed. Any
characters listed here will be removed.
Characters can be specified either by
their Unicode values, their Unicode
names, or single-quoted.

The default for both is spaces (0x20) and
tabs (0x09).

If there are field delimiters, these are the
characters that are trimmed from the
contents within the delimiters. The
region-level Characters to Toss setting
determines which characters are
trimmed outside of the delimiters. If
there are no delimiters, then the
Characters to Toss setting is applied first,
and then Left Padding and Right Padding
are applied.

Yes Yes

Table 31. Boolean Properties

Property Description Editable Affects XML
334 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
Byte Datatype Properties

A single byte with a range of 0 to 255 for unsigned or -128 to 127 for signed.

Table 32. Byte Properties

Property Description Editable Affects XML

Signed ● true (default)

● false – use this to make the value
unsigned

Yes Yes

Scaling
Factor
(10^n)

This is a value from -16 (shifts the
decimal 16 places to the right, making
the number smaller by n orders of
magnitude) to 0 (keeps the number
exactly as it appears in the input) to 16
(shifts the decimal 16 places to the left,
making the number larger by n orders of
magnitude). To enter a scaling factors
from 10-16 to 1016, just enter the
exponent value.

Example: Entering an exponent of 3 will
cause any numbers to be multiplied by
1000 (103) before being output to XML.

Yes Yes
Stylus Studio User Guide 335

Converting Non-XML Files to XML
Comp3 Datatype Properties

Also known as "Computational-3," "Packed" or "Packed Decimal." A COBOL storage
format similar to Zoned below but differing in internal structure. It is also related to the
BCD types.

Date Datatype Properties

A date, stored either as a string or in binary form.

The parsing rules are:

1. If the length is 3, then the day, month and year are read as binary values in the Date
Format order. The Window for Two-digit Years value is used to determine the
century. If the format is YJ, then the first byte is the year, and the second two are the
day number in the year, stored as LSB, MSB.

2. If the length is 6, then the same is used, except each day/month/year is taken as two
digits.

3. If the length is 8 and there are no separators, then the day and month each get two
digits and the year gets four.

4. Otherwise, it is parsed using the YMD Separator characters.

Table 33. Comp3 Properties

Property Description Editable Affects XML

Scaling
Factor
(10^n)

This is a value from -16 (shifts the
decimal 16 places to the right, making
the number smaller by n orders of
magnitude) to 0 (keeps the number
exactly as it appears in the input) to 16
(shifts the decimal 16 places to the left,
making the number larger by n orders of
magnitude). To enter a scaling factors
from 10-16 to 1016, just enter the
exponent value.

Example: Entering an exponent of 3 will
cause any numbers to be multiplied by
1000 (103) before being output to XML.

Yes Yes
336 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
5. For months, the names or abbreviations in English, German, Spanish, French,
Portuguese and Italian are recognized.

Table 34. Date Properties

Property Description Editable Affects XML

Date Format The default is read from the local system
settings at the time the custom XML
converter is defined.

● DMY (day-month-year)

● MDY (month-day-year)

● YMD (year-month-day)

● YJ (year-daynumber a.k.a. "Julian"
format)

Yes Yes

YMD
Separator

A hint to the parser as to the most likely
separator between the date components
that will be seen.

The default value comes from the local
system configuration, and also includes
the period ("."), comma (","), hyphen ("-
"), slash ("/") and space.

Yes Yes
Stylus Studio User Guide 337

Converting Non-XML Files to XML
Window for
Two-digit
Years

If the year is only given as two digit, this
is the cut-off date for determining the
century. The default is 1950.

Yes Yes

Left
Padding,
Right
Padding

These two properties control what sort of
padding is to be found on either side of
the field and then removed. Any
characters listed here will be removed.
Characters can be specified either by
their Unicode values, their Unicode
names, or single-quoted.

The default for both is spaces (0x20) and
tabs (0x09).

If there are field delimiters, these are the
characters that are trimmed from the
contents within the delimiters. The
region-level Characters to Toss setting
determines which characters are
trimmed outside of the delimiters. If
there are no delimiters, then the
Characters to Toss setting is applied first,
and then Left Padding and Right Padding
are applied.

Yes Yes

Table 34. Date Properties

Property Description Editable Affects XML
338 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
DateTime Datatype Properties

A date plus a time.

This is parsed as a date followed by the Date-Time Separator followed by a time. It
combines the properties of both, and includes that one additional property.

Decimal Datatype Properties

Reads 16 bytes and interprets it as a .net System.Decimal. Numbers as large as 1028
(positive or negative) and with as many as 28 significant digits can be stored as a decimal
type without loss of precision.

Table 35. DateTime Properties

Property Description Editable Affects XML

Date-Time
Separator

This is the character that separates the
date string from the time string. The
default values are 'T' and ' '.

Yes Yes
Stylus Studio User Guide 339

Converting Non-XML Files to XML
Double Datatype Properties

The standard IEEE 8-byte floating point format.

Table 36. Double Properties

Property Description Editable Affects XML

Scaling
Factor
(10^n)

This is a value from -16 (shifts the
decimal 16 places to the right, making
the number smaller by n orders of
magnitude) to 0 (keeps the number
exactly as it appears in the input) to 16
(shifts the decimal 16 places to the left,
making the number larger by n orders of
magnitude). To enter a scaling factors
from 10-16 to 1016, just enter the
exponent value.

Example: Entering an exponent of 3 will
cause any numbers to be multiplied by
1000 (103) before being output to XML.

Yes Yes

Endian When binary numbers are stored, they
can be stored with the smallest
component first (little-endian) or last
(big-endian).

● Little – the standard for Intel x86-
based machines (default)

● Big

Yes Yes
340 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
Float Datatype Properties

The standard IEEE 4-byte floating point format.

Table 37. Float Properties

Property Description Editable Affects XML

Scaling
Factor
(10^n)

This is a value from -16 (shifts the
decimal 16 places to the right, making
the number smaller by n orders of
magnitude) to 0 (keeps the number
exactly as it appears in the input) to 16
(shifts the decimal 16 places to the left,
making the number larger by n orders of
magnitude). To enter a scaling factors
from 10-16 to 1016, just enter the
exponent value.

Example: Entering an exponent of 3 will
cause any numbers to be multiplied by
1000 (103) before being output to XML.

Yes Yes

Endian When binary numbers are stored, they
can be stored with the smallest
component first (little-endian) or last
(big-endian).

● Little – the standard for Intel x86-
based machines (default)

● Big

Yes Yes
Stylus Studio User Guide 341

Converting Non-XML Files to XML
Integer Datatype Properties

A four-byte integer with a range of 0 to 4,294,967,295 for unsigned or -2,147,483,648 to
2,147,483,647 for signed.

Table 38. Integer Properties

Property Description Editable Affects XML

Signed ● true (default)

● false – use this to make the value
unsigned

Yes Yes

Scaling
Factor
(10^n)

This is a value from -16 (shifts the
decimal 16 places to the right, making
the number smaller by n orders of
magnitude) to 0 (keeps the number
exactly as it appears in the input) to 16
(shifts the decimal 16 places to the left,
making the number larger by n orders of
magnitude). To enter a scaling factors
from 10-16 to 1016, just enter the
exponent value.

Example: Entering an exponent of 3 will
cause any numbers to be multiplied by
1000 (103) before being output to XML.

Yes Yes

Endian When binary numbers are stored, they
can be stored with the smallest
component first (little-endian) or last
(big-endian).

● Little – the standard for Intel x86-
based machines (default)

● Big

Yes Yes
342 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
Long Datatype Properties

An eight-byte integer with a range of 0 to 18,446,744,073,709,551,615 for unsigned or -
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 for signed.

Table 39. Long Properties

Property Description Editable Affects XML

Signed ● true (default)

● false – use this to make the value
unsigned

Yes Yes

Scaling
Factor
(10^n)

A value from -16 (shifts the decimal 16
places to the right, making the number
smaller by n orders of magnitude) to 0
(keeps the number exactly as it appears
in the input) to 16 (shifts the decimal 16
places to the left, making the number
larger by n orders of magnitude). To
enter a scaling factors from 10-16 to 1016,
just enter the exponent value.

Example: Entering an exponent of 3 will
cause any numbers to be multiplied by
1000 (103) before being output to XML.

Yes Yes

Endian When binary numbers are stored, they
can be stored with the smallest
component first (little-endian) or last
(big-endian).

● Little – the standard for Intel x86-
based machines (default)

● Big

Yes Yes
Stylus Studio User Guide 343

Converting Non-XML Files to XML
Number Datatype Properties

This corresponds to numbers stored in text form.

Note that if the number is followed by a percent ("%") it is divided by 100; if followed by
a permille ("‰") it is divided by 1000.

A leading or trailing '+' is ignored, as numbers are assumed positive. A leading or trailing
'-' will make the number negative.

Table 40. Number Properties

Property Description Editable Affects XML

Decimal The character that corresponds to the
decimal point. It is typically a period
(".") or comma (","). The default value is
determined by the settings on the
machine creating the custom XML
converter.

Yes Yes

Thousands The character that corresponds to the
thousands separator. The default is
fetched from the system settings, and is
typically a comma (","), period (".") or
space, and is subsequently stored with
the custom XML converter. If seen in the
input, it is thrown away and not
preserved in the output.

Yes Yes

Base The numeric base in which the number is
stored in the input file. It can be anything
from 2 (binary) to base 36. The default is
10 (decimal). Other common numbers
are 8 (octal) and 16 (hexadecimal).

Yes Yes
344 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
Scaling
Factor
(10^n)

A value from -16 (shifts the decimal 16
places to the right, making the number
smaller by n orders of magnitude) to 0
(keeps the number exactly as it appears
in the input) to 16 (shifts the decimal 16
places to the left, making the number
larger by n orders of magnitude). To
enter a scaling factors from 10-16 to 1016,
just enter the exponent value.

Example: Entering an exponent of 3 will
cause any numbers to be multiplied by
1000 (103) before being output to XML.

Yes Yes

’C’ Rules for
Octal and
Hex

● yes – if a number begins with 0 it is
considered octal, or if it begins with
0x it is considered hexadecimal;
otherwise it is considered decimal
(default)

● no – numbers are considered in the
given Base only

Yes Yes

Table 40. Number Properties

Property Description Editable Affects XML
Stylus Studio User Guide 345

Converting Non-XML Files to XML
Use
Currency
Conventions

● yes – if the number is surrounded by
'(' and ')' or has a trailing 'cr' (case-
insensitive) it is considered
negative, or if it has a trailing 'db' or
'dr' (also case-insensitive) it is
considered positive (default)

● no

Yes Yes

Left
Padding,
Right
Padding

These two properties control what sort of
padding is to be found on either side of
the field and then removed. Any
characters listed here will be removed.
Characters can be specified either by
their Unicode values, their Unicode
names, or single-quoted.

The default for both is spaces (0x20) and
tabs (0x09).

If there are field delimiters, these are the
characters that are trimmed from the
contents within the delimiters. The
region-level Characters to Toss setting
determines which characters are
trimmed outside of the delimiters. If
there are no delimiters, then the
Characters to Toss setting is applied first,
and then Left Padding and Right Padding
are applied.

Yes Yes

Table 40. Number Properties

Property Description Editable Affects XML
346 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
Short Datatype Properties

A two-byte integer with a range of 0 to 65,535 for unsigned or -32,768 to 32,767 for
signed.

Table 41. Short Properties

Property Description Editable Affects XML

Signed ● true (default)

● false – use this to make the value
unsigned

Yes Yes

Scaling
Factor
(10^n)

A value from -16 (shifts the decimal 16
places to the right, making the number
smaller by n orders of magnitude) to 0
(keeps the number exactly as it appears
in the input) to 16 (shifts the decimal 16
places to the left, making the number
larger by n orders of magnitude). To
enter a scaling factors from 10-16 to 1016,
just enter the exponent value.

Example: Entering an exponent of 3 will
cause any numbers to be multiplied by
1000 (103) before being output to XML.

Yes Yes

Endian When binary numbers are stored, they
can be stored with the smallest
component first (little-endian) or last
(big-endian).

● Little – the standard for Intel x86-
based machines (default)

● Big

Yes Yes
Stylus Studio User Guide 347

Converting Non-XML Files to XML
String Datatype Properties

A regular string of characters.

Table 42. String Properties

Property Description Editable Affects XML

Normalize
White Space

● yes – change all linefeeds, carriage
returns and tabs into spaces, then
remove all spaces from start and end
of text, then collapse any
consecutive spaces into a single
space (default)

● no (leave all whitespace alone)

Yes Yes

Left
Padding,
Right
Padding

These two properties control what sort of
padding is to be found on either side of
the field and then removed. Any
characters listed here will be removed.
Characters can be specified either by
their Unicode values, their Unicode
names, or single-quoted.

The default for both is spaces (0x20) and
tabs (0x09).

If there are field delimiters, these are the
characters that are trimmed from the
contents within the delimiters. The
region-level Characters to Toss setting
determines which characters are
trimmed outside of the delimiters. If
there are no delimiters, then the
Characters to Toss setting is applied first,
and then Left Padding and Right Padding
are applied.

Yes Yes
348 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
Time Datatype Properties

A time value.

The parsing rules are as follows:

1. If the first character is an 'n' or 'N', it is assumed to be noon (12:00:00).

2. If the first character is an 'm' or 'M', it is assumed to be midnight (00:00:00).

3. If there is a HMS separator, the next three steps are skipped.

4. If the length is six or more, then the hours are the first two characters, the minutes are
the next two characters, and the seconds are the next two digits.

5. If the length is four or five, then the hours are the first two characters, and the minutes
are the next two characters.

6. No valid date can be determined.

7. If an HMS separator was seen, then the following rules are tried:

8. Up to two digits become the hour, terminated by the HMS separator.

9. Up to two more digits become the minute, also terminated by the HMS separator.

10. If there are any more digits, the next two become the seconds value.

11. If there is a decimal character and more digits, they become fractional parts of the
seconds.

12. If an 'am' or 'pm' (case-insensitive) marker is found, the hours are adjusted
accordingly.

13. Wrapping is performed for seconds >= 60 and minutes >= 60. Hours are moduloed
with 24.
Stylus Studio User Guide 349

Converting Non-XML Files to XML
Table 43. Time Properties

Property Description Editable Affects XML

HMS
Separator

This is a hint to the parser as to the most
likely separator between the hours,
minutes and seconds that will be seen.

The default value comes from the local
system configuration, and also includes
the colon (":"), period (".") and space.

Yes Yes

Left
Padding,
Right
Padding

These two properties control what sort of
padding is to be found on either side of
the field and then removed. Any
characters listed here will be removed.
Characters can be specified either by
their Unicode values, their Unicode
names, or single-quoted.

The default for both is spaces (0x20) and
tabs (0x09).

If there are field delimiters, these are the
characters that are trimmed from the
contents within the delimiters. The
region-level Characters to Toss setting
determines which characters are
trimmed outside of the delimiters. If
there are no delimiters, then the
Characters to Toss setting is applied first,
and then Left Padding and Right Padding
are applied.

Yes Yes
350 Stylus Studio User Guide

Custom XML Conversion Definitions Properties Reference
Zoned Datatype Properties

Also known as the "IBM Signed" format. It is related to Comp3.

Specifying Control Characters
Lists of symbols are used to designate characters for properties like Field Component
Separator, Line Terminator, and Field Separator.

Individual symbols can be expressed in several forms. Numbers and letters, for example,
can be entered using single quotes, such as ‘A’, ‘B’, ‘C’. Control characters or other
Unicode values can be expressed using their decimal value, or their hex value by
preceding it with 0x – 128 or 0x80, for example. In addition, certain control characters
have alternate mnemonic representations, and Stylus Studio supports them, as well.

When entering multiple symbols for a given property, separate symbols using a comma.

Table 44. Zoned Properties

Property Description Editable Affects XML

Scaling
Factor
(10^n)

A value from -16 (shifts the decimal 16
places to the right, making the number
smaller by n orders of magnitude) to 0
(keeps the number exactly as it appears
in the input) to 16 (shifts the decimal 16
places to the left, making the number
larger by n orders of magnitude). To
enter a scaling factors from 10-16 to 1016,
just enter the exponent value.

Example: Entering an exponent of 3 will
cause any numbers to be multiplied by
1000 (103) before being output to XML.

Yes Yes
Stylus Studio User Guide 351

Converting Non-XML Files to XML
The following table summarizes commonly used control characters. For more
information, visit http://www.unicode.org.

Table 45. Commonly Used Control Characters

Decimal Hex Mnemonic Control Key

0 0x00 NUL ^@, '\0'

1 0x01 SOH ^A

2 0x02 STX ^B

3 0x03 ETX ^C

4 0x04 EOT ^D

5 0x05 ENQ ^E

6 0x06 ACK ^F

7 0x07 BEL or BELL ^G, '\a'

8 0x08 BS ^H, '\b'

9 0x09 TAB or HT ^I, '\t'

10 0x0A LF ^J, '\n'

11 0x0B VT ^K, '\v'

12 0x0C FF ^L, '\f'

13 0x0D CR ^M, '\r'

14 0x0E SO ^N

15 0x0F SI ^O

16 0x10 DLE ^P

17 0x11 DC1 or XON ^Q

18 0x12 DC2 ^R

19 0x13 DC3 or XOFF ^S

20 0x14 DC4 ^T

21 0x15 NAK ^U
352 Stylus Studio User Guide

http://www.unicode.org

Custom XML Conversion Definitions Properties Reference
22 0x16 SYN ^V

23 0x17 ETB ^W

24 0x18 CAN ^X

25 0x19 EM ^Y

26 0x1A SUB ^Z

27 0x1B ESC ^[

28 0x1C FS ^\

29 0x1D GS ^]

30 0x1E RS ^^

31 0x1F US ^_

127 0x7F DEL

128 0x80

129 0x81

130 0x82 BPH

131 0x83 NBH

132 0x84 IND

133 0x85 NEL

134 0x86 SSA

135 0x87 ESA

136 0x88 HTS

137 0x89 HTJ

138 0x8A VTS

139 0x8B PLD

Table 45. Commonly Used Control Characters

Decimal Hex Mnemonic Control Key
Stylus Studio User Guide 353

Converting Non-XML Files to XML
140 0x8C PLU

141 0x8D RI

142 0x8E SS2

143 0x8F SS3

144 0x90 DCS

145 0x91 PU1

146 0x92 PU2

147 0x93 STS

148 0x94 CCH

149 0x95 MW

150 0x96 SPA

151 0x97 EPA

152 0x98 SOS

153 0x99

154 0x9A SCI

155 0x9B CSI

156 0x9C ST

157 0x9D OSC

158 0x9E PM

159 0x9F APC

160 0xA0 NBSP

173 0xAD SHY

Table 45. Commonly Used Control Characters

Decimal Hex Mnemonic Control Key
354 Stylus Studio User Guide

Chapter 4 Converting EDI to XML
This chapter describes how to use the Stylus Studio EDI to XML module to convert
standard and proprietary EDI to XML.

This chapter covers the following topics:

● “What is the EDI to XML Module?” on page 356

● “Creating an EDI to XML Conversion” on page 360

● “Previewing an EDI to XML Conversion” on page 362

● “Example: Converting a Conforming EDI File” on page 363

● “Example: Converting a Non-conforming EDI File” on page 366

● “Resolving EDI Document Errors” on page 372

● “Specifying XML Converter Properties” on page 379

● “Customizing an EDI Standard” on page 380

● “Generating XQuery and XML Schema from EDI” on page 400

● “EDI Structure Definitions Properties Reference” on page 406

● “EDI XML Converters Properties Reference” on page 414

Support for the EDI to XML module is available only in Stylus Studio XML
Enterprise Suite.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the Introduction to the EDI to XML
module video.
Stylus Studio User Guide 355

http://www.stylusstudio.com/videos/EDItoXMLPart1/editoxmlPart1.html
http://www.stylusstudio.com/videos/EDItoXMLPart1/editoxmlPart1.html
http://www.stylusstudio.com/videos/EDItoXMLPart1/editoxmlPart1.html

Converting EDI to XML
What is the EDI to XML Module?
The EDI to XML module is a graphical tool designed to help you translate EDI documents
to XML. In particular, it enables you to convert EDI documents that do not conform to
any of the EDI dialects supported by DataDirect XML Converter, whose conversion
engine forms the basis of the EDI to XML module. Documents might be nonconforming
for any number of reasons – perhaps the document contains an error in the standard EDI
structure, or perhaps you have customized an EDI standard to suit your business purposes.
Regardless, the EDI to XML module makes it possible to convert nonconforming EDI to
XML and to save that conversion definition for use with other EDI documents that share
the same specification.

Supported EDI Dialects
DataDirect XML Converter supports the following EDI dialects: ATIS, Cargo-IMP,
EANCOM, EDIFACT, Edig@s, HIPAA, HL7, NCPDP, PADIS, TRADACOMS, and
X12.

When to Use the EDI to XML Module
Consider using the EDI to XML module when you

● Want to visually inspect the data and structure of an EDI document

● Need to convert an EDI document that does not conform to an EDI standard

● Want to create a conversion definition that allows you to convert other non-
conforming EDI documents

● Want to experiment with different XML Converter settings to see how they affect the
conversion process and the resulting XML

● Want to create scenarios that use different EDI documents, based on different EDI
standards, or that use different XML Converter settings

You can perform all of these operations and others using the EDI to XML editor.

This section covers the following topics:

● “The EDI to XML Editor” on page 357

● “The SEF File” on page 358

● “Choosing an EDI Document” on page 359

● “EDI to XML Conversions and EDI Standards” on page 359

● “EDI XML Conversions and EDI Definitions” on page 382
356 Stylus Studio User Guide

What is the EDI to XML Module?
The EDI to XML Editor
The EDI to XML editor is a visual editor that helps you create a conversion file that can
be used to convert EDI documents to XML and to preview the XML that results from that
conversion. The conversion file you create can be saved and used to convert other EDI
documents with the same structure to XML.

You can use the EDI to XML editor to:

● View an EDI file you want to convert to XML. The EDI document pane shows any
errors in the file – that is, how the file deviates from the EDI standard on which it is
based – and provides Quick Fixes and other tools to help you correct the errors.

● Customize EDI standard definitions to accommodate proprietary or non-conforming
EDI. By default, the EDI structure pane displays the structure of the EDI standard
associated with the EDI document displayed in the EDI document pane, but you can
change both the dialect and version to display the structure for any of the numerous
dialects supported by DataDirect XML Converter.

Figure 190. EDI to XML Editor with Preview Window Displayed
Stylus Studio User Guide 357

Converting EDI to XML
You can import a local copy of EDI standard definitions and modify them in
numerous ways – adding new values to a code list, changing a segment’s Requirement
property from Mandatory to Optional, and so on. See “Customizing an EDI Standard”
on page 380 for more information on this topic.

● Specify properties for the DataDirect XML Converter. The EDI to XML module uses
the DataDirect XML Converter engine to convert EDI to XML. See “Specifying
XML Converter Properties” on page 379 for more information on this topic.

● Preview the EDI to XML conversion. When you click the Preview Result button
(), Stylus Studio opens the Preview window and displays the XML that results
from converting the source EDI document using the parameters specified for the
XML Converter engine as well as changes made to the EDI standard, if any.

Using Undo

Undo (Edit > Undo, or Ctrl+z) is supported throughout the EDI to XML editor. For
example, you can undo changes made to

● The URI field

● The Dialect and Version drop-down lists

● Nodes in the EDI structure pane

The SEF File
While you can use the EDI to XML module to convert individual EDI documents to
XML, the module’s main purpose is to allow you to develop a set of conversion settings
that can be captured and then reused to convert to XML other EDI documents with the
same structure. These settings are saved in a Standard Exchange Format (SEF) file (.sef)
that is created when you save your work in the EDI to XML editor.

The SEF file contains information about any EDI definitions that you might have
imported and changed, as well as changes to the XML Converter properties default
values. The structure information for supported EDI dialects and versions remains with
the XML Converter, ensuring that the SEF file remains very small.

Tip Use Undo to undo changes incrementally. If you want to undo all of the changes you have
made to the EDI structure definition, use the Restore Definition feature. See “Undoing
Customizations” on page 399 for more information.
358 Stylus Studio User Guide

What is the EDI to XML Module?
Once you create a SEF file, you can use it to convert other EDI documents in one of these
ways:

● Referencing it in the converter:EDI URI scheme – the user= property allows you to
specify the URI of a SEF file. (The easiest way to make changes to the converter: URI
scheme is through the XML Converter properties. See “Specifying XML Converter
Properties” on page 379 and “EDI XML Converters Properties Reference” on
page 414 for more information on these topics.)

● Invoking the setEDIExtension() method that is part of the XML Converter API. This
method is available in both Java and .NET interfaces. See “How XML Converters are
Used in Stylus Studio” on page 254 for more background information on the
DataDirect XML Converter in Stylus Studio, or refer to the DataDirect XML
Converter documentation that is part of your Stylus Studio installation –
\components\XML Converters for .NET and \components\XML Converters for Java
where you installed Stylus Studio.

● Open the SEF file in Stylus Studio and create a new scenario using a new EDI
document as the source document you want to convert to XML.

Choosing an EDI Document
When choosing an EDI document from which you want to create an EDI to XML
conversion, consider using one that is representative of other EDI documents you need to
convert to XML. You might need to create multiple EDI to XML conversions for the types
of EDI documents you typically convert to XML. But when the EDI documents you need
to convert to XML have the same dialect and version, for example, consider creating one
EDI to XML conversion to convert both documents.

EDI to XML Conversions and EDI Standards
An EDI to XML conversion can become associated with an EDI standard (dialect and
version) in one of two ways:

● Stylus Studio infers the EDI standard based on the source EDI document that is being
used to create the EDI to XML conversion

● You can specify the EDI standard explicitly (whether or not you are using a source
EDI document)
Stylus Studio User Guide 359

Converting EDI to XML
The EDI dialect and version associated with an EDI to XML conversion is always
displayed in the EDI to XML editor.

You can change the EDI dialect and/or version any time you are working with the EDI to
XML editor using the Select Dialect and Select Version fields.

Creating an EDI to XML Conversion
This section describes how to create an EDI to XML conversion and how to save your
work as a SEF file.

You can base your EDI to XML conversion on

● An existing EDI document. Use this method when you have a sample EDI document
that is representative of other documents in your enterprise that will need to be
converted to XML.

● An EDI standard. Use this method when you do not have a sample EDI document but
know how your proprietary EDI differs from one of the EDI standards (dialect and
version) supported by Stylus Studio.

The following sections use sample files installed with Stylus Studio to illustrate the
conversion process and features of the EDI to XML module. See “Example: Converting
a Conforming EDI File” on page 363 and “Example: Converting a Non-conforming EDI
File” on page 366 for more information.

Using an EDI Document

◆ To create an EDI to XML conversion using an EDI document:

1. Select File > New > EDI to XML Conversion from the Stylus Studio menu.

The New EDI to XML Conversion dialog box appears.

2. In the Select a sample EDI document field, type the URI for the EDI document you
want to use as the model for your EDI to XML conversion.

Figure 191. EDI Dialect and Version Controls
360 Stylus Studio User Guide

Creating an EDI to XML Conversion
Alternative: Use the more button () to locate the EDI document.

When you select the document, the EDI dialect and version on which it is based are
displayed in the Dialect and Version fields in the Select the dialect and version you
need to customize group box.

3. Click OK.

The EDI to XML editor appears. The EDI document is displayed in the EDI
document pane; the EDI structure for the EDI standard on which the document is
based is displayed in the EDI Structure pane.

4. To save your work in the EDI to XML editor, select File > Save from the Stylus Studio
menu.

Stylus Studio displays the Save As dialog box, prompting you to save the file with a
.sef extension.

Using an EDI Standard

◆ To create an EDI to XML Conversion using an EDI standard:

1. Select File > New > EDI to XML Conversion from the Stylus Studio menu.

The New EDI to XML Conversion dialog box appears.

2. Select the Select the dialect and version you need to customize radio button.

3. Use the Dialect and Version fields in the Select the dialect and version you need to
customize group box to select the dialect and version of the EDI standard you want
to customize.

4. Click OK.

The EDI to XML editor appears. The EDI structure for the EDI standard you selected
is displayed in the EDI Structure pane. The EDI document pane is empty.

You can change the dialect and version using the drop-down lists at the top of the EDI
to XML editor.

5. To save your work in the EDI to XML editor, select File > Save from the Stylus Studio
menu.

Stylus Studio displays the Save As dialog box, prompting you to save the file with a
.sef extension.
Stylus Studio User Guide 361

Converting EDI to XML
Previewing an EDI to XML Conversion
The EDI to XML module uses the Stylus Studio scenarios feature to help you preview the
results of your EDI to XML conversion. A scenario is a collection of information – in the
case of an EDI to XML conversion, an EDI input document and output URI – that you
can save and reuse to test how different EDI customizations and XML Converter settings
affect the conversion of an EDI document to XML.

When you create an EDI to XML conversion using an EDI document, Stylus Studio
automatically creates a scenario that specifies that EDI document as the EDI input for the
EDI to XML conversion. You can change the EDI input document, or create another
scenario using a different EDI document, on the Scenario Properties dialog box.

◆ To display the Scenario Properties dialog box:

Click the Edit scenario properties button () on the EDI to XML editor tool bar.

Alternative: Select EDI > Scenario Properties from the Stylus Studio menu.

Alternative: Select Create Scenario from the scenario drop-down list on the EDI to
XML editor tool bar.

Active Scenario Is Previewed
As you create new scenarios, they are listed in the Existing Scenarios field. The scenario
selected in this list is the active scenario – when you preview the EDI to XML conversion,
the active scenario is the one that is being run. You can specify a different active scenario

Figure 192. Scenario Properties Dialog Box
362 Stylus Studio User Guide

Example: Converting a Conforming EDI File
by selecting it in this list, but it can be more convenient to select it from the Create
Scenario from the scenario drop-down list on the EDI to XML editor tool bar:

When you choose a new active scenario, Stylus Studio uses the EDI input and output URI
specified in the scenario when you preview the EDI to XML conversion.

How to Preview an EDI to XML Conversion

◆ To preview an EDI to XML conversion:

1. Select the scenario you want to preview from the scenario drop-down list on the EDI
to XML editor tool bar.

2. Click the Preview Result () button.

Alternative: Select EDI > Preview Result from the Stylus Studio menu.

Example: Converting a Conforming EDI File
This section describes how to convert an EDI file to XML using the Stylus Studio EDI to
XML module. It uses the 831.x12 EDI file, which is installed in the \EDItoXML\EDI files
folder where you installed Stylus Studio. This file conforms to the X12 EDI standard, and
contains no errors.

◆ To convert 831.x12 to XML:

1. Select File > New > EDI to XML Conversion from the Stylus Studio menu.

The New EDI to XML Conversion dialog box appears.

2. In the Select a sample EDI document field, type the URI for the 831.x12 EDI file.

Figure 193. Setting the Active Scenario
Stylus Studio User Guide 363

Converting EDI to XML
Alternative: Use the more button () to locate 831.x12.

When you select the document, X12 is displayed in the Dialect field and 004030 is
displayed in the Version field in the Select the dialect and version you need to
customize group box.

3. Click OK.

The EDI to XML editor appears. The 831.x12 EDI file you selected in Step 2 is
displayed in the EDI document pane. The message in the status bar (No errors found)
indicates that the 831.x12 EDI file has no errors.

The EDI Structure pane displays information for X12 version 004030 from the
DataDirect XML Converter repository. Stylus Studio uses this information to parse
and validate the source EDI document associated with this EDI to XML conversion.

Since the 831.x12 EDI file has no errors and appears to conform to the X12 standard,
it is ready to be converted to XML. (For information on addressing errors in EDI files,
see “Resolving EDI Document Errors” on page 372.)

4. To convert the 831.x12 EDI file to XML, click the Preview Result button ().

The Save As dialog box appears, requesting that you save your EDI to XML
conversion as a SEF file.

Figure 194. 831.x12 EDI Before Conversion
364 Stylus Studio User Guide

Example: Converting a Conforming EDI File
5. Provide a name for the file and click the Save button.

Stylus Studio opens the Preview window and displays the XML that results from
converting the 831.x12 EDI file.

Note that no changes were made to either the EDI structure for the X12 standard or to the
default converter settings used by the XML Converter engine (as shown in the URI field).
Sometimes you will need or want to create local copies of EDI standards definitions or
change properties used by the XML Converter engine. These topics are discussed in the
following example, “Example: Converting a Non-conforming EDI File” on page 366, as
well as in greater detail in “Specifying XML Converter Properties” on page 379 and
“Customizing an EDI Standard” on page 380.

Figure 195. 831.x12 Converted to XML
Stylus Studio User Guide 365

Converting EDI to XML
Example: Converting a Non-conforming EDI File
This section describes how to convert the code99.x12 EDI file to XML using the Stylus
Studio EDI to XML module. This file is installed in the \EDItoXML\EDI files folder where
you installed Stylus Studio.

The code99.x12 EDI file uses a proprietary X12 format – one that is based on the X12
standard but uses enterprise-specific code lists and code list values. This example shows
how to modify the XML Converter properties and local EDI definitions to accommodate
this proprietary X12 format.

◆ To convert code99.x12 to XML:

1. Select File > New > EDI to XML Conversion from the Stylus Studio menu.

The New EDI to XML Conversion dialog box appears.

2. In the Select a sample EDI document field, type the URI for the code99.x12 EDI file.

Alternative: Use the more button () to locate code99.x12.

When you select the document, X12 is displayed in the Dialect field and 004030 is
displayed in the Version field in the Select the dialect and version you need to
customize group box.

3. Click OK.

The EDI to XML editor appears. The code99.x12 EDI file you selected in Step 2 is
displayed in the EDI document pane.

The message in the status bar (No errors found) indicates that the code99.x12 EDI file
has no errors. Or at least none that is apparent based on the default settings for the
properties used by the XML Converter engine.

By default, the XML Converter engine does not validate code list tables. However,
since our application development policy requires that we validate code lists, we need
to change the code list validation property.
366 Stylus Studio User Guide

Example: Converting a Non-conforming EDI File
4. To display the property settings for the XML Converter, click the more button ()
to the right of the converter URI field.

Stylus Studio displays the Select XML Converters Properties dialog box.

The property that controls code list validation is Force error if value not in code list
(tbl).

5. Change the value for tbl to yes and click OK.

When you make a change to the SEF file, as we have just done by changing the XML
Converter properties associated with it, Stylus Studio reloads the source EDI
document after a moment. This occurs automatically, but you can force it by clicking
the Waiting to reload document text in the status bar. You can also change the delay
(by default, it is 5 seconds) in the Options dialog box (Tools > Options > Module
Settings > EDI to XML).

See “Working with Code Lists” on page 377 for more information on code list
validation.

Figure 196. Select XML Converter Properties Dialog Box
Stylus Studio User Guide 367

Converting EDI to XML
With code list validation on, we see that our EDI source document contains an error
(indicated by a red squiggle at the error’s location in the EDI document pane. If you
hover the pointer over the red squiggle, a tool tip provides more information about the
error:

6. When we alert our provider to this error, he informs us that all EDI documents he
provides us for processing will include this code value in the Transaction Set Purpose

Figure 197. Tool Tips for Errors in EDI Documents
368 Stylus Studio User Guide

Example: Converting a Non-conforming EDI File
Code code list, as it does in the code99.x12 EDI file we are using to build our EDI to
XML conversion:

7. If we click line BGN:99:88200001:20041201 in the EDI document panel, Stylus Studio
back-maps to the corresponding node in the EDI Structure tree. This allows us to see

Figure 198. Clicking the EDI Document Back-maps to the EDI Structure
Stylus Studio User Guide 369

Converting EDI to XML
that the Transaction Set Purpose Code code list value 99 is not defined in the X12
standard:

We know we can ignore the error by suppressing code list validation (as seen earlier
in this example). But to accommodate the new code value, we need to add it to the
Transaction Set Purpose Code code list. We do this by modifying a local copy of the
Transaction Set Purpose Code code list to include code 99. This modification to the
standard will exist only in the SEF file that is used to convert other files of this type;
we are not changing the definition of the EDI standard in the DataDirect XML
Converter repository.

Figure 199. EDI Value Not Present in EDI Standard
370 Stylus Studio User Guide

Example: Converting a Non-conforming EDI File
8. In the EDI Structure pane, right-click 353:Transaction Set Purpose Code and choose
Add > Code from the shortcut menu.

Stylus Studio displays the Code Definition dialog box.

9. Enter 99 in the Value field; enter Status Under Review in the Description field, and
click OK.

The values in the Transaction Set Purpose Code code list tree are displayed in bold,
indicating that this definition (and any changes to it) is local, stored in the SEF file
that represents our EDI to XML conversion. (For more information, see
“Customizing an EDI Standard” on page 380.)

After a moment, Stylus Studio reloads the source EDI document. The red squiggle
does not appear because we have added 99 to the code list table; the status bar
displays an OK symbol () and the message, No errors found. The EDI to XML
conversion can now be tested.

10. To convert the code99.x12 EDI file to XML, click the Preview Result button ().

The Save As dialog box appears, requesting that you save your EDI to XML
conversion as a SEF file.

11. Provide a name for the file and click the Save button.

Stylus Studio opens the Preview window and displays the XML that results from
converting the code99.x12 EDI file.

Figure 200. Code Definition Dialog Box
Stylus Studio User Guide 371

Converting EDI to XML
Resolving EDI Document Errors
This section describes the features of the EDI to XML editor that help you identify and
resolve errors in the EDI document you are using as a model for creating the EDI to XML
conversion. It covers the following topics:

● “What Is an EDI Document Error?” on page 372

● “How Errors Are Represented” on page 373

● “Locating Data Errors” on page 374

● “Displaying Information about Errors” on page 374

● “Correcting Dialect and Version Errors” on page 375

● “Quick Fixes” on page 375

What Is an EDI Document Error?
An EDI document error is any value in the document that is inconsistent with the EDI
standard on which the document is based. Examples of errors include

● Mis-matched EDI dialect or version

● Missing mandatory segments and elements

● Segments that are out of order

● Code list values that are not defined in the EDI standard
372 Stylus Studio User Guide

Resolving EDI Document Errors
How Errors Are Represented
EDI document errors are represented using colors and symbols in the EDI document pane,
as summarized in the following table.

The number of data errors identified is summarized in the status bar. Prev and Next
buttons (and their keyboard equivalents) help you navigate from one error to the next.
Note that incorrect dialect and version are not included in this count.

Table 46.

Error Type Example Description

Incorrect EDI dialect A red background
indicates that the EDI
dialect specified in the
document does not agree
with the dialect specified
in the EDI to XML editor.

Incorrect EDI version A yellow background
indicates that the EDI
version specified in the
document does not agree
with the version specified
in the EDI to XML editor.

Data error A red squiggle indicates
that the EDI document
contains data that is
inconsistent with the EDI
standard on which the
document is based.

Figure 201. Errors are Summarized in Status Bar
Stylus Studio User Guide 373

Converting EDI to XML
Locating Data Errors
You can locate data errors by searching the document visually. An alternative is to use
tools in the EDI to XML editor to move the cursor from one error to the next to ensure
that you do not overlook any errors that might affect the conversion process or the
composition of your SEF file:

● F4 and Next button in the status bar – moves the cursor to the next error in the source
EDI document

● Shift+F4 and the Prev button in the status bar – moves the cursor to the previous error
in the source EDI document

When the cursor stops on an error in the EDI document, Stylus Studio expands the
corresponding node in the EDI Structure tree to show the related EDI definition. The
Properties window also shows properties for that definition.

Displaying Information about Errors
Once you locate an error, hover the pointer over the error (the red squiggle for data errors;
the red or yellow background for EDI dialect or version errors) to display a tool tip:

The tool tip provides information about the error and suggestions for correcting it.

Figure 202. Tool Tips for Errors in EDI Documents
374 Stylus Studio User Guide

Resolving EDI Document Errors
Correcting Dialect and Version Errors
To correct a dialect or version error, right-click the line with the red or yellow background
in the EDI document pane and choose the appropriate fix from the shortcut menu:

Stylus Studio changes the value in the Select Dialect or Select Version fields at the top of
the EDI to XML editor and the red or yellow background is cleared.

Note that you can change the dialect and version manually any time you need using the
drop-down lists:

Quick Fixes
The Quick Fixes feature displays one or more ways to address a given error. Quick Fixes
is available for data errors only.

Figure 203. Fixing a Version Error

Figure 204. Dialect and Version Fields

Note When the SEF file is being used to convert an EDI document to XML, whether in Stylus
Studio or programmatically, using DataDirect XML Converter, the EDI standard
declared in the EDI document – and not the values shown in the EDI to XML editor –
establishes the dialect and version used to parse the document for conversion. Any locally
defined definitions in the SEF file are used during the conversion as well.
Stylus Studio User Guide 375

Converting EDI to XML
To display Quick Fixes choices, right-click on a document error (the red squiggle) in the
EDI document pane and choose Quick Fixes from the shortcut menu. The menu displays
the fixes that are available for the current error:

Fixes (when there is more than one) are listed in increasing order of scope – when
possible, the scope of the first choice is limited to the current error (or class of error) only;
other fixes listed are typically broader in scope (turning off a type of checking or
validation, for example).

How Quick Fixes Works

Quick Fixes typically provides the following suggestions for addressing errors in the EDI
document:

● Change the value of a property in the EDI structure. For example, error DDEE0004
indicates that a mandatory element was missing. One Quick Fix for this type of error
is to change that element’s Requirement property from Mandatory to Optional. This
results in importing a local copy of the segment’s definition to the SEF file and
changing the element’s Requirement property. This change affects the specific
definition only and might be appropriate if you want to do validation in general, but
in this specific context, you do not require a value for the element.

You can import and change EDI standard definitions at any time. See “Customizing
an EDI Standard” on page 380 for more information.

● Ignore a specific error number – in this example, ignore all DDEE0004 errors. This
has the effect of treating all elements as optional. This is appropriate if you want to
convert the data without checking if all mandatory elements are present.

● Change an XML Converter property. In this example, the suggestion would be to use
opt=yes, which treats all elements and segments as optional. This is appropriate if you
want to convert the data and do little or no validity checking.

You can change the XML Converter properties at any time. See “Specifying XML
Converter Properties” on page 379 for more information.

Figure 205. Sample Quick Fixes Menu
376 Stylus Studio User Guide

Resolving EDI Document Errors
Working with Code Lists
EDI dialects are typically associated with one or more code lists, tables that contain a set
of codes and their descriptions that can be used to validate EDI segments and messages.

Code list validation is controlled by the tbl XML Converter property in the Select XML
Converter Properties dialog box, shown here.

Enabling Code List Validation

By default, Stylus Studio does not perform code list validation against the EDI you are
converting to XML (tbl=no). To enable code list validation, set tbl=yes. For an example
of code list validation, see “Example: Converting a Non-conforming EDI File” on
page 366.

Handling Missing Values

When validation is on, the XML Converters engine raises an error for any missing or
unrecognized code list values. You can handle missing or unrecognized values in one of
two ways. You can:

● Add missing values to a local copy of the EDI standard code list.

● Add a special value, “...” that suppresses code list validation for that table only.

When you enter “...” for a code list value, any elements with values not in the codelist are
treated as valid. Further, if you provide a description for the “...” code list value when you
create the code, that value is output in the XML comments. Here, for example, any

Figure 206. tbl= Property Controls Code List Validation
Stylus Studio User Guide 377

Converting EDI to XML
missing values from the Piece Identification Indicator code list table are output to XML
with the comment “missing”:

Note that the “...” code value affects code list validation only for the table for which it was
created. Code list validation for other tables is unaffected.

See “Example: Converting a Non-conforming EDI File” on page 366 for an example of
modifying a code list; see “Creating a Code” on page 395 to learn how to add a value to
a code list.

Figure 207. Providing Descriptions for Missing Code List Table Values

Tip You can add the “...” code list value on-the-fly using the Quick Fixes feature. See “Quick
Fixes” on page 375 for more information.
378 Stylus Studio User Guide

Specifying XML Converter Properties
Specifying XML Converter Properties
The EDI to XML module uses the DataDirect XML Converter engine to convert EDI
documents to XML. You specify the properties you want the XML Converter engine to
use for your EDI to XML conversion in the Select XML Converter Properties dialog box:

The settings you specify here are saved with the SEF file for your EDI to XML conversion
and are displayed in the URI field (in converter:EDI URI scheme format) at the top of the
EDI to XML editor.

See “EDI XML Converters Properties Reference” on page 414 for detailed information
about XML Converter properties.

◆ To display the Select XML Converters dialog box:

Click the Edit Converter Properties button () in the URI field.

About the Converter URI
The converter URI scheme (converter:EDI) provides the property settings that are used
by the XML Converter engine. Note that it displays only properties whose settings you
have changed – default values used by the XML Converter are not displayed.

See “The Converter URI Scheme” on page 309 to learn more about the converter URI
scheme and how it is used in Stylus Studio and by DataDirect XML Converter.

Figure 208. Select XML Converter Properties Dialog Box
Stylus Studio User Guide 379

Converting EDI to XML
Customizing an EDI Standard
This section describes the DataDirect XML Converter EDI standards repository and how
to create customized EDI definitions for your EDI to XML conversions. It covers the
following topics:

● “The EDI Standards Repository” on page 380

● “Ways to Customize an EDI Standard” on page 381

● “EDI XML Conversions and EDI Definitions” on page 382

● “Views of the EDI Structure” on page 382

● “Creating New Structure Definitions” on page 384

● “Modifying Existing Definitions” on page 390

● “Modifying Definition Properties” on page 396

● “Importing EDI Standard Definitions” on page 397

● “Undoing Customizations” on page 399

● “Removing a Definition” on page 399

The EDI Standards Repository
The DataDirect XML Converter installed with Stylus Studio includes a repository of all
the EDI standards it supports – ATIS, Cargo-IMP, EANCOM, EDIFACT, Edig@s,
HIPAA, HL7, NCPDP, PADIS, TRADACOMS, and X12 dialects, and most recent and
current versions of these dialects. A filtered view of the repository is displayed in the EDI
Structure pane, which shows definitions for the EDI standard specified in the Select
Dialect and Select Version fields.

If you use an EDI document to create your EDI to XML conversion, the EDI dialect and
version are inferred from the source document. You can change the dialect and/or version
to view definitions for another EDI standard any time you choose.

The EDI Structure pane also shows any new definitions you have created or existing
definitions you have modified. For more information, see “Ways to Customize an EDI
Standard” on page 381 and “Views of the EDI Structure” on page 382.
380 Stylus Studio User Guide

Customizing an EDI Standard
Ways to Customize an EDI Standard
There are several ways to customize an EDI standard to reflect proprietary EDI formats.
You can:

● Modify definitions in a local copy of the EDI standard – add a value to a code list,
remove a segment reference, and so on.

● Change definition properties – change a requirement from mandatory to optional,
choose to rename the definition when it is output to XML, and so on.

● Import definitions – you might want to import code list values from a current EDI
standard into an EDI to XML conversion based on a prior standard, for example.

What Happens When You Customize a Standard

When you customize an EDI standard by changing a definition, Stylus Studio imports a
copy of that definition into your EDI to XML conversion that reflects the changes you
made to the EDI standard definition. This local copy of the EDI standard definition
remains with your EDI to XML conversion in the SEF file unless you restore the standard
definition.

All imported definitions – whether imported implicitly (by changing a property, for
example) or explicitly – are displayed in bold text in the EDI Structure pane. In the
following illustration, for example, the segment reference DFI: Default Information has
been added to the transaction message 831: Application Control Totals.

Here, both 831: Application Control Totals and Group 1: AMT are shown in bold because
those definitions have changed based on the addition of the DFI: Default Information
segment reference.

Figure 209. Bold Text Shows Changes to Standard Definition
Stylus Studio User Guide 381

Converting EDI to XML
Creating New Definitions

In addition to making changes to definitions from an EDI standard, you can create new
definitions for messages, segments, elements, composites, and code lists. These
definitions are added to the local definitions that are part of your EDI to XML conversion,
along with any EDI standard definitions that you have customized. New definitions are
also shown using bold text in the EDI Structure pane.

See “Creating New Structure Definitions” on page 384 for more information.

EDI XML Conversions and EDI Definitions
When you use an EDI to XML conversion to convert an EDI document to XML, the
DataDirect XML Converter engine uses

● The EDI dialect and version declared in the EDI document you are converting

● Any customized definitions you have created (shown in bold in the EDI Structure
pane)

● XML Converter properties specified in the converter:EDI URI

The SEF file associated with your EDI to XML conversion does not contain any
information about the EDI standard displayed in the EDI to XML editor. Rather, the XML
Converter engine uses its knowledge about the EDI standard (from the repository) for the
document being converted, along with any changes to the standard for those definitions
that you have created or modified.

Views of the EDI Structure
The EDI Structure pane provides two views to help you build your EDI to XML
conversion:

● The complete specification for the EDI standard you have selected, including local
definitions

● Only local definitions that you have imported to the SEF
382 Stylus Studio User Guide

Customizing an EDI Standard
You use the Show Full Dialect Specification button () to toggle between these views.

When you create an EDI to XML conversion (whether based on an EDI document or
starting directly from an EDI standard), the EDI Structure pane makes the complete
specification accessible – just expand a node to view a definition, and its properties appear
in the Properties window.

As you build your EDI to XML conversion and make changes to the EDI standard, you
might want to simplify the view in the EDI Structure pane to display only those local
definitions. In the following illustration, the segments A1, A2, and AC have all been

Figure 210. EDI Structure Pane Shows Full or Local Specification

Figure 211. Full Specification
Stylus Studio User Guide 383

Converting EDI to XML
imported from repository. These definitions, which are shown in bold, reside in the SEF
file that represents your EDI to XML conversion.

Creating New Structure Definitions
A structure definition is a top-level definition in an EDI Structure:

● Message

● Segment

● Element

● Composite

● Code list

Structure definitions can be created from anywhere in the EDI Structure – that is, context
(as shown by cursor placement or focus) does not matter. New structure definitions are
placed in the appropriate EDI structure folder, sorted alphanumerically. Creating a new
structure definition does not affect existing definitions in the EDI Structure.

This section covers the following topics:

● “Adding a Message” on page 385

● “Adding a Segment” on page 386

● “Adding an Element” on page 387

● “Adding a Composite” on page 388

● “Adding a Code List” on page 389

For information on creating context-specific definitions (code list values, segment
references, and similar definitions, see “Modifying Existing Definitions” on page 390.

Figure 212. Imported Definitions
384 Stylus Studio User Guide

Customizing an EDI Standard
Adding a Message

◆ To add a message:

1. Right-click any node in the EDI Structure and select New Definition > Message from
the shortcut menu.

Alternative: Select EDI > New Definition > Message from the Stylus Studio menu.

The Message Definition dialog box appears.

2. Enter a message name and, optionally, a description.

3. Click OK.

The message definition is added to the existing transaction messages in the EDI
Structure; new messages are sorted in alphanumeric order.

Figure 213. Message Definition Dialog Box
Stylus Studio User Guide 385

Converting EDI to XML
Adding a Segment

◆ To add a segment:

1. Right-click any node in the EDI Structure tree and select New Definition > Segment
from the shortcut menu.

Alternative: Select EDI > New Definition > Segment from the Stylus Studio menu.

The Segment Definition dialog box appears.

2. Enter a segment name and, optionally, a description.

3. Click OK.

The segment definition is added to the existing segments in the EDI Structure; new
segments are sorted in alphanumeric order.

Figure 214. Segment Definition Dialog Box
386 Stylus Studio User Guide

Customizing an EDI Standard
Adding an Element

◆ To add an element:

1. Right-click any node in the EDI Structure and select New Definition > Element from
the shortcut menu.

Alternative: Select EDI > New Definition > Element from the Stylus Studio menu.

The Element Definition dialog box appears.

2. Enter an element name and specify a data type (the default is AN – Alphanumeric).

3. Optionally specify minimum and maximum lengths and a description.

4. Click OK.

The element definition is added to the existing elements in the EDI Structure; new
elements are sorted in alphanumeric order.

Figure 215. Element Definition Dialog Box
Stylus Studio User Guide 387

Converting EDI to XML
Adding a Composite

◆ To add a composite:

1. Right-click any node in the EDI Structure and select New Definition > Composite
from the shortcut menu.

Alternative: Select EDI > New Definition > Composite from the Stylus Studio menu.

The Composite Definition dialog box appears.

2. Enter a composite name and optionally specify a description.

3. Click OK.

The composite definition is added to the existing composites in the EDI Structure;
new composites are sorted in alphanumeric order.

Figure 216. Composite Definition Dialog Box
388 Stylus Studio User Guide

Customizing an EDI Standard
Adding a Code List

◆ To add a code list:

1. Right-click any node in the EDI Structure and select New Definition > Code List from
the shortcut menu.

Alternative: Select EDI > New Definition > Code List from the Stylus Studio menu.

The Code List Definition dialog box appears.

2. Enter a code list name and click OK.

The code list definition is added to the existing code lists in the EDI Structure; new
code lists are sorted in alphanumeric order.

See “Creating a Code” on page 395 to learn how to add values to a code list.

Figure 217. Code List Definition Dialog Box
Stylus Studio User Guide 389

Converting EDI to XML
Modifying Existing Definitions
In addition to creating new definitions, you can also modify existing definitions in an EDI
Structure. For example, you can add an element reference to an existing composite. When
you modify an existing definition, Stylus Studio imports a local copy of this definition
from the EDI repository and places it in your EDI to XML conversion. Imported
definitions are displayed in bold in the EDI Structure pane in the EDI to XML editor. See
“Ways to Customize an EDI Standard” on page 381 for more information on this topic.

This section covers the following topics:

● “Adding versus Inserting” on page 390

● “Creating a Segment Reference” on page 391

● “Creating a Group” on page 392

● “Creating an Element or Composite Reference” on page 393

● “Creating a Repetition” on page 394

● “Creating a Variation” on page 394

● “Creating a Code” on page 395

You can also modify an existing definition by changing one of its properties. See
“Modifying Definition Properties” on page 396 for more information.

Adding versus Inserting

You modify an existing definition by adding or inserting another definition to it.

● When you add a definition, it is added to the end of the existing definition. For
example, if you add an element reference to a segment, the new element reference is
added after the last element reference currently defined for that segment.

To add a definition, choose Add from the shortcut or Stylus Studio menu.

● When you insert a definition, you get to choose whether to place it before or after the
current definition. For example, if the focus is on a segment reference, you can choose
whether to place a new group before or after the segment reference.

To insert a definition, choose Insert After or Insert Before from the shortcut or Stylus
Studio menu.
390 Stylus Studio User Guide

Customizing an EDI Standard
Creating a Segment Reference

You can create a segment reference for a message or a group. You can reference an
existing segment or create a new segment and reference that.

◆ To create a segment reference:

1. Right-click the message or group definition to which you want to add the segment
reference and select Add > Segment Reference from the shortcut menu.

Alternative: Select EDI > Add > Segment Reference from the Stylus Studio menu.

The Add Segment Reference dialog box appears.

2. Choose the segment you want to reference, or click New Segment to create a new
segment as your segment reference. See “Adding a Segment” on page 386 for
information on creating segments.

3. Choose the setting for the Modifier property – you can leave this field blank, or you
can define the segment reference as Dependent, Must Be Used, Not Recommended,
Not Used, or Used.

4. Choose the setting for the Requirement property – you can choose Conditional,
Facultative, Mandatory, or Optional.

5. Choose the setting for the Maximum Use, Ordinal, and Position property. You can
use the default values if appropriate.

6. Click OK to add the segment reference to the EDI Structure.

Figure 218. Add Segment Reference Dialog Box
Stylus Studio User Guide 391

Converting EDI to XML
Creating a Group

You can create a group for a message or another group. You can use an existing segment
for the group’s loop trigger or create a new segment and use that.

◆ To create a group:

1. Right-click the message or group definition to which you want to add the group and
select Add > Group from the shortcut menu.

Alternative: Select EDI > Add > Group from the Stylus Studio menu.

The Group Definition dialog box appears.

2. Choose the segment you want to use as the loop trigger, or click New Segment to
create a new segment as your loop trigger. See “Adding a Segment” on page 386 for
information on creating segments.

3. Optionally, specify a group label.

4. Choose the setting for the Modifier property – you can leave this field blank, or you
can define the segment reference as Dependent, Must Be Used, Not Recommended,
Not Used, or Used.

5. Choose the setting for the Requirement property – the default is Conditional, but you
can choose Facultative, Mandatory, or Optional.

Figure 219. Group Definition Dialog Box
392 Stylus Studio User Guide

Customizing an EDI Standard
6. Choose the setting for the Maximum Use property. You can use the default value if
appropriate. You can specify Ordinal or Position properties for a group definition
only if the Loop Sequence property for the EDI Structure is set to Enable.

7. Click OK to add the group to the EDI Structure.

Creating an Element or Composite Reference

You can create an element or composite reference for a segment, composite, repetition,
variation, or another element or composite reference. You can use an existing element or
composite for the element or composite reference, or create a new element or composite
and use that.

◆ To create an element or composite reference:

1. Right-click the definition to which you want to add the element or composite
reference and select Add > Element or Composite Reference from the shortcut menu.

Alternative: Select EDI > Add > Element or Composite Reference from the Stylus
Studio menu.

The Add Element or Composite Reference dialog box appears.

2. Choose the element or composite you want to reference, or click New Element or New
Composite to create a new element or composite to reference. See “Adding an
Element” on page 387 or “Adding an Element” on page 387 for information on
creating these definitions.

Figure 220. Add Element or Composite Reference Dialog Box
Stylus Studio User Guide 393

Converting EDI to XML
3. Choose the setting for the Modifier property – you can leave this field blank, or you
can define the reference as Delete, Dependent, Must Be Used, Not Recommended,
Not Used, or Used.

4. Choose the setting for the Requirement property – the default is Conditional, but you
can choose Facultatif (composite reference) or Dependent (element reference),
Mandatory, or Optional.

5. Enter the value for the Repeat Count, Minimum, Maximum, and Ordinal properties.
You can use the default value, if available and appropriate.

6. Click OK to add the reference to the EDI Structure.

Creating a Repetition

You can create a repetition for a segment, composite, segment or composite reference, or
another repetition. A repetition is created as a child of the definition. It is given the label
REPEAT in the EDI Structure.

◆ To create a repetition:

1. Right-click the definition for which you want to create a repetition and select Add >
Repetition from the shortcut menu.

Alternative: Select EDI > Add > Repetition from the Stylus Studio menu.

The repetition is added to the definition.

Creating a Variation

You can create a variation for a segment or a composite. A variation results in the cloning
of the segment or composite on which it is based. The original definition is given the label
in the EDI Structure of # Base; the first variation is labeled #1. Subsequent variations are
labeled #2, #3, and so on. The first # is the symbol for the tree node, and not part of the
name.

◆ To create a variation:

1. Right-click the definition for which you want to create a variation and select Add >
Variation from the shortcut menu.

Alternative: Select EDI > Add > Variation from the Stylus Studio menu.

The variation is added to the definition.
394 Stylus Studio User Guide

Customizing an EDI Standard
Creating a Code

You can add a code to an element, an element reference, a code list, or another code. You
can create a single code (99, for example) or a range of codes (AA to AZ, for example).

◆ To create a code definition:

1. Right-click the definition to which you want to add the code definition and select Add
> Code from the shortcut menu.

Alternative: Select EDI > Add > Code from the Stylus Studio menu.

The Code Definition dialog box appears.

2. If you want to create

■ A single code, enter a value in the Value field and, optionally, a description in the
Description field.

■ A range of codes, select the Range radio button, and enter range values in the
Begin and End fields.

3. Click OK to add the reference to the EDI Structure.

Figure 221. Code Definition Dialog Box
Stylus Studio User Guide 395

Converting EDI to XML
Modifying Definition Properties
The Properties window, like the one shown in the following illustration, allows you to
edit properties associated with the definition in the EDI Structure that currently has focus.

A definition gains focus when you

● Click a line in the EDI document pane

● Click a definition in the EDI Structure pane

The Properties is a docking window. By default, it is docked to the Stylus Studio window,
but you can drag it anywhere you like.

When you modify a definition’s properties, Stylus Studio imports a local copy of this
definition from the EDI repository and places it in your EDI to XML conversion.
Imported definitions are displayed in bold in the EDI Structure pane. See “Ways to
Customize an EDI Standard” on page 381 for more information on this topic.

You can also modify an existing definition by adding new definitions to it. See
“Modifying Existing Definitions” on page 390 for more information.

Figure 222. Properties Window
396 Stylus Studio User Guide

Customizing an EDI Standard
Importing EDI Standard Definitions
This section describes how to import EDI standard definitions. You might want to do this,
for example, to import code list values from a more recent version of a dialect while
leaving the rest of the EDI standards on which your EDI to XML conversion is based
intact.

In the following example, we are importing the Late Reason Code code list from X12
version 005050 into our EDI to XML conversion, which is based on X12 version 004030,
to acquire a new code value – LB = Awaiting Wage Amount Verification.

◆ To import an EDI standard definition:

1. Open the EDI to XML conversion whose EDI structure you want to update by
importing an EDI Standard.

2. In the EDI Structure pane, select the definition you want to import. Here, we have
selected 9: Late Reason Code. Note that the last code defined for this code list (in
version 004030) is LA = Intermittent Lost Time Prior to First Payment.

Figure 223. EDI Structure
Stylus Studio User Guide 397

Converting EDI to XML
3. Change the value in the Select Version field to 005050.

This displays the EDI structure for X12 version 005050 in the EDI Structure pane.
Note that the Late Reason Code code list includes LB = Awaiting Wage Amount
Verification.

4. Right-click the code list 9: Late Reason Code, and choose Import Definition from the
shortcut menu.

This directs Stylus Studio to import the codes for this code list from X12 version
005050 into the local EDI Structure.

5. Change the version back to 004030 (since this is the version on which the EDI to
XML conversion is based).

6. Click the Show Full Dialect Specification button (). Note that the 9: Late Reason
Code code list appears in bold to indicate that a local copy of this definition has been
created.

Figure 224. Local Definitions in EDI Structure
398 Stylus Studio User Guide

Customizing an EDI Standard
Undoing Customizations
You can undo any customizations you make using the Restore feature in the EDI to XML
editor. When you undo a customization, the modified definition reverts to its EDI
standard, effectively removing it from the SEF file for your EDI to XML conversion.

◆ To undo a change to an EDI standard definition:

1. In the EDI Structure tree, select the modified EDI standard definition whose change
you want to undo.

2. Right-click the modified definition and select Restore Definition from the short cut
menu.

Alternative: Select EDI > Restore Definition from the Stylus Studio menu.

The modified definition reverts to its EDI standard; it is removed from the SEF file
for your EDI to XML conversion and no longer appears in bold text in the EDI
Structure tree.

Removing a Definition
In addition to adding and changing definitions, you can modify your local copy of an EDI
standard by removing a definition. You can remove the following definitions:

● Composite references

● Element references

● Segment references

● Groups

● Repetitions

● Variations

Tip You can use Undo to undo changes incrementally, backing out changes one at a time. See
Using Undo on page 358 for more information.

Tip Modified definitions are displayed in bold text. Use the Show Full Dialect
Specification button () to toggle the display of modified standards in the EDI
Structure tree.
Stylus Studio User Guide 399

Converting EDI to XML
Use care when removing references and groups, as this can have unintended
consequences regarding the expected structure of an EDI document and numbering.

◆ To remove a definition:

1. In the EDI Structure tree, select the definition you want to remove from the EDI
Structure.

2. Right-click the definition and select Remove from the short cut menu.

Alternative: Select Remove from the Stylus Studio menu.

The definition is removed from the EDI Structure tree.

Generating XQuery and XML Schema from EDI
Stylus Studio provides tools to help you generate XQuery and XML Schema from EDI
messages:

● Generate XQuery/XML Schema – use this tool when you are working in the EDI to
XML editor. The current context of the EDI dialect, version, and message type
provide much of the information used to generate the XQuery and/or XML Schema.
The SEF file associated with your EDI to XML Conversion also provides information
that has an impact on the generated XQuery/and or XML Schema.

● EDI to XQuery document wizard – use the EDI to XQuery document wizard when
you want to generate XQuery and/or XML Schema from an EDI message but are not
currently working in the EDI to XML editor.

Tip If you want to remove a definition because that structure is never used by the EDI
documents in your organization, consider changing the definition’s Modifier property to
Not used. This retains the definition in the EDI Structure, but instructs the XML
Converter engine to ignore it when converting EDI to XML.
400 Stylus Studio User Guide

Generating XQuery and XML Schema from EDI
Generate XQuery/XML Schema
The Generate XQuery/XML Schema tool lets you generate XQuery and/or XML Schema
based on the currently selected EDI message in the EDI to XML editor.

◆ To use the Generate XQuery/XML Schema tool:

1. In the EDI to XML editor, select the EDI message for which you want to generate
XQuery and/or XML Schema from the EDI structure pane.

2. Select EDI > Generate XQuery/XML Schema from the menu.

Alternative: Right-click the EDI message and choose Generate XQuery/XML Schema
from the short-cut menu.

The Generate XQuery/XML Schema dialog box appears.

3. Specify the generation options as described in the following section, “Generate
XQuery/XML Schema Dialog Box” on page 402.

4. Click OK.

Figure 225. Generate XQuery/XML Schema Dialog Box
Stylus Studio User Guide 401

Converting EDI to XML
Generate XQuery/XML Schema Dialog Box

This section describes the fields of the Generate XQuery/XML Schema dialog box.

Message

Displays the name of the message; based on the message that was active in the EDI
Structure pane of the EDI to XML editor when you selected EDI > Generate
XQuery/XML Schema from the menu.

Mode

Whether the EDI is processed in batch or interactive mode. Valid for EANCOM,
EDIFACT, and IATA (Cargo-IMP and PADIS) only.

Create XQuery for this EDI Message – A check box you use to indicate that you want to
generate XQuery for the EDI message.

● XQ File– The URI for the file to which the generated XQuery is written. By
default, this is Untitledn_name.xquery file, where n is a unique number and name
is the EDI message name abbreviation.

● Mandatory segments and elements only – Generates only those segments whose
Requirement property is “mandatory” and, for them, only the mandatory element
and composite references.

● All segments but only mandatory elements – Generates all segments, but, for
each of them, only the mandatory element and composite references.

● All segments and elements – Generates all segments, and all element and
composite references specified for them.

Create XML Schema for this EDI Message – A check box you use to indicate that you
want to generate XML Schema for the EDI message.

● XSD File – The URI for the file to which the generated XML Schema is written.
By default, this is Untitledn_name.xsd file, where n is a unique number and name
is the EDI message name abbreviation.

● Write annotations describing each element – Whether or not you want the
generated XML Schema to include annotations that are part of the EDI message.

● Enumerations for elements that have codelists – Whether or not you want the
generated XML Schema to include enumerations for fields that have lists of
values.

● Use “unbounded” for maxOccurs when loop value is 99 or higher) – Replaces
maxOccurs values of 100 or greater with “unbounded”. This option ensures that
the generated XML Schema can be successfully validated by most processors.
402 Stylus Studio User Guide

Generating XQuery and XML Schema from EDI
EDI to XQuery Document Wizard
The EDI to XQuery document wizard lets you generate XQuery and/or XML Schema.
The document wizard gives you the flexibility to specify values such as the XML
structure and SEF file to use when generating output.

◆ To use the EDI to XQuery document wizard:

1. In the Stylus Studio, select File > Document Wizards from the menu.

The Document Wizard dialog box appears.

2. Click the XQuery tab and double-click the EDI to XQuery icon.

The Generate XQuery from EDI Standards dialog box appears.

Figure 226. Generate XQuery from EDI Standards Dialog Box
Stylus Studio User Guide 403

Converting EDI to XML
3. Specify the generation options as described in the following section, “Generate
XQuery from EDI Standards” on page 404.

4. Click OK.

Generate XQuery from EDI Standards

This section describes the fields of the Generate XQuery from EDI Standards dialog box.

Message

You use the fields in the Message group box to specify information about the EDI
standard for which you want to generate XQuery.

● Dialect – Drop-down list that lets you specify the EDI dialect for which you want
to generate XQuery.

● Version – Drop-down list that lets you specify the version for the EDI dialect you
selected.

● Mode – Whether the EDI is processed in batch or interactive mode. Valid for
EANCOM, EDIFACT, and IATA only.

● Message/Description – The specific EDI message for which you want to
generate the XQuery.

XML Structure

You use the fields of the XML Structure group box to specify the structure of the XML

● Use long names for – Whether or not you want to use the long element and/or
segment names as part of the XML tag – UNB01-SyntaxIdentifier versus UNB01,
for example.

● Wrap “GROUP” element around message groups – Whether you want to wrap
a <GROUP> element around transaction messages. This can make message
groupings easier to handle with XPath for EDI document with multiple message
groups.

● Prefix GROUP_N tags with the message name – Adds the message name to the
GROUP_n prefix in the XML element tag. For example, <TS_831_GROUP_1>.

● Put the data value in value= attributes – Places code list data values in an value=
string in the element tag. For example, <BGN01 value="00"><!--353: Transaction
Set Purpose Code--></BGN01>. By default, the data value is output to XML as text
(<BGN01><!--353: Transaction Set Purpose Code-->00</BGN01>).

● Put decoded data values in decode= attributes – Places decoded code list data
values in a decode= string in the element tag. For example, <ISA15
decode=”Production Data”>. By default, the decoded value is not output to XML.
404 Stylus Studio User Guide

Generating XQuery and XML Schema from EDI
XQuery Generate Options

You use the XQuery Generation Options group box to specify what EDI structures
you want represented in the generated XQuery. XQuery resulting from the document
wizard is output as an Untitledn.xquery file, where n is a unique number, directly to
the Stylus Studio desktop.

● Mandatory segments and elements only – Generates only those segments whose
Requirement property is “mandatory” and, for them, only the mandatory element
and composite references.

● All segments but only mandatory elements – Generates all segments, but, for
each of them, only the mandatory element and composite references.

● All segments and elements – Generates all segments, and all element and
composite references specified for them.

Create XML Schema for this EDI Message

In addition to generating XQuery for an EDI message, you can choose to generate an
XML Schema for the same message at the same time. The fields in this group box
allow you to specify the settings that are used to generate the XML Schema for the
selected EDI message.

● XSD File – The URI for the XML Schema (.xsd) file that is output by the
document wizard.

● Write annotations describing each element – Whether or not you want the
generated XML Schema to include annotations that are part of the EDI message.

● Enumerations for elements that have codelists – Whether or not you want the
generated XML Schema to include enumerations for fields that have lists of
values.

● Use “unbounded” for maxOccurs when loop value is 99 or higher) – Replaces
maxOccurs values of 100 or greater with “unbounded”. This option ensures that
the generated XML Schema can be successfully validated by most processors.

SEF File – The URI of the Standard Exchange Format (SEF) file, if any, you want to use
when generating XML in XQuery and XML Schema files. The SEF file can augment
information that Stylus Studio uses to generate XQuery and XML Schema – customized
EDI definitions are stored in the SEF file, for example. If the same setting is specified by
both the document wizard and the SEF file, the SEF file value is used.
Stylus Studio User Guide 405

Converting EDI to XML
EDI Structure Definitions Properties Reference
This section provides reference information for the EDI Structure definition properties
displayed in the Properties window in the EDI to XML editor.

This section covers the following topics:

● Code List Properties on page 406

● Composite Properties on page 407

● Composite Reference Properties on page 407

● EDI Structure Properties on page 408

● Element Properties on page 408

● Element Reference Properties on page 409

● Group Properties on page 411

● Message Properties on page 412

● Repetition Properties on page 412

● Segment Properties on page 412

● Segment Reference Properties on page 413

● Transaction Message Properties on page 414

Code List Properties
Table 47. Code List Properties

Property Description Editable

Type A label that identifies the type of definition. No

Name The name of the code list. Names are always uppercase. Yes
406 Stylus Studio User Guide

EDI Structure Definitions Properties Reference
Composite Properties

Composite Reference Properties

Table 48. Code List Properties

Property Description Editable

Type A label that identifies the type of definition. No

Name The name of the composite. Names are always uppercase. Yes

Description The definition description. Can be mixed case. Yes

Syntax Rules The logic used when a composite reference’s Requirement
property is set to Conditional.

Rules entered in this field are preserved, but the rule is not
enforced at runtime.

Yes

Table 49. Composite Reference Properties

Property Description Editable

Type A label that identifies the type of definition. No

Modifier Indicates whether the composite reference is used in your
customized EDI structure. For new composite references, you
can leave this field empty. If you are modifying an existing
composite reference because you want to indicate that it is not
used in your customized EDI structure, set Modifier to Not
Used instead of removing it from the EDI structure.

Valid values for this property are Deleted, Dependent, Must
be used, Not recommended, Not used, Recommended.

Yes

Requirement Whether the composite reference is Conditional, Dependent,
Mandatory, or Optional.

Note: If a Modifier is specified, it overrides the Requirement
at runtime.

Yes

Repeat
Count

The number of times the reference can occur within the
segment, composite, or other definition.

Yes
Stylus Studio User Guide 407

Converting EDI to XML
EDI Structure Properties

Element Properties

Ordinal The reference’s place within the segment, composite, or other
definition. This field is grayed out unless you have set the EDI
Structure Loop Sequence Enabled property to Enable.

Not available if the composite reference you are editing is part
of a composite (and not a segment).

Yes

Rename
XML Node

If present, this value is used instead of the composite
reference name to form the XML node name. The original
name is retained as an attribute in the XML tag.

Not available if the composite reference you are editing is part
of a composite (and not a segment).

Yes

Table 49. Composite Reference Properties

Property Description Editable

Table 50. EDI Structure Properties

Property Description Editable

SEF Version The SEF syntax version Yes

Loop
Sequence
Enabled

Determines whether groups have their own ordinal and
position number.

Yes

Description The definition description. Can be mixed case. Yes

Table 51. Element Properties

Property Description Editable

Type A label that identifies the type of definition. No

Name The name of the element. Names are always uppercase. Yes

Datatype The element’s datatype. Yes

Code List The code list associated with this element. HL7 only. Yes
408 Stylus Studio User Guide

EDI Structure Definitions Properties Reference
Element Reference Properties

Minimum
Length

The element’s minimum length. Yes

Maximum
Length

The element’s maximum length. Yes

Description The definition description. Can be mixed case. Yes

Table 51. Element Properties

Property Description Editable

Table 52. Element Reference Properties

Property Description Editable

Type A label that identifies the type of definition. No

Modifier Indicates whether the element reference is used in your
customized EDI structure. For new element references, you
can leave this field empty. If you are modifying an existing
element reference because you want to indicate that it is not
used in your customized EDI structure, set Modifier to Not
Used instead of removing it from the EDI structure.

Valid values for this property are Dependent, Must be used,
Not recommended, Not used, Recommended.

Yes

Requirement Whether the element reference is Conditional, Dependent,
Mandatory, or Optional.

Note: If a Modifier is specified, it overrides the Requirement
at runtime.

Yes

Repeat
Count

The number of times the reference can occur within the
segment, composite, or other definition.

Yes

Minimum
Length

The element’s minimum length. Yes

Maximum
Length

The element’s maximum length. Yes
Stylus Studio User Guide 409

Converting EDI to XML
Ordinal The reference’s place within the segment, composite, or other
definition. Default value if present, has been calculated not to
interfere with other definitions.

Yes

Rename
XML Node

If present, this value is used instead of the element reference
name to form the XML node name. The original name is
retained as an attribute in the element tag.

Not applicable to element references defined in segment
references.

Yes

Append
Value to
XML Node

Allows you to append a code list value to the element tag of a
related node – <ISA01_P tag="ISA01">, for example. This
allows you to create an XML Schema that can aid XML
mapping – when the source XML document presents
name/value pairs as separate elements, you can effectively
collapse two nodes into one. The tag to which you append the
code list value is also given an attribute that identifies the
source of the code value to assist XML Converter when
converting XML to EDI.

Not available for element references defined in segment
references.

Yes

Table 52. Element Reference Properties

Property Description Editable
410 Stylus Studio User Guide

EDI Structure Definitions Properties Reference
Group Properties
Table 53. Group Properties

Property Description Editable

Type A label that identifies the type of definition. No

Modifier Indicates whether the group is used in your customized EDI
structure. For new groups, you can leave this field empty. If
you are modifying an existing group because you want to
indicate that it is not used in your customized EDI structure,
set Modifier to Not Used instead of removing it from the EDI
structure.

Valid values for this property are Dependent, Must be used,
Not recommended, Not used, Recommended.

Yes

Requirement Whether the group is Conditional, Dependent, Mandatory, or
Optional.

Note: If a Modifier is specified, it overrides the Requirement
at runtime.

Yes

Maximum
Use

The number of times the group can appear in the associated
message or group.

Yes

Append
Counter to
XML Node

Whether or not you want to append a number (starting with 1
for the first group, 2 for the second, and so on) to the GROUP
tag in the generated XML – <GROUP_1>, for example.

Yes

Ordinal The group’s place within the message or other group. This
field is grayed out unless you have set the EDI Structure Loop
Sequence Enabled property to Enable.

Yes

Position The position within the associated message or group at which
the group starts. Default value if present, has been calculated
not to interfere with other segments or groups in the message.

This field is grayed out unless you have set the EDI Structure
Loop Sequence Enabled property to Enable.

Yes

Rename
XML Node

If present, this value is used instead of the group name to form
the XML node name. The original name is retained as an
attribute in the element tag.

Yes
Stylus Studio User Guide 411

Converting EDI to XML
Message Properties

Repetition Properties

Segment Properties

Table 54. Message Properties

Property Description Editable

Type A label that identifies the type of definition. No

Name The name of the message. Names are always uppercase. Yes

Description The definition description. Can be mixed case. Yes

Rename
XML Node

If present, this value is used instead of the message name to
form the XML node name. The original name is retained as
an attribute in the XML tag.

Yes

Table 55. Repetition Properties

Property Description Editable

Type A label that identifies the type of definition. No

Repetition The number of times the definition (segment, segment
reference, composite, composite reference, other repetition,
or variation) can be repeated.

Yes

Table 56. Segment Properties

Property Description Editable

Type A label that identifies the type of definition. No

Name The name of the segment. Names are always uppercase. Yes

Description The definition description. Can be mixed case. Yes

Syntax Rules The logic used when a segment reference’s Requirement
property is set to Conditional.

Rules entered in this field are preserved, but the rule is not
enforced at runtime.

Yes
412 Stylus Studio User Guide

EDI Structure Definitions Properties Reference
Segment Reference Properties

Allow
multiple tail
components

For the HL7 dialect, this property allows the last element
(whether composite or atomic) of that segment to repeat an
unlimited number of times (as long as the overall limit of 254
elements in a segment is not exceeded).

Valid values are True and False (the default).

Yes

Rename
XML Node

If present, this value is used instead of the segment name to
form the XML node name. The original name is retained as
an attribute in the XML tag.

Yes

Table 56. Segment Properties

Property Description Editable

Table 57. Segment Reference Properties

Property Description Editable

Type A label that identifies the type of definition. No

Modifier Indicates whether the segment reference is used in your
customized EDI structure. For new segment references, you
can leave this field empty. If you are modifying an existing
segment reference because you want to indicate that it is not
used in your customized EDI structure, set Modifier to Not
Used instead of removing it from the EDI structure.

Valid values for this property are Dependent, Must be used,
Not recommended, Not used, Recommended.

Yes

Requirement Whether the composite reference is Conditional, Facultatif,
Mandatory, or Optional.

Note: If a Modifier is specified, it overrides the Requirement
at runtime.

Yes

Maximum
Use

The number of times the segment reference can appear in the
associated message or group.

Yes

Ordinal The segment reference’s place within the message or group. Yes
Stylus Studio User Guide 413

Converting EDI to XML
Transaction Message Properties
See Message Properties on page 412.

EDI XML Converters Properties Reference
See Chapter 4, XML Converters Properties, in the DataDirect XML Converters User’s
Guide and Reference for complete properties reference information for all DataDirect
XML Converters. information. Documentation for DataDirect XML Converters is
available:

● In the \doc folder for DataDirect XML Converters where you installed Stylus Studio
– \components\XML Converters for .NET\doc, for example

● On the DataDirect Technologies web site:
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Position The position within the associated message or group at which
the segment reference starts. Default value if present, has
been calculated not to interfere with other segments or groups
in the message.

Yes

Rename
XML Node

If present, this value is used instead of the segment reference
name to form the XML node name. The original name is
retained as an attribute in the XML tag.

Yes

Table 57. Segment Reference Properties

Property Description Editable
414 Stylus Studio User Guide

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Chapter 5 Working with XSLT
Stylus Studio provides many features for creating, updating, and applying stylesheets.

This section of the documentation covers the following topics:

● “Getting Started with XSLT” on page 415

● “Tutorial: Understanding How Templates Work” on page 439

● “Working with Stylesheets” on page 452

● “Specifying Extension Functions in Stylesheets” on page 469

● “Working with Templates” on page 474

● “Using Third-Party XSLT Processors” on page 479

● “Validating Result Documents” on page 484

● “Post-processing Result Documents” on page 485

● “Generating Formatting Objects” on page 486

● “Generating Scalable Vector Graphics” on page 492

● “Generating Java Code for XSLT” on page 493

● “Generating C# Code for XSLT” on page 499

● “XSLT Instructions Quick Reference” on page 504

Getting Started with XSLT
This section provides an introduction to using Extensible Stylesheet Language
Transformations (XSLT). It discusses the following topics:

● “What Is XSLT?” on page 416

● “What Is a Stylesheet?” on page 417
Stylus Studio User Guide 415

Working with XSLT
● “What Is a Template?” on page 421

● “How the XSLT Processor Applies a Stylesheet” on page 424

● “Controlling the Contents of the Result Document” on page 429

● “Specifying XSLT Patterns and Expressions” on page 431

● “Frequently Asked Questions About XSLT” on page 433

● “Sources for Additional XSLT Information” on page 434

● “Benefits of Using Stylus Studio” on page 435

What Is XSLT?
The Extensible Stylesheet Language (XSL) is the World Wide Web Consortium's (W3C)
language for manipulating XML data. XSLT is the component of XSL that allows you to
write a stylesheet that you can apply to XML documents. The result of applying a
stylesheet is that the XSLT processor creates a new XML, HTML, or text document based
on the source document. The XSLT processor follows the instructions in the stylesheet.
The instructions can copy, omit, and reorganize data in the source document, as well as
add new data.

XSL is an XML-based language. It was developed by the W3C XSL working group
within the W3C Stylesheets Activity. The W3C activity group has organized its
specification of XSL into three parts:

● XPath specifies the syntax for patterns and expressions used in stylesheets. The XSLT
processor uses an XPath expression to execute a query on the source document to
determine which nodes to operate on. See Writing XPath Expressions on page 729.

● XSLT specifies the syntax for a stylesheet that you apply to one XML document to
create a new XML, HTML, or text document.

● XSL formatting object language is an XML vocabulary for specifying formatting
instructions.

What XSLT Versions Does Stylus Studio Support?

Stylus Studio 2010 and higher supports XSLT 1.0 and XSLT 2.0. XSLT 2.0 was designed
to work with XPath 2.0.

For more information on

● XSLT 1.0, go to http://www.w3.org/TR/xslt

● XSLT 2.0, go to http://www.w3.org/TR/xslt/20
416 Stylus Studio User Guide

http://www.w3.org/TR/xslt20
http://www.w3.org/TR/xslt

Getting Started with XSLT
To learn more about the changes from XSLT 1.0 to XSLT 2.0, go to
http://www.w3.org/TR/xslt20/#changes.

What Is a Stylesheet?
A stylesheet is an XML document that contains instructions for generating a new
document based on information in the source document. This can involve adding,
removing, or rearranging nodes, as well as presenting the nodes in a new way.

This following topics provide more information:

● “Example of a Stylesheet” on page 417

● “About Stylesheet Contents” on page 420

Example of a Stylesheet

When you work with a stylesheet, three documents are involved:

● XML source document

● Result document, which can be HTML, XML, or text

● XSL stylesheet, which is also an XML document

For example, suppose you have the following XML document:

<?xml version="1.0"?>
<bookstore>
 <book>
 <author>W. Shakespeare</author>
 <title>Hamlet</title>
 <published>1997</published>
 <price>2.95</price>
 </book>
 <book>
 <author>W. Shakespeare</author>
 <title>Macbeth</title>
 <published>1989</published>
 <price>9.95</price>
 </book>
 <book>
 <author>D. Alighieri</author>
 <title>The Divine Comedy</title>
 <published>1321</published>
 <price>5.95</price>
 </book>
</bookstore>
Stylus Studio User Guide 417

http://www.w3.org/TR/xslt20/#changes

Working with XSLT
You can use a stylesheet to transform this XML document into an HTML document that
appears as follows in a Web browser:

The Web page in Figure 227 is defined by the following HTML document:

The HTML document contains HTML markup that is not in the source document. In the
HTML document, the data from the source document is not in the same order as it is in
the XML source document. Also, this HTML document does not include some data that
is in the XML source document. Specifically, the HTML document does not include
information about the date of publication (the published elements).

To create this HTML file, the stylesheet contains two templates that provide instructions
for

● Adding a table with a heading row

● Wrapping the contents of the title, author, and price elements in table cells

Figure 227. Example of Transformed XML

<html> <head> <title>Stylesheet Example</title> </head>
<body> <table align="center" cellpadding="5">
<tr><th>Title</th><th>Author</th><th>Price</th></tr>
<tr><td>The Divine Comedy</td><td>D. Alighieri</td>
 <td align="right">5.95</td></tr>
<tr><td>Hamlet</td><td>W. Shakespeare</td>
 <td align="right">2.95</td></tr>
<tr><td>Macbeth</td><td>W. Shakespeare</td>
 <td align="right">9.95</td></tr>
</table> </body> </html>
418 Stylus Studio User Guide

Getting Started with XSLT
Following is a stylesheet that does this.

<?xml version = "1.0">
<xsl:stylesheet xmlns:xsl=

"http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="html"/>
<xsl:template match="/">

<html> <head>
<title>Stylesheet Example</title></head>
<body>
<table align="center" cellpadding="5">
<tr>
<th>Title</th>
<th>Author</th>
<th>Price</th></tr>
<xsl:apply-templates

select="/bookstore/book">
<xsl:sort select="author"/>

</xsl:apply-templates>
</table>
</body>
</html>

</xsl:template>
<xsl:template match="book">

<tr>
<td><xsl:value-of select="title"/></td>
<td><xsl:value-of select="author"/></td>
<td align="right">

<xsl:value-of select="price"/>
</td>
</tr>

</xsl:template>
</xsl:stylesheet>

Namespace declaration for W3C
XSLT namespace.

xsl:output is an XSLT
instruction. In this stylesheet, it
specifies that the result
document will be in HTML

xsl:apply-templates is an
XSLT instruction. For each node
identified by this instruction’s
select attribute, the XSLT
processor goes to another
template in this stylesheet, and
performs the actions defined in
that template. When done, the
processor returns here, and
moves to the next line in this
template. In this template, the
select attribute identifies all
book elements in the source
document.

xsl:sort is an XSLT
instruction. The XSLT processor
processes the book nodes in
alphabetical order by author.

xsl:value-of is an
XSLT instruction. The
XSLT processor
extracts the contents
of the source node
specified in the select
attribute and copies it
into the result
document.

This template matches
book elements in the
source document. That
is, the template’s match
attribute identifies book
elements. In this
stylesheet, the XSLT
processor performs the
actions in this template
three times, once for
each book element in
the source document.

xsl:template
is an XSLT
instruction. It
contains literal
data to be
copied to the
result document
and XSLT
instructions to
be followed by
the XSLT
processor. The
processor
performs these
steps for the
source nodes
identified by the
match attribute
value. In this
template, the
match attribute
identifies the
root node of the
source
document.

xsl:style

sheet is an
XSLT
instruction.
It must be
the root
element in a
stylesheet
in Stylus
Studio.
Stylus Studio User Guide 419

Working with XSLT
About Stylesheet Contents

Stylesheets are XML documents. They contain a combination of

● XSLT elements and attributes. In the previous stylesheet, the XSLT elements are

❍ “xsl:stylesheet” on page 537

❍ “xsl:output” on page 529

❍ “xsl:template” on page 538

❍ “xsl:apply-templates” on page 506

❍ “xsl:sort” on page 535

❍ “xsl:value-of” on page 540

Each XSLT element is an instruction to the XSLT processor. For information about
all XSLT instructions, see “XSLT Instructions Quick Reference” on page 504.

● Non-XSLT elements and attributes. In the previous stylesheet, these include the
HTML elements that create the table.

The root element of a stylesheet must declare a namespace that associates a prefix with
the URI for an XSLT processor. The URI in the namespace declaration in the previous
example identifies the W3C standard XSLT processor. This declaration, shown again
below, instructs the XSLT processor to recognize the XSLT elements and attributes by
their xsl prefix:

In this stylesheet, you must use the xsl prefix for all XSLT instructions.

When you write a stylesheet, you specify the actions you want the XSLT processor to
perform when it processes a particular source node. To do this, you define XSLT
templates, which are described in the next section.

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

Note The Stylus Studio XSLT processor requires the namespace URI to be
http://www.w3.org/1999/XSL/Transform. The prefix can be anything you want. Typically,
it is xsl.
420 Stylus Studio User Guide

Getting Started with XSLT
What Is a Template?
A template defines what the XSLT processor should do when it processes a particular
node in the XML source document. The XSLT processor populates the result document
by instantiating a sequence of templates. Instantiation of a template means that the XSLT
processor

● Copies any literal data from the template to the result document

● Executes the XSLT instructions in the template

The following topics further describe what a template is:

● Contents of a Template on page 421

● Determining Which Template to Instantiate on page 422

● How the select and match Attributes Are Different on page 423

Contents of a Template

The stylesheet example in “Example of a Stylesheet” on page 417 defines the following
templates using the xsl:template instruction:

In the xsl:template tag, the value of the match attribute is an XPath pattern. This pattern
matches (identifies) a node or a set of nodes in the source XML document. The value of
the match attribute is the template rule.

<xsl:template match="/">
 <html><head><title>Stylesheet Example</title></head>
 <body>
 <table align="center" cellpadding="5">
 <tr><th>Title</th><th>Author</th><th>Price</th></tr>
 <xsl:apply-templates select="/bookstore/book">
 <xsl:sort select="author">
 </xsl:apply-templates>
 </table></body></html>
</xsl:template>
<xsl:template match="book">
 <tr><td><xsl:value-of select="title"/></td>
 <td><xsl:value-of select="author"/></td>
 <td align="right"><xsl:value-of select="price"/></td></tr>
</xsl:template>
Stylus Studio User Guide 421

Working with XSLT
The template body defines actions you want the XSLT processor to perform each time it
instantiates this template. It contains

● XSLT instructions you want the XSLT processor to follow; for example, xsl:apply-
templates in the first template, and xsl:value-of in the second template.

● Elements that specify literal output you want the XSLT processor to insert in the
result document. For example:

Determining Which Template to Instantiate

When the XSLT processor applies a stylesheet to an XML document, it begins processing
with the root node of the XML source document. To process the root node, the XSLT
processor searches the stylesheet for a template rule that matches the root node. A
template rule matches the root node when the value of the template’s match attribute is
"/".

If you explicitly defined a template rule that matches the root node, the XSLT processor
finds it and instantiates its template. If the XSLT processor does not find an explicitly
defined template rule that matches the root node, the processor instantiates the default
template that matches the root node. Every stylesheet includes this default template.

In the sample stylesheet on “Example of a Stylesheet” on page 417, the template rule in
the first template matches the root node:

The XSLT processor instantiates this template to start generating the result document. It
copies the first few lines from the template to the result document. Then the XSLT
processor reaches the following XSLT instruction:

When the XSLT processor reaches the select attribute, it creates a list of all source nodes
that match the specified pattern. In this example, the list contains book elements. The
processor then processes each node in the list in turn by instantiating its matching
template. First, the XSLT processor searches for a template that matches the first book
element. The template rule in the second template matches the book element:

<table align="center" cellpadding="5">

Note Whether or not you explicitly define a template rule that matches the root node, the XSLT
processor always instantiates a template that matches the root node.

<xsl:template match="/">

<xsl:apply-templates select="/bookstore/book"/>

<xsl:template match="book">
422 Stylus Studio User Guide

Getting Started with XSLT
After instantiating this template for the first book element, the XSLT processor searches
for a template that matches the second book element. The XSLT processor instantiates the
book template again, and then repeats the process for the third book element. That is, the
XSLT processor searches for a matching template, and instantiates that template when it
is found.

After three instantiations of the book template, the XSLT processor returns to the first
template (the template that matches the root node) and continues with the line after the
xsl:apply-templates instruction.

How the select and match Attributes Are Different

Consider the following instructions:

The xsl:apply-templates instruction uses the select attribute to specify an XPath
expression. The xsl:template instruction uses the match attribute to specify an XPath
pattern.

When the XSLT processor reaches an expression that is the value of a select attribute, it
evaluates the expression relative to the current node. The result of the evaluation is that
the XSLT processor selects a set of nodes to be processed.

When the XSLT processor reaches a pattern that is the value of a match attribute, it
evaluates the pattern alone. The result of the evaluation is that the XSLT processor
determines whether or not the pattern matches the node already selected for processing.

For example, suppose you have the following instruction:

This instruction selects the book elements for processing. For each book element, the
XSLT processor searches for a template that matches the book element. The following
template matches the book element because the pattern identifies all elements that contain
author elements. Because book elements contain author elements, this template is a
match:

This example shows that the expression that the XSLT processor uses to select nodes and
the pattern it uses to match nodes are independent of each other.

<xsl:apply-templates select=expression/>
<xsl:template match=pattern/>

<xsl:apply-templates select="/bookstore/book"/>

<xsl:template match="*[author]">
 <td><xsl:value-of select="author"/></td>
</xsl:template>
Stylus Studio User Guide 423

Working with XSLT
How the XSLT Processor Applies a Stylesheet
When the XSLT processor applies a stylesheet, it starts by automatically selecting the root
node for processing and then searching for a template that matches the root node. The
XSLT processor then iterates through the process of instantiating templates, selecting
nodes in the source document for processing, and matching patterns, until no more
templates need to be instantiated.

This section uses the sample stylesheet on “Example of a Stylesheet” on page 417 to
present this process in more detail in the following topics:

● Instantiating the First Template on page 424

● Selecting Source Nodes to Operate On on page 425

● Controlling the Order of Operation on page 426

● Omitting Source Data from the Result Document on page 427

● When More Than One Template Is a Match on page 428

● When No Templates Match on page 428

Instantiating the First Template

To apply a stylesheet, the XSLT processor searches for a template that matches the source
document root. The XSLT processor then instantiates the matching template and begins
to process it line by line.

The specific processing depends on the contents of the template that matches the root
node. The parts of the template include

● XSLT instructions

● Literal result elements

● Literal result text

It is important to understand that the contents of the XML source document do not dictate
the order of XSLT processing. The XSLT processor performs only those actions that you
specify, and operates on only the source nodes that you select. For example:

<xsl:template match="/">
 <html><head><title>Stylesheet Example</title></head>
 <body>
 <table align="center" cellpadding="5">
 <tr><th>Title</th><th>Author</th><th>Price</th></tr>
 <xsl:apply-templates select="/bookstore/book"/>
 </table></body></html>
</xsl:template>
424 Stylus Studio User Guide

Getting Started with XSLT
This template matches the root node. Consequently, the XSLT processor begins
processing by instantiating this template. This means it processes each part of the
template in the order in which it appears.

In the preceding example, the XSLT processor first copies the first four lines in the
template body directly into the result document. Then it executes the xsl:apply-
templates instruction. When execution of that instruction is complete, the XSLT
processor continues processing this template with the last line in the template body. After
that, processing of this template is complete, and processing of the stylesheet is also
complete.

Selecting Source Nodes to Operate On

Aside from the root node, the XSLT processor operates on only those nodes in the source
document that are selected as the result of executing an XSLT instruction. In a stylesheet,
there are two XSLT instructions that select nodes in the source document for processing:

The value of the select attribute is an XPath expression. To evaluate this expression, the
XSLT processor uses the current source node as the initial context node. This is the node
for which the instruction that contains the select attribute is being executed. For example,
if this instruction is in the template that matches the root node, the root node is the current
source node.

In an xsl:apply-templates or xsl:for-each instruction, the XSLT processor uses the
select expression you specify plus the current source node to select a set of nodes. By
default, the new list of source nodes is processed in document order. However, you can
use the xsl:sort instruction to specify that the selected nodes are to be processed in a
different order. See “xsl:sort” on page 535.

When the XSLT processor reaches an xsl:apply-templates instruction, the XSLT
processor processes each node in the list of selected nodes by searching for its matching
template and, if a matching template is found, instantiating it. In other words, the XSLT
processor instantiates a template for each node if a matching template is found. The
matching template might not be the same template for all selected nodes. If the XSLT
processor does not find a matching template, it continues to the next selected node.

In an xsl:for-each instruction, the XSLT processor instantiates the embedded template
body once for each node in the list of selected nodes.

<xsl:apply-templates select = "expression"/>
<xsl:for-each select ="expression">
 template_body
</xsl:for-each>
Stylus Studio User Guide 425

Working with XSLT
Controlling the Order of Operation

Typically, the template that matches the root node includes an xsl:apply-templates
instruction. When the XSLT processor executes the xsl:apply-templates instruction, it
performs the following steps:

1. The processor evaluates the expression specified for the xsl:apply-templates select
attribute to create a list of the source nodes identified by the expression.

2. For each node in the list, the XSLT processor instantiates the best matching template.
(Template properties such as priority and mode allow multiple templates to match the
same node.)

3. The processor returns to the template that contains the xsl:apply-templates
instruction and continues processing that template at the next line.

It is important to note that in step 2, the matching template might itself contain one or
more xsl:apply-templates instructions. As part of the instantiation of the matching
template, the XSLT processor searches for a template that matches the nodes identified by
the new xsl:apply-templates instruction. In this way, the XSLT processor can descend
many levels to complete processing of the first selected node in the initial xsl:apply-
templates instruction. The xsl:apply-templates instruction allows you to access any
elements in the source document in any order.

Example

The sample template on “Instantiating the First Template” on page 424 contains the
following xsl:apply-templates instruction:

The select attribute specifies "/bookstore/book" as the expression. This selects the set of
book elements in the source document as the nodes you want to process. For each selected
node, the XSLT processor performs the following steps:

1. The XSLT processor searches the stylesheet for a template that matches "book".

2. When the XSLT processor finds the template that matches the book element, it
instantiates it. The following template matches the book elements selected by the
xsl:apply-templates instruction:

<xsl:apply-templates select="/bookstore/book"/>

 <xsl:template match="book">
 <tr><td><xsl:value-of select="title"/></td>
 <td><xsl:value-of select="author"/></td>
 <td align="right"><xsl:value-of select="price"/></td></tr>
 </xsl:template>
426 Stylus Studio User Guide

Getting Started with XSLT
3. The XSLT processor creates an HTML table row and executes the xsl:value-of
instructions. These instructions insert the values for the matching book’s title,
author, and price elements into the table.

The XSLT processor repeats this process for each book node. In other words, it instantiates
this template three times, once for each book element in the source document.

It is important to note that the XSLT processor does not search for a matching template
once and then instantiate that matching template for each selected element. Rather, the
XSLT processor performs the search for a matching template for each node selected for
processing. For each node selected for processing, the XSLT processor

● Searches for and chooses the best matching template

● Instantiates the chosen template

Another way to control the order of operation is to specify the xsl:if, xsl:choose, and
xsl:when instructions. See “XSLT Instructions Quick Reference” on page 504.

Omitting Source Data from the Result Document

The XSLT processor operates on only those nodes that you specify. If a node in your XML
source document is never referenced in a stylesheet, the XSLT processor never does
anything with it.

For example, the sample source XML document on “Example of a Stylesheet” on
page 417 includes more than the title, author, and price for each book. It also includes the
year of publication:

However, the template that matches the book element does not specify any processing for
the published element. Consequently, the published elements do not appear in the result
document.

<book>
 <author>W. Shakespeare</author>
 <title>Hamlet</title>
 <published>1997</published>
 <price>2.95</price>
</book>
Stylus Studio User Guide 427

Working with XSLT
When More Than One Template Is a Match

Sometimes, more than one template matches the node selected by an xsl:apply-
templates instruction. In this situation, the XSLT processor chooses the best match.
Which match is the best match depends on the template’s priority, mode, and order in the
stylesheet. Priority, mode, and order are template properties that you can set.

● Priority – Priority is a numeric value, such as 1, 10, or 99. The higher the numeric
value, the higher the template’s priority. Priority is a useful way to distinguish the
relative importance of two templates.

● Mode – A template’s mode allows you to define the context in which a given template
should be performed. To use the mode attribute, you specify it (mode=”xyz”, for
example) in both the xsl:template and xsl:apply-template instructions. Once you
have specified a mode, the processor applies a template only if the modes match.

● Order – If the XSLT processor cannot distinguish the best match among two or more
templates, it uses the last matching template that appears in the stylesheet. Thus, you
can enforce priority indirectly by the order in which you define the templates within
a stylesheet.

For information on specifying these attributes, see “xsl:template” on page 538 and
“xsl:apply-templates” on page 506.

When No Templates Match

When the XSLT processor cannot find a template that matches a selected node, it uses
built-in templates. Every stylesheet includes built-in templates whether or not you
explicitly define them.

The XSLT processor supports these built-in templates:

● The following template matches the root node and element nodes and selects all
attributes and child nodes for further processing:

● The following template matches text and attribute nodes. This template copies the
value of the text or attribute node to the result document:

 <xsl:template match="*|/">
 <xsl:apply-templates />
 </xsl:template>

 <xsl:template match="@*|text()">
 <xsl:value-of select="." />
 </xsl:template>
428 Stylus Studio User Guide

Getting Started with XSLT
Although Stylus Studio does not explicitly insert these templates in stylesheets you create
with Stylus Studio, they are always present. That is, as specified by the W3C XSLT
Recommendation, these templates are always defined, whether or not they are explicitly
defined. See “Using Stylus Studio Default Templates” on page 476.

Controlling the Contents of the Result Document
This section highlights some of the XSLT instructions you can specify in a stylesheet to
control the contents of the result document. This section discusses the following topics:

● Specifying Result Formatting on page 429

● Creating New Nodes in the Result Document on page 430

● Controlling White Space in the Result on page 430

Specifying Result Formatting

In a stylesheet, you can specify that the XSLT processor should format the result as XML,
HTML, or text. Table 58 describes the XSLT processor output for each alternative:

See “xsl:output” on page 529 for information about specifying formatting in a stylesheet.

Table 58. Output Based on Result Format

Result Format XSLT Processor Output

XML Well-formed XML.

HTML Recognized HTML tags and attributes that are formatted
according to the HTML 4.0 specification. Most browsers
should be able to correctly interpret the result. It is your
responsibility to ensure that the result is well-formed
HTML. For example,
 elements should not have child
nodes.

Text All text nodes in the result in document order.
Stylus Studio User Guide 429

Working with XSLT
Creating New Nodes in the Result Document

The simplest way to create new nodes in a result document is to specify them as literal
result elements or literal result text in a stylesheet template. For example:

This template creates many nodes in the result document that were not in the source
document.

You can also use XSLT instructions to create new nodes. Typically, you use XSLT
instructions when you need to compute the name or value of the node. You can find
information about using the following instructions in the “XSLT Instructions Quick
Reference” on page 504:

● “xsl:element” on page 517

● “xsl:attribute” on page 507

● “xsl:comment” on page 514

● “xsl:processing-instruction” on page 533

● “xsl:text” on page 539

You can use the xsl:value-of on page 540 instruction to provide the contents for a new
node. You can also create a new node by copying the current node from the source
document to the result document. The current node is the node for which the XSLT
processor instantiates a template. See “xsl:copy” on page 514.

Controlling White Space in the Result

For readability, XML documents (both source documents and stylesheets) often include
extra white space. White space in XML documents includes spaces, tabs, and new-line
characters. Because this white space is for readability, it receives special treatment.

Text nodes that contain only white space are

● Preserved as normal text nodes in a source document

● Ignored in a stylesheet, unless the parent node is xsl:text

<xsl:template match="/">
 <html><head></head><body><table>
 <tr><th>Title</th><th>Author</th><th>Price</th></tr>
 ...
 </table></body></html>
</xsl-template>
430 Stylus Studio User Guide

Getting Started with XSLT
Significant white space

Stylus Studio recommends that you specify xsl:text in a stylesheet whenever you want
to create significant white space in the result. Significant white space is white space that
you want to appear in the result in exactly the way that you specify.

To obtain white space for readability during output formatting, specify the xsl:output
instruction with the indent attribute. Default values are yes for HTML, and no for XML.
With Stylus Studio, you can select the Indent check box on the Params/Other tab to
display indented output instead of one long string. Note that the value of the indent
attribute, if specified in the stylesheet, has precedence over the Indent option.

Specifying XSLT Patterns and Expressions
In a stylesheet’s xsl:template, xsl:apply-templates, xsl:for-each, and xsl:value-of
instructions, you specify patterns or expressions as the values for the match or select
attributes. These patterns are XPath expressions. You specify patterns or expressions to

● Define which nodes a template rule matches.

● Select lists of source nodes to process.

● Extract source node contents to generate result nodes.

Depending on the context, an XSLT pattern or expression can mean one of the following:

● Does this template match the current node?

● Given the current node, select all matching source nodes.

● Given the current node, select the first matching source node.

● Given the current node, do any source nodes match?

Patterns or expressions can match or select any type of node. The XSLT processor can
match a pattern to a node based on the existence of the node, the name of the node, or the
value of the node. You can combine patterns and expressions with Boolean operators. For
detailed information about patterns and expressions, see “Writing XPath Expressions” on
page 729.

Examples of Patterns and Expressions

Following are examples of patterns and expressions you can specify in stylesheet
instructions:

xsl:template match = "book/price"
Stylus Studio User Guide 431

Working with XSLT
Matches any price element that is a child of a book element.

Matches any award element that is a descendant of a book element.

Matches any book element that has a child that is a price element.

Matches any book element that has a price attribute.

Matches any book element that has a child that is a price element whose value is 14.

Matches any book element that has a price attribute whose value is 14.

Selects all book elements that are children of the current element.

Selects all price elements that are children of book elements that are children of the
current element.

Selects all book elements in the source document.

Selects all book elements that are descendants of the current element.

xsl:template match = "book//award"

xsl:template match = "book [price]"

xsl:template match = "book [@price]"

xsl:template match = "book [price=14]"

xsl:template match = "book [@price=14]"

xsl:apply-templates select = "book"

xsl:apply-templates select = "book/price"

xsl:apply-templates select = "//book"

xsl:apply-templates select = ".//book"
432 Stylus Studio User Guide

Getting Started with XSLT
Frequently Asked Questions About XSLT
How can I use quoted strings inside an attribute value?

If you need to include a quoted string inside an attribute value (in a select expression, for
example), you can use the single quotation mark character (') in the value of the attribute.
For example:

How do I choose when to use xsl:for-each and when to use xsl:apply-templates?

The way xsl:for-each and xsl:apply-templates select nodes for processing is identical.
The way these instructions find the templates to process the selected nodes is different.

With xsl:for-each, the template to use is fixed. It is the template that is contained in the
body of the xsl:for-each element. With xsl:apply-templates, the XSLT processor finds
the template to be used for each selected node by matching that node against the template
rules in the stylesheet.

Finding a template by matching requires more time than using the contained template.
However, matching allows for more flexibility. Also, matching lets you avoid repeating
templates that might be used in more than one place in a stylesheet.

Named templates are another option for invoking a template from more than one place in
a stylesheet, when you know which template you want. It is a common mistake to use (and
bear the overhead of) matching when it is not needed. But it allows you to do powerful
things. Matching can take into account the following:

● Pattern matching on the node

● Precedence of templates based on stylesheet importance

● Template priority

● Template ordering

Most complex document-formatting stylesheets use xsl:apply-templates extensively.

select = "book[title = 'Trenton Today']".

TIp Use the XSLT Profiler to help you understand where the processor is spending most of
its time. See “Profiling XSLT Stylesheets” on page 596.

XSLT Profiling is available only in Stylus Studio XML Enterprise Suite.
Stylus Studio User Guide 433

Working with XSLT
How can I insert JavaScript in my result document?

If you want your result document to contain JavaScript commands, you must properly
escape the JavaScript code. Use the following format in your XSLT template:

However, this method does not work when your JavaScript section contains a block of
XSLT code. In this case, enclosing the JavaScript in a CDATA tag causes the XSLT
processor to ignore not just the JavaScript but also the markup code within that tag.

In this situation, enclose the entity reference within an <xsl:text> tag with disable-
output-escaping set to "yes". For example:

You can use this wherever an entity reference needs to be handled specifically, as opposed
to being handled as part of an entire JavaScript section.

My browser does not understand the tag
. How can I output just
?

Although your XSLT stylesheet must contain valid XML (meaning all tags must be either
empty or have a closing element), you can instruct the XSLT processor to generate output
compliant with HTML. See “Deleting Templates” on page 479.

Alternative: To ensure that your stylesheet always generates correct HTML, specify the
xsl:output instruction with the method attribute set to html. See “xsl:output” on page 529.

Sources for Additional XSLT Information
For additional information about XSL and XSLT, visit the following Web sites:

● http://www.w3.org/Style/XSL/

W3C Extensible Stylesheet Language specification
● http://www.w3.org/TR/xslt

W3C XSLT Recommendation

<script>
 <xsl:comment>
 <![CDATA[<your JavaScript here>]]>
 </xsl:comment>
</script>

if(length <xsl:text disable-output-escaping="yes">></xsl:text> 1)
434 Stylus Studio User Guide

http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xslt

Getting Started with XSLT
Benefits of Using Stylus Studio
Now that you have an understanding of what a stylesheet can do, you can appreciate the
benefits of using Stylus Studio to create them. Stylus Studio is the first integrated
environment for creating, managing, and maintaining an XSL-enabled Web presence. By
combining the tools needed to create XSLT stylesheets in a visual editing environment,
Stylus Studio speeds initial development and eases maintenance. Key elements of Stylus
Studio’s XSLT features include

● Structural Data View on page 435

● Sophisticated Editing Environment on page 437

● XSLT and Java Debugging Features on page 437

● Integrated XML Parser/XSLT Processor on page 439

Structural Data View

Stylus Studio graphically displays the structure, or schema, of the XML data to which you
want to apply a stylesheet.

Figure 228. Tree View Lets You Easily Edit XSLT
Stylus Studio User Guide 435

Working with XSLT
Using this tree view, you can apply formatting to your XML – double-clicking a node in
the tree automatically adds an xsl:template match= instruction for that node, for example.
Similarly, when you drag a node into the XSLT source, Stylus Studio displays a pop-up
menu that allows you to easily insert an XSLT instruction.

Finally, you can also use the tree to move quickly among different XSLT templates –
clicking a node in the tree places the cursor at the corresponding template in the XSLT
source.

Figure 229. Stylus Studio Displays XSLT Instructions for Quick Editing
436 Stylus Studio User Guide

Getting Started with XSLT
Sophisticated Editing Environment

The Stylus Studio editor allows you to edit both the XML source document and the XSLT
stylesheet. There is no need to memorize complicated syntax. As you type, Stylus Studio
Sense:X technology automatically suggests XSLT or HTML tag and attribute names, and
ensures that all XML is well formed.

Sense:X also adapts to your document by suggesting more frequently used tags first.
Valid XSLT and HTML tag names are color coded to improve readability.

XSLT and Java Debugging Features

Complex stylesheets require robust debugging features. With Stylus Studio, you can do
the following:

● Set breakpoints in your stylesheet.

● Monitor the value of XSLT variables.

● Trace the sequence of XSLT instructions that created HTML output. With a click
anywhere in the rendered HTML page, Stylus Studio Visual Backmapping

Figure 230. Sense:X Speeds Coding, Reduces Errors
Stylus Studio User Guide 437

Working with XSLT
technology displays the XSLT instructions responsible for creating that portion of
HTML output.

Also, you can click in the stylesheet and the backmapping feature highlights the text
generated by that template.

● Use the XSLT Profiling report to review performance metrics to help troubleshoot
and tune your XSLT stylesheets.

Figure 231. Click to HTML Output to Backmap to XSLT Source

XSLT Profiling is available only in Stylus Studio XML Professional Suite.
438 Stylus Studio User Guide

Tutorial: Understanding How Templates Work
Integrated XML Parser/XSLT Processor

Stylus Studio integrates an XML parser with an XSLT processor. This allows Stylus
Studio to instantly show the output of your stylesheet. Each time you apply a stylesheet
to an XML document, Stylus Studio detects and flags any errors in your stylesheet or
XML data.

Stylus Studio’s default XSLT processor is compliant with the W3C XSLT
Recommendation. You can also use custom processors of your own.

Tutorial: Understanding How Templates Work
When Stylus Studio creates a new stylesheet, it contains one template, which matches the
root node. However, this template is empty. If you apply the new stylesheet as is, the result
document has no contents. To generate a result document with contents, you need to add
instructions to the template that matches the root node.

All stylesheets have two default templates that do not appear in the stylesheet itself. It is
important for you to understand how the default templates work so that you can

● Add instructions to the template that matches the root node.

● Define additional templates to operate on the elements in your document.

● Specify HTML markup in templates.

When you can do this, you can write a stylesheet that generates a dynamic Web page that
displays your information.

This tutorial provides step-by-step instructions for defining a stylesheet that generates a
dynamic Web page from an XML document. The tutorial shows how the default templates
work, and it provides instructions for defining templates that instantiate the default
templates. It also provides instructions for adding HTML markup to the stylesheet. The
result is a dynamic Web page that displays the particular information you choose.
Stylus Studio User Guide 439

Working with XSLT
Each of the following topics contains instructions for defining the stylesheet. You should
perform the steps in each topic before you move on to the next topic. After the first topic,
some steps depend on actions you performed in a previous topic. This section organizes
the process as follows:

● Creating a New Sample Stylesheet on page 441

● Understanding How the Default Templates Work on page 445

● Editing the Template That Matches the Root Node on page 449

● Creating a Template That Matches the book Element on page 450

● Creating a Template That Matches the author Element on page 451

For a simpler tutorial that shows you how to define a stylesheet that generates a dynamic
Web page from a static HTML document, see “Working with Stylesheets – Getting
Started” on page 70.

This tutorial duplicates some of the information in subsequent sections. For complete
information, see the following topics:

● Working with Stylesheets on page 452

● Working with Templates on page 474
440 Stylus Studio User Guide

Tutorial: Understanding How Templates Work
Creating a New Sample Stylesheet

◆ To create a stylesheet to use in this tutorial, follow these instructions:

1. From the Stylus Studio menu bar, select File > New > XSLT Stylesheet.

Stylus Studio displays a new untitled stylesheet and the Scenario Properties dialog
box, and selects the text in the Scenario Name field.

2. In the Scenario Properties dialog box, in the Scenario Name field, type
DynamicBookstoreScenario.

3. Click Browse to the right of the Source XML URL: field.

Stylus Studio displays the Open dialog box.

4. Navigate to the Stylus Studio examples\query directory.

5. Double-click bookstore.xml. This is the XML document that the new stylesheet will
operate on.

6. In the Scenario Properties dialog box, click OK.

Figure 232. Scenarios Let You Easily Test Different XSLT/XML Pairs
Stylus Studio User Guide 441

Working with XSLT
This creates a scenario with the name DynamicBookstoreScenario. This scenario
associates the bookstore.xml document with the new stylesheet. If you want to apply
the new stylesheet to other XML documents, you must create a new scenario or
change the name of the XML document in this scenario.

Stylus Studio displays the new stylesheet in the XSLT editor. A tree representation of
the bookstore.xml document appears to the right.

The default stylesheet that Stylus Studio creates contains one template, which
matches the root node.

Figure 233. The XSLT Editor Shows XSLT Source on Left, Tree on Right
442 Stylus Studio User Guide

Tutorial: Understanding How Templates Work
7. In the XSLT editor tool bar, click Preview Result .

Stylus Studio displays the Save As dialog box so you can save the XSLT you are
composing.

8. In the URL: field, type myStylesheet.xsl and click Save.

Stylus Studio applies the new stylesheet to bookstore.xml and displays the result in
the Preview window. The result, displayed in the Preview window, has no contents
because the template that matches the root node is empty.

9. In the XSLT editor pane, click in the empty line that follows <xsl:template
match="/"> .

10. Type <x, which displays the Sense:X completion list.

11. In the completion list, scroll down and click xsl:apply-templates.

12. Type />.

13. In the XSLT editor tool bar, click Preview Result .

Stylus Studio displays the Save As dialog box.

14. Enter a name for the file and click Save.
Stylus Studio User Guide 443

Working with XSLT
This time, the Preview window contains all text in bookstore.xml and none of the
markup. This is because the xsl:apply-templates instruction instantiates the default
templates.

To create a Web page, you need to add HTML markup that displays the information the
way you want. To make it easier to do that, you need to understand how the text is already
being copied to the result document.

Figure 234. Default Templates Contain No Formatting Instructions
444 Stylus Studio User Guide

Tutorial: Understanding How Templates Work
Understanding How the Default Templates Work
This topic is part of a sequence that starts with “Creating a New Sample Stylesheet” on
page 441.

After you complete the steps in the previous section, you can see the bookstore.xsl
stylesheet in the XSLT editor pane. It has the following contents:

The stylesheet explicitly contains one template, which matches the root node. When the
XSLT processor applies a stylesheet, the first thing it does is search for a template that
matches the root node. If there is no template that explicitly matches the root node, the
XSLT processor uses a built-in template.

There are two built-in templates, also called default templates. Every XSLT stylesheet
contains these templates whether or not they are explicitly specified. This is part of the
W3C XSLT Recommendation.

This section discusses the following topics:

● Instantiating the Template That Matches the Root Node on page 446

● Instantiating the Root/Element Default Template on page 446

● Instantiating the Text/Attribute Default Template on page 447

● Illustration of Template Instantiations on page 448

<?xml version='1.0' ?>
<xsl:stylesheet version="1.0"xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <xsl:apply-templates/>
 </xsl:template>
</xsl:stylesheet>
Stylus Studio User Guide 445

Working with XSLT
Instantiating the Template That Matches the Root Node

The XSLT processor instantiates the template that matches the root node. The template
that matches the root node contains only the xsl:apply-templates instruction. In this
template, the xsl:apply-templates instruction does not specify a select attribute.
Consequently, the XSLT processor operates on the children of the node for which the root
template was instantiated. In the bookstore.xml document, the root node has three
children:

● XML declaration

● Comment

● bookstore document element

Unless you specify otherwise, the XSLT processor operates on the children in document
order. The first child is a processing instruction (the XML declaration). The XSLT
processor ignores processing instructions.

The second child is the comment node, and the XSLT processor also ignores comment
nodes.

The third child is the bookstore document element. The XSLT processor searches for a
template that matches bookstore. Because there is no template that explicitly matches the
bookstore element, the XSLT processor instantiates a built-in template that is not
explicitly in the stylesheet.

Instantiating the Root/Element Default Template

One default template matches *|/. This means it matches every element in the source
document, and it also matches the root node. This is the root/element default template.

Figure 235. Source XML Document from DynamicBookstoreScenario
446 Stylus Studio User Guide

Tutorial: Understanding How Templates Work
The root/element default template contains only the xsl:apply-templates instruction.
Like the template that matches the root node, the xsl:apply-templates instruction in the
root/element default template does not specify a select attribute. That is, it does not
identify the set of nodes for which templates should be applied. Consequently, the XSLT
processor operates on the children of the node for which the root/element template was
instantiated.

In this case, the root/element default template was instantiated for the bookstore element.
The children of the bookstore element include four book elements, a magazine element,
and a book element associated with the my namespace.

The XSLT processor operates on these children in document order. First, it searches for
a template that matches book. Because there is no template that explicitly matches the book
element, the XSLT processor instantiates the root/element default template for the first
book element.

Again, by default, the xsl:apply-templates instruction in the root/element default
template operates on the children of the current node in document order. That is, it
operates on the children of the first book element.

In the first book element, the first child is the title element. The XSLT processor searches
for a template that matches the title element. Because there is no template that explicitly
matches the title element, the XSLT processor instantiates the root/element default
template again.

At this point, the XSLT processor has initiated instantiation of the root template once, and
the root/element default template several times:

It is important to understand that these instantiations are not yet complete. Each
subsequent instantiation of the root/element default template is inside the previous
instantiations.

Instantiating the Text/Attribute Default Template

When the XSLT processor instantiates the root/element default template for the title
element, the xsl:apply-templates instruction operates on the children of the title
element. The title element has one child, which is a text node. The XSLT processor
searches for a template that matches this text node. The second default template in the
stylesheet matches this text node. This template matches text()|@*, meaning that it

Instantiate root template for root node.
 Instantiate root/element template for bookstore element.
 Instantiate root/element template for first book element.
 Instantiate root/element template for title in first book element.
Stylus Studio User Guide 447

Working with XSLT
matches every text node and every attribute in the source document. This is the
text/attribute template.

The XSLT processor instantiates the text/attribute default template for the title
element’s text node. This template contains only the xsl:value-of instruction. Its select
attribute identifies the current node, which is the node for which the template was
instantiated. This template copies the text contained in the current text node to the result
document.

Now the result document contains the following text:

The XSLT processor is finished with the title element, and it next processes the author
element in the first book element. There is no template that explicitly matches author, so
the XSLT processor instantiates the root/element default template. The first child of the
author element is the first-name element, and again, there is no template that explicitly
matches the first-name element. The XSLT processor instantiates the root/element
default template for the first-name element. The only child of the first-name element is
a text node. The XSLT processor instantiates the text/attribute default template for this
text node, and this template copies the text to the result document. Now the result
document contains the following text:

The XSLT processor is finished with the first-name element, and it next processes the
last-name element, which is the second child of the author element.

Illustration of Template Instantiations

As you can see from the description in the previous section, the XSLT processor iterates
through the process of searching for a matching template, instantiating one of the default
templates, and operating on the children of the node for which the template was
instantiated. The following figure shows the template instantiations through the second

Seven Years in Trenton

Seven Years in Trenton Joe
448 Stylus Studio User Guide

Tutorial: Understanding How Templates Work
book element. In the figure, each bracket encloses the instantiations that together compose
a complete instantiation for a particular element.

Editing the Template That Matches the Root Node
This topic is part of a sequence that starts with “Creating a New Sample Stylesheet” on
page 441.

Begin writing your stylesheet by adding instructions to the template that explicitly
matches the root node in your source document:

In the XSLT editor, edit the contents of the root template so that it contains only the
following contents. As you type, Stylus Studio displays a pop-up menu that lists possible

Instantiate root template for root node.

Instantiate root/element template for bookstore element.
Instantiate root/element template for first book element.

Instantiate root/element template for title element.
Instantiate text/attribute template for text node.

Instantiate root/element template for author element.
Instantiate root/element template for first-name element.

Instantiate text/attribute template for text node.
Instantiate root/element template for last-name element.

Instantiate text/attribute template for text node.
Instantiate root/element template for award element.

Instantiate text/attribute template for text node.
Instantiate root/element template for price element.

Instantiate text/attribute template for text node.

Instantiate root/element template for second book element.
Instantiate root/element template for title element.

Instantiate text/attribute template for text node.
Instantiate root/element template for author element.

Instantiate root/element template for first-name element.
Instantiate text/attribute template for text node.

Instantiate root/element template for last-name element.
Instantiate text/attribute template for text node.

Instantiate root/element template for publication element.
Instantiate text/attribute template for text node.
Instantiate root/element template for first-name element.

Instantiate text/attribute template for text node.
Instantiate root/element template for last-name element.

Instantiate text/attribute template for text node.
Instantiate root/element template for price element.

Instantiate text/attribute template for text node.
Instantiate root/element template for price element.

Instantiate text/attribute template for text node.

Instantiate root/element template for magazine element.

And so on.
Stylus Studio User Guide 449

Working with XSLT
instructions. You can scroll the list and double-click the entry you want, or you can
continue typing. If you want, you can copy the text from here and paste it into the
Templates view.

Ensure that you do one of the following:

● Remove the xsl:apply-templates instruction that you inserted earlier.

● Edit the xsl:apply-templates instruction to include the select attribute as shown
above, and place it in the correct location.

Creating a Template That Matches the book Element
This topic is part of a sequence that starts with “Creating a New Sample Stylesheet” on
page 441.

The template that matches the root node includes an xsl:apply-templates instruction that
selects book nodes for processing.

◆ To define the template that matches the book element:

1. In the XSLT editor source document tree pane, expand the bookstore element.

2. Double-click the book element.

Stylus Studio creates a template that matches the book element. The new template is
near the end of the stylesheet and has the form <xsl:template match=”book”>. In the
tree pane, the yellow check next to the book element indicates that there is a template
that matches this element.

<html>
<body>
<h3><center>Books in Stock</center></h3>
<table align="center" cellpadding="5">
 <tr>
 <th>Title</th>
 <th>Author</th>
 <th>Price</th>
 </tr>
<xsl:apply-templates select="bookstore/book"/>
</table>
</body>
</html>
450 Stylus Studio User Guide

Tutorial: Understanding How Templates Work
3. In the XSLT editor pane, add the following instructions to the new template’s body:

Press F5 to see the results. The result document looks like that shown in Figure 236:

In the book template, the xsl:apply-templates instructions cause the XSLT processor to
instantiate the default templates. For the title and price elements, this works correctly
because those elements include only a text node. But for the author element, the use of
the default templates copies too much information to the result table. You need to
explicitly define a template for the author element.

Creating a Template That Matches the author Element
This topic is part of a sequence that starts with “Creating a New Sample Stylesheet” on
page 441.

◆ To define a template that matches the author element:

1. In the XSLT editor source document tree pane, expand the book element.

2. Double-click the author element.

Stylus Studio creates a template that matches the author element, and places it near
the end of the stylesheet.

<tr>
 <td><xsl:apply-templates select="title"/></td>
 <td><xsl:apply-templates select="author"/></td>
 <td align="right">
 <xsl:apply-templates select="price"/>
 </td>
</tr>

Figure 236. Result of Applying XSLT
Stylus Studio User Guide 451

Working with XSLT
3. In the XSLT editor pane view, edit the template body so that it contains only the
following contents.

If you do not include the nonbreaking space entity, the first name and the last name
have no space between them. Press F5 to see the results of this change, as shown in
Figure 237.

4. Save the stylesheet by clicking Save .

5. Close the stylesheet by clicking File > Close on the Stylus Studio menu bar.

Working with Stylesheets
This section provides instructions for performing the various tasks involving stylesheets.
See also “Working with Templates” on page 474. This section covers the following
topics:

● About the XSLT Editor on page 453

● Creating Stylesheets on page 454

● Creating a Stylesheet from HTML on page 454

● Specifying Stylesheet Parameters and Options on page 455

● Applying Stylesheets on page 458

● Applying a Stylesheet to Multiple Documents on page 464

● About Stylesheet Contents on page 465

<xsl:value-of select="first-name"/>

<xsl:value-of select="last-name"/>

Figure 237. Result of XSLT with an Author Template
452 Stylus Studio User Guide

Working with Stylesheets
● Updating Stylesheets on page 466

● Saving Stylesheets on page 468

Also, Stylus Studio provides a number of tools that help you debug stylesheets. See
“Debugging Stylesheets” on page 589.

About the XSLT Editor
The XSLT editor, which displays a stylesheet when you open it, has four tabs at the
bottom.

The XSLT Source, Mapper, and Params/Other tabs are always available.

Editing XSLT as XML

If you want, you can edit an XSLT file as an XML file. To do this, open the stylesheet in
the XML editor instead of in the XSLT editor. In the Open dialog box, click the down

Figure 238. XSLT Editor
Stylus Studio User Guide 453

Working with XSLT
arrow in the Open button. Click XML Editor in the drop-down menu. A document can be
open in the XML editor and in the XSLT editor at the same time.

Creating Stylesheets

◆ To create a stylesheet:

1. From the Stylus Studio menu bar, select File > New > XSLT Stylesheet.

Stylus Studio displays the Scenario Properties dialog box.

2. In the Scenario Name: field, type a name for the association between the new
stylesheet and a particular XML source document. You might want to use the
convention of specifying the name you want your result document to have. The result
document is the document that will contain the result of applying the stylesheet you
are about to create.

3. In the Source XML URL: field, type the name of an XML document or click Browse
to navigate to a document. Select a document you want to apply the new stylesheet
to. You are not limited to applying the new stylesheet to only this XML document.
You can create other scenarios later and specify other XML documents to which you
want to apply the same stylesheet.

4. Click OK. Stylus Studio displays an untitled stylesheet window. The default text in
the new stylesheet appears in the left pane. The schema for the XML source document
you specified in the scenario properties appears in the right pane.

5. To give the stylesheet a name, select File > Save.

6. Navigate to where you want to save the stylesheet.

7. In the URL: field, type the new stylesheet’s name.

8. Click Save.

Creating a Stylesheet from HTML
You can create an XSLT stylesheet from an HTML file using the HTML to XSLT
document wizard.

Tip Stylus Studio also has a document wizard that converts HTML to XML. See Creating
XML from HTML on page 178.
454 Stylus Studio User Guide

Working with Stylesheets
◆ To run the HTML to XSLT document wizard:

1. Select File > Document Wizards from the menu.

The Document Wizards dialog box appears.

2. Click the XSLT Editor tab.

3. Double-click HTML to XSLT (or select the HTML to XSLT icon and click OK).

The HTML to XML dialog box appears.

4. Enter the name of the HTML file you want to convert to XSLT in the Choose HTML
File to Convert to XSLT field.

5. Click OK.

Stylus Studio opens the converted HTML file as an untitled XSLT file in the XSLT
Editor.

Specifying Stylesheet Parameters and Options
You can specify values for stylesheet parameters in the Parameter Values tab of the
Scenario Properties dialog box.

◆ To specify XSLT stylesheet parameters:

1. Open the stylesheet for which you want to specify parameter values.

2. In the XSLT editor tool bar, click Browse .

Stylus Studio displays the Scenario Properties dialog box.

Figure 239. HTML to XML Dialog Box
Stylus Studio User Guide 455

Working with XSLT
3. Click the Parameter Values tab.

Stylus Studio displays a list of the parameters defined in your stylesheet, if any, with
any default values.

4. Click the third field in the line that displays the parameter for which you want to
define a value – Parameter value to be used when processing.

5. Type the value of the parameter.

6. If you want Stylus Studio to pass this paramater as an XPath expression instead of as
a string, click the fourth field, which is a check box.

The default is that Stylus Studio passes a parameter as a string.

7. Click OK.

Figure 240. XSLT Scenario Parameter Values Tab
456 Stylus Studio User Guide

Working with Stylesheets
◆ To view stylesheet parameters and and specify stylesheet options, click the
Params/Other tab in the stylesheet window.

In the XSLT Encoding field, you can specify the encoding you want Stylus Studio to use
when you save the stylesheet.

To display a list of the encodings supported by Stylus Studio, click the down arrow in the
XSLT Encoding field.

In the Output method field, you can specify the type of data you want the stylesheet to
generate. Choices include
● xml

● html — Stylus Studio generates HTML that is compliant with HTML 4.0. This is
equivalent to inserting <xsl:output method="html"/> in a stylesheet.

● text

● unspecified

If you do not specify an xsl:output instruction in your stylesheet, Stylus Studio uses the
default output method you specify here. If you do specify an xsl:output instruction in
your stylesheet, that instruction overrides the default you specify here.

When the result of applying a stylesheet is XHTML, specify xml as the Output method.
Note, however, that Stylus Studio displays rendered HTML in the Preview in Browser
window.

In the Params/Other tab, in the Output Encoding field, you can specify the encoding you
want Stylus Studio to use in the document that is the result of applying the stylesheet.
When you apply a stylesheet, Stylus Studio uses this encoding for the output document.
You can change the encoding by changing the setting in the Params/Other tab or in the

Figure 241. XSLT Parameters Tab
Stylus Studio User Guide 457

Working with XSLT
initial processing instruction in the stylesheet. When you change the setting in one of
these places, Stylus Studio automatically changes it in the other. They are always the
same. In the Output Encoding field, click the down arrow to display a list of the supported
encodings.

If you want Stylus Studio to insert indents in the result document, select Indent.

Applying Stylesheets
In order to apply a stylesheet to an XML document, the stylesheet must be associated with
a scenario. See

● “Creating a Scenario” on page 461

● “Cloning Scenarios” on page 463

● “Saving Scenario Meta-Information” on page 463

If your stylesheet is associated with a scenario, there are two ways to apply it:

● Click Preview Result , which appears in the top tool bar of the XSLT Source tab
of your stylesheet. This ignores any breakpoints that are set.

● Press F5. Stylus Studio suspends processing if it reaches a breakpoint.

The following topics provide more information about how to apply stylesheets:

● About Applying Stylesheets on page 458

● Results of Applying a Stylesheet on page 459

● Applying Stylesheets to Large Data Sets on page 461

About Applying Stylesheets

When you apply a stylesheet, Stylus Studio checks both the XML source document and
the XSLT stylesheet for correct syntax. If it detects any errors, it displays a message that
indicates what the error is. This message appears at the bottom of the XSLT editor. Stylus
Studio also displays and flags the line that contains the error.

Often, a stylesheet refers to other files, such as CSS stylesheets or images. For Stylus
Studio to display the complete result file in the Preview window, you must enter the path
for resolving any links. Do this in the Base URL for HTML links resolution field of the
Scenario Properties dialog box.

Tip Stylus Studio provides a number of tools that help you debug stylesheets. See
“Debugging Stylesheets” on page 589.
458 Stylus Studio User Guide

Working with Stylesheets
Ensure that the correct output type is set. To do this, click the Params/Other tab at the
bottom of the stylesheet and check the value of the Output Method field.

If your stylesheet is associated with more than one scenario, select the scenario you want
to use and then apply the stylesheet. To do this, click the down arrow to the right of the
scenario name field to display a list of scenarios. Click the scenario you want to use, and
then click Preview Result . After you apply a stylesheet in a particular scenario, the
Preview window displays a tab for that scenario. To reapply the stylesheet in that
scenario, click Preview Result in the left tool bar.

You might want to apply the same stylesheet to two different XML documents and
compare the results. To do this, create a scenario for each XML source document. Apply
the stylesheet in the context of each scenario. Stylus Studio displays a tab for each
scenario at the bottom of the Preview window. Click the tab to display the result document
for that scenario.

Stylus Studio does not support scenarios that consecutively apply multiple stylesheets to
one source document.

Results of Applying a Stylesheet

Stylus Studio applies the stylesheet to the XML source document specified in the current
scenario and refreshes the Preview window with the latest result document. If the Preview
window is not visible, select View > Preview from the Stylus Studio menu bar.

To toggle between viewing the text of the result and viewing what the result would look
like in a browser, click Preview in Browser or Preview Text .

Tip You can select and copy text in the Preview Text view.
Stylus Studio User Guide 459

Working with XSLT
If you click in the result document, Stylus Studio displays the Backmap Stack window,
which lists the XSLT instructions that generated the text you clicked.

Stylus Studio also flags the line in the stylesheet that contains the first instruction in the
Backmap Stack window.

If the result document is XML, in the Preview window, you can click Preview in Tree
to display the result of XSLT processing as an XML tree.

The tree view provides

● Scalability – you can more easily view large result sets

● Backmapping – click on a result tree node and Stylus Studio displays the stylesheet
line that generated that node

To save the result of applying a stylesheet, click Save Preview in the Preview
window. Stylus Studio displays the Save As dialog box.

Figure 242. XSLT Backmap Window

Figure 243. XML Tree View

Backmap Window
460 Stylus Studio User Guide

Working with Stylesheets
The result document reflects any changes you made to either the XML source document
or the XSLT stylesheet. You do not need to explicitly save either the XML or XSLT file
to have changes to those documents appear in the result document. However, when you
apply a stylesheet, Stylus Studio does not also save the stylesheet. To save a stylesheet,
click Save .

Applying Stylesheets to Large Data Sets

When you open a stylesheet or assign a source XML document to a scenario, Stylus
Studio loads the entire XML source document in memory. Stylus Studio requires the
source XML document in order to display

● A preview of the result of applying the stylesheet

● The source tree for the document the stylesheet will be applied to

If the source XML document is particularly large, loading it can take several minutes.

Each time you leave and return to Stylus Studio, Stylus Studio checks whether any open
documents have been modified. If the documents reside on remote servers, this can take
some time. If you want, you can turn off the check for modified documents.

◆ To turn off the check for modified documents:

1. In the Stylus Studio menu bar, select Tools > Options.

Stylus Studio displays the Options dialog box.

2. Click Application Settings.

3. Click the check box for Automatically check for externally modified files.

Creating a Scenario

A scenario allows you to preview the results of applying a stylesheet. Each scenario is for
a particular group of settings. These settings include the name of an XML source
document, the values of any parameters in the stylesheet, and the values of any encoding
settings. A scenario can include any setting that you can specify when you apply the
stylesheet.

A scenario can be associated with only one stylesheet and only one XML source
document. However, you can associate any number of scenarios with a stylesheet, and
you can associate any number of scenarios with an XML source document.

Tip If you start to create a scenario and then change your mind, click Delete and then OK.
Stylus Studio User Guide 461

Working with XSLT
◆ To create a scenario:

1. In the XSLT editor tool bar, click Browse .

Stylus Studio displays the Scenario Properties dialog box.

2. In the Scenario Name: field, type the name of the new scenario.

3. In the Source XML URL: field, type the name of the XML file you want to apply the
stylesheet to, or click Browse to navigate to an XML file and select it.

4. In the Output URL field, optionally type or select the name of the result document you
want the stylesheet to generate. If you specify the name of a file that does not exist,
Stylus Studio creates it when you apply the stylesheet.

5. In the Base URL For HTML Links Resolution field, optionally type the path for
resolving any links. For example, your stylesheet might have links to CSS stylesheets
or images.

6. If you want Stylus Studio to Store paths relative to XSLT document path, ensure that
this option is checked.

7. If you want to Preview result in an external application, ensure that this option is
checked. When this option is checked, Stylus Studio displays the result in the default
application for the output method specified for the scenario. For example, if the
output method for the scenario is HTML and if Internet Explorer is the default
application for displaying HTML files, Stylus Studio displays the resulting HTML in
Internet Explorer, as well as in the XSLT Preview window.

8. If you want to specify values for stylesheet parameters, click the Parameter Values
tab. Double-click the Value field for the parameter you want to specify a value for.

9. If you want to use an XSLT processor other than the Stylus Studio processor, click
the Processor tab and type the required information. See “Using Third-Party XSLT
Processors” on page 479.

10. If you want to specify any post-processing, click the Post-process tab. See “Post-
processing Result Documents” on page 485.

11. To define another scenario, click Add and enter the information for that scenario. You
can also copy scenarios. See “Cloning Scenarios” on page 463.

12. Click OK.
462 Stylus Studio User Guide

Working with Stylesheets
Cloning Scenarios

When you clone a scenario, Stylus Studio creates a copy of the scenario except for the
scenario name. This allows you to make changes to one scenario and then run both to
compare the results.

◆ To clone a scenario:

1. Display the stylesheet in the scenario you want to clone.

2. In the XSLT editor tool bar, click Browse to display the Scenario Properties
dialog box.

3. In the Scenario Properties dialog box, in the Existing preview scenarios field, click
the name of the scenario you want to clone.

4. Click Clone.

5. In the Scenario name field, type the name of the new scenario.

6. Change any other scenario properties you want to change. See “Creating a Scenario”
on page 461.

7. Click OK.

Saving Scenario Meta-Information

Stylus Studio can store scenario meta-information in two places:

● In the stylesheet associated with the scenario, unless you turned off the Save scenario
meta-information in the stylesheet option.

● In the project that the stylesheet belongs to, if the stylesheet belongs to a project.

When you save a stylesheet, Stylus Studio saves the scenario meta-information in the
stylesheet, but not in the project. When you select File > Save All or when you save the
project, Stylus Studio saves the scenario meta-information in the stylesheet and in the
project. To ensure that scenario meta-information in the project and in the stylesheet is
consistent

● The project must be open when you save the stylesheet.

● Ensure that you save the project after you modify scenario information. (If you close
a project without saving it, Stylus Studio prompts you to save it.)

Tip If you start to clone a scenario and then change your mind, click Delete and then OK.
Stylus Studio User Guide 463

Working with XSLT
Suppose you modify a scenario and save and close the associated stylesheet. If the
stylesheet belongs to the open project, when you save the project, Stylus Studio saves the
closed stylesheet’s scenario meta-information in the project.

Applying a Stylesheet to Multiple Documents
You can apply the same stylesheet to multiple documents

● In separate operations

● In a single operation

Applying the Same Stylesheet in Separate Operations

Scenarios make it easy to view results and apply the same stylesheet to multiple XML
documents. A stylesheet can have any number of scenarios. Each scenario is associated
with only one stylesheet. In addition to the stylesheet, a scenario is associated with a
source XML file. The same XML file can be associated with any number of scenarios.

You create an initial scenario when you create a stylesheet. You can create additional
scenarios at any time. See “Creating a Scenario” on page 461.

◆ To view results for a particular scenario:

1. Click the down arrow in the scenario field at the top of the stylesheet window.

2. Click the scenario you want to view.

3. Click Preview Result , which is directly to the left of the scenario field. This
applies the stylesheet to the XML document specified in the selected scenario.

Each time you generate a different scenario, Stylus Studio displays a tab at the bottom of
the Preview window for that scenario. Click the tab for the scenario you want to view.
This allows you to compare results.

Applying a Stylesheet to Multiple Documents in One Operation

To apply a stylesheet to multiple documents in one operation, call the document() function
in the XPath expression of a template. This function allows you to access another XML
document and select nodes from that document for processing as source nodes. See
“Accessing Other Documents During Query Execution” on page 806.

For example, you can specify the following:
<xsl:apply-templates select="document('bookstore.xml')/bookstore"
464 Stylus Studio User Guide

Working with Stylesheets
This selects the bookstore root element of the bookstore.xml document.

Stylus Studio looks for the document in the directory that contains the stylesheet.

The document() function has a lot of overhead. You should call it once and assign the result
to a variable with the xsl:variable instruction.

About Stylesheet Contents
Stylesheets are XML documents. They can contain XSLT instructions and non-XSLT
elements and nodes. Stylus Studio automatically inserts some XSLT instructions. You
can add additional XSLT instructions, HTML markup, and any other XML data you want.
This section describes

● Contents Provided by Stylus Studio on page 465

● Contents You Can Add on page 465

Contents Provided by Stylus Studio

When Stylus Studio creates a stylesheet, it has the following contents:

The xsl:stylesheet instruction is required in every stylesheet that you use with Stylus
Studio.

Stylus Studio defines one template, which matches the root node. Of course, the two built-
in templates are also defined, although they are not explicitly in the stylesheet. For
information about these templates, see “Using Stylus Studio Default Templates” on
page 476.

When Stylus Studio creates a stylesheet from an HTML file, the template that matches
the root node contains all HTML markup that was in the imported file.

Contents You Can Add

You can add to the stylesheet any XSLT instruction that Stylus Studio supports. See
“XSLT Instructions Quick Reference” on page 504. You can also add HTML markup and
any other XML-formatted data you require.

<?xml version="1.0"?>
<xsl:stylesheet version='1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">

 </xsl:template>
</xsl:stylesheet>
Stylus Studio User Guide 465

Working with XSLT
To obtain the XPath expression that retrieves a particular node in the source document
you want to apply the stylesheet to, see “Obtaining the XPath for a Node” on page 198.

Updating Stylesheets
You can edit a stylesheet in the XSLT Source tab in Full Source mode or Template

 mode. To display a particular template in either mode, click the down arrow in the
upper right corner of the editing pane. This displays a drop-down list of template match
patterns. Click the template you want to view.

The XSLT editor keeps track of your XSLT context. That is, it keeps track of template
match patterns, and any xsl:for-each element that affects the context on which the
stylesheet is working. The editor uses Stylus Studio’s Sense:X technology to help you
create XPath expressions whenever they are needed.

After you associate the stylesheet with a scenario, you can display the source tree for the
XML source document specified in the scenario. Click Source Tree in the XSLT
editor tool bar. This tree provides a description of the structure of the XML source
document specified in the scenario. This tree does not include elements and attributes that
are not instantiated in the particular source document. However, the tree provides a
structure that you can examine to help you understand stylesheet behavior in a given
scenario.

The following sections describe the Stylus Studio editing tools:

● Dragging and Dropping from Schema Tree into XSLT Editor on page 466

● Using Sense:X Automatic Tag Completion on page 467

● Using Sense:X to Ensure Well-Formed XML on page 467

● Using Standard Editing Tools on page 468

Dragging and Dropping from Schema Tree into XSLT Editor

From the source tree of the XSLT editor, you can drag an element or attribute into the
XSLT Source pane. If you drop the node in the stylesheet so that it is in a template, Stylus
Studio displays the following choices:

● xsl:for-each

● xsl:value-of

● xsl:apply-templates

● node_name
466 Stylus Studio User Guide

Working with Stylesheets
Click the instruction you want to create. The XSLT context into which you drop the node
determines the value of the select attribute in the instruction you choose. The select
attribute always selects the node you dragged into the stylesheet. If you choose node_name,
Stylus Studio simply inserts the name of the element or attribute you dragged in. This is
convenient for pasting long element or attribute names.

If you drop the node in the stylesheet so that it is not in a template, Stylus Studio creates
a new template. In the new template, the value of the match attribute is the name of the
node you dragged into the stylesheet.

You can also create a new template by double-clicking a node in the source tree. The
difference between double-clicking a node and dragging a node is that when you double-
click a node to create a template, Stylus Studio always inserts the template at the end of
the stylesheet. When you drag a node to create a template, you determine the location of
the template.

Using Sense:X Automatic Tag Completion

The Stylus Studio Sense:X automatic tag completion system helps you edit XSLT,
HTML, and FO (formatting objects) instructions. Stylus Studio has built-in knowledge of
all XSLT, HTML, and FO tags, as well as their attributes.

As you type in the XSLT edit window, Stylus Studio prompts you with a list of tag or
attribute names that match the first few letters you typed. To complete the tag name you
are typing, scroll the list if necessary, and double-click the tag you want.

You can customize the Sense:X system. Edit languages.xml in the Stylus Studio
bin\Plugins\Configuration Files directory to customize the tag list.

To set options that specify Sense:X behavior, go to the Editor General page of the Options
dialog box.

Using Sense:X to Ensure Well-Formed XML

Sense:X also helps you write well-formed XML. There is an option in the Editor General
page that is set by default. This is Auto-Close Open Tag When Typing '</'. This means
that as soon as you type </, Stylus Studio immediately inserts the only tag that can
possibly be closed at that point.

Tip For information about FO, see http://www.w3.org/TR/2001/REC-xsl-
20011015/slice6.html#fo-section.
Stylus Studio User Guide 467

http://www.w3.org/TR/2001/REC-xsl-20011015/slice6.html#fo-section
http://www.w3.org/TR/2001/REC-xsl-20011015/slice6.html#fo-section

Working with XSLT
If you prefer, you can turn off this option. Then, when you start to type a closing tag, the
Sense:X list displays the only valid closing tag. Double-click it to insert it.

Using Standard Editing Tools

Standard editing tools are available to you for updating stylesheets. From the Edit menu
or tool bar you can cut, copy, paste, replace, undo, redo, select all, and find. The usual
keyboard shortcuts work as well:

● Ctrl+X cuts highlighted text.

● Ctrl+C copies highlighted text.

● Ctrl+V pastes text.

● Ctrl+Z undoes the most recent action that has not already been undone.

● Ctrl+Y redoes the most recently undone action that has not already been redone.

For additional shortcuts, see “Keyboard Accelerators” on page 1316.

Saving Stylesheets
When you save a stylesheet, Stylus Studio uses the encoding that is specified in the
Params/Other tab of the XSLT editor. You can change the encoding by changing the
setting in the Params/Other tab or in the initial processing instruction in the stylesheet.
When you change one of these, Stylus Studio automatically changes the other. They are
always the same.

To save an XSLT stylesheet, do one of the following:

● Click Save .

● Press Ctrl+S.

● Select File > Save from the Stylus Studio menu bar.

To save your stylesheet to another file, select File > Save As.

To save multiple files, select File > Save All. This saves all files that are open in Stylus
Studio.

Tip You can set an option that instructs Stylus Studio to save your modified documents every
few minutes. Go to the Applications Settings page on the Options dialog box.
468 Stylus Studio User Guide

Specifying Extension Functions in Stylesheets
Using Updated Stylesheets

Within a scenario, Stylus Studio automatically uses any updated files when you apply a
stylesheet. It does not matter whether you have explicitly saved a file in the scenario. If a
stylesheet includes or imports other stylesheets, Stylus Studio automatically uses any
updated versions of included or imported stylesheets even if you have not explicitly saved
them.

However, there is one situation in which Stylus Studio does not automatically use updated
stylesheets. Suppose that multiple stylesheets are open in Stylus Studio. Each stylesheet
generates a Web page, and the Web pages have links to each other. The stylesheets do not
include or import each other. You make changes in more than one of these stylesheets and
you do not explicitly save any changes. You apply one of the stylesheets, and in the
Preview window you click a link to another Web page generated by one of the other
stylesheets you updated. In this situation, Stylus Studio does not apply the updated
stylesheet. You must explicitly save the stylesheet to be able to use the updated version.

Specifying Extension Functions in Stylesheets
You can write XSLT extension functions in Java and invoke them in XPath expressions
in stylesheets. This section provides instructions for implementing and invoking
extension functions from your stylesheet.

This section covers the following topics:

● Using an Extension Function in Stylus Studio on page 470

● Basic Data Types on page 471

● Declaring an XSLT Extension Function on page 471

● Working with XPath Data Types on page 472

● Declaring an Extension Function Namespace on page 472

● Invoking Extension Functions on page 473

● Finding Classes and Finding Java on page 473

● Debugging Stylesheets That Contain Extension Functions on page 473
Stylus Studio User Guide 469

Working with XSLT
Using an Extension Function in Stylus Studio
The process of using an extension function in Stylus Studio involves three main steps:

1. First, you need to write a Java class that can be used from within a stylesheet. In this
example, the SystemDate() method returns the system date and time as a string:

2. Second, compile your class and register it on the Stylus Studio host by copying the
.class file to a location defined in the host’s CLASSPATH environment variable.

3. Finally, specify information in the stylesheet so that Stylus Studo can use your class.
You do this with a namespace reference in the xsl:stylesheet tag. For example,
define a namespace as xmlns:Ext where Ext is the prefix to use when calling the class
methods. (Ext is not a predefined keyword; it can be replaced by any other legal
string.) The namespace reference then takes the class name as a value. In this
example, the whole reference looks like the following:

The class is now available from within the stylesheet and can be used in a template such
as the following:

import java.util.Date;
public class SystemUtils
{
 public Object SystemDate()
 {
 Date d = new Date();
 String s = d.toString();
 return s;
 }
}

xmlns:Ext="SystemUtils"

<xsl:template match="NODE">
 <p><xsl:value-of select="Ext:SystemDate()"/></p>
</xsl:template>
470 Stylus Studio User Guide

Specifying Extension Functions in Stylesheets
The XSLT stylesheet might look like the following:

Basic Data Types
XPath and XSLT data types map to Java data types according to Table 59:

Declaring an XSLT Extension Function
Extension functions must have one of the following signatures:
public Object FxnName()
public Object FxnName(Type1 var1, Type2 var2,...)
public static Object FxnName()
public static Object FxnName(Type1 var1, Type2 var2,...)

<?xml version="1.0" encoding="ISO-10646-UCS-2"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/XSL/Transform"
xmlns:Ext="SystemUtils">
 <xsl:param name="param">test</xsl:param>
 <xsl:template match="*|/">
 <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="text()|@*">
 <xsl:value-of select="."/>
 </xsl:template>
 <xsl:template match="NODE">
 <p><xsl:value-of select="Ext:SystemDate()"/></p>
 </xsl:template>
</xsl:stylesheet>

Table 59. XPath/XSLT and Java Type Mappings

XPath/XSLT Type Java Type

Node Set org.w3c.dom.NodeList

String java.lang.String

Boolean boolean or Boolean

Number double or Double

Result Tree Fragment org.w3c.dom.DocumentFragment
Stylus Studio User Guide 471

Working with XSLT
A class that contains an extension function might look like the following:

Working with XPath Data Types
The XPath types Boolean and Number can map either to the corresponding Java primitive
types or to the corresponding Java object types. If the XPath processor is looking for a
function that accepts XPath parameters 3.2 and true, it looks first for a function that
accepts (double, boolean) and then (Double, Boolean). Functions that accept some
combination of primitive types and object types are not recognized by the XPath
processor.

The XPath processor determines the actual return type of a function at run time. For
example, the XPath processor treats the return type of the function in the preceding
section as an XPath Number because the object it returns is an instance of the Java class
Double. You must declare all functions to return type Object, regardless of the actual type
of the return value.

Declaring an Extension Function Namespace
In conformance with the XSLT specification, extension functions are accessed through a
unique namespace. The namespace declaration can be in any of the following locations:

● xsl:stylesheet tag

● Element that contains the XPath expression that invokes the extension function

● Ancestor of the element that contains the XPath expression that invokes the extension
function

The XPath processor treats the namespace URI as a fully qualified class name. If the class
name is preceded by class:, all calls are to static methods only. Otherwise, an instance of

import org.w3c.dom.*;
import java.lang.Double;
public class NumberUtils
{
 public Object Average(NodeList nl)
 {
 double nSum = 0;
 for (int i = nl.getLength() - 1; i >= 0; i--)
 {
 nSum +=
 Double.valueOf(nl.item(i).
 getNodeValue()).doubleValue();
 }
 return new Double(nSum / nl.getLength());
 }
}

472 Stylus Studio User Guide

Specifying Extension Functions in Stylesheets
the class is created on first use and released when stylesheet processing is complete.
Performance is better when you use a static method because creation and deletion of an
instance of the class is not required.

You can separate package names with either a dot (.) or a forward slash (/). An sample
namespace declaration might look like the following:
<xsl:stylesheet xmlns:Ext="NumberUtils">

The XPath processor resolves namespace prefixes in names of extension functions
relative to the namespace declarations in the stylesheet.

Invoking Extension Functions
You use XSLT extension functions just like built-in XPath functions. For example:

Finding Classes and Finding Java
The XPath processor looks for extension classes by using the CLASSPATH environment
variable. Ensure that your CLASSPATH references any directories or .jar files that contain
extension classes.

The XPath processor tries to load the Sun Java Runtime Environment (JRE) 1.4.x or later.
If the XPath processor cannot find a suitable JRE, invoking Java extension functions
causes an error during stylesheet processing.

In Stylus Studio, classes are reloaded each time you refresh the preview output, so
changes in a class are reflected in subsequent preview output.

Debugging Stylesheets That Contain Extension Functions

You can use Stylus Studio backmapping and debugging features on stylesheets tht invoke
extension functions. You must process the stylesheet with one of the following
processors:

● Built-in Stylus Studio XSLT processor

● Saxon processor

<xsl:value-of select="Ext:Average(portfolio/stocks/last)"/>

Support for extensions debugging is available only in Stylus Studio XML
Enterprise Suite and Stylus Studio XML Professional Suite.
Stylus Studio User Guide 473

Working with XSLT
The Saxon processor does not allow you to step into JavaScript extensions. You can step
into Java extensions, however.

Working with Templates
Templates define the actions that you want the XSLT processor to perform. When you
apply a stylesheet to an XML source document, the XSLT processor populates the result
document by instantiating a sequence of templates. This is illustrated in “Understanding
How the Default Templates Work” on page 445.

A template can contain elements that specify literal result nodes. It can also contain
elements that are XSLT instructions for creating result nodes. In a template, the template
rule is the pattern that the XSLT processor matches against (compares with) selected
nodes in the source document.

This section covers the following topics:

● Viewing Templates on page 474

● Using Stylus Studio Default Templates on page 476

● Creating Templates on page 478

● Applying Templates on page 479

● Updating Templates on page 479

● Deleting Templates on page 479

Viewing Templates
Stylus Studio provides different ways to display lists of templates, specific templates, as
well as ways to see if a given template generates any output.
474 Stylus Studio User Guide

Working with Templates
Viewing a List of Templates

◆ To view a list of the templates in the stylesheet:

1. Click the down arrow in the upper right corner of the XSLT editing pane.

Stylus Studio displays a drop-down list of the first five match patterns in the
stylesheet. To limit the displayed list, type in the combo box to the left of the down
arrow. Stylus Studio displays only those patterns that match the character(s) you
typed.

2. Click the match pattern for the template you want to view. It does not matter whether
the XSLT editor is in Full Source mode or Template mode.

Viewing a Specific Template

To view a particular template, double-click its matching element in the XML tree view,
which is displayed to the right of the editing pane. If the element has more than one
template, Stylus Studio displays a list of the templates. Click the one you want.

Figure 244. Choosing Available XSLT Templates

Note A particular template might or might not have a match pattern (template rule). Named
templates do not necessarily specify match patterns.
Stylus Studio User Guide 475

Working with XSLT
Checking if a Template Generates Output

◆ To see if a particular template generates any output:

1. Select a template in the XSLT templates pane.

2. Click Refresh to apply the stylesheet.

3. In the XSLT Preview window, with output text displayed, scroll as necessary to find
text highlighted in gray. Text with a gray background was generated by the selected
template.

Using Stylus Studio Default Templates
Every stylesheet in Stylus Studio can use two built-in templates, even though they are not
explicitly defined. This section covers the following topics to help you use these
templates:

● Contents of a New Stylesheet Created by Stylus Studio on page 476

● About the Root/Element Built-In Template on page 477

● About the Text/Attribute Built-In Template on page 477

Contents of a New Stylesheet Created by Stylus Studio

When Stylus Studio creates a new stylesheet, the stylesheet includes the following built-
in templates:

Every XSLT stylesheet contains these templates whether or not they are explicitly
specified. In other words, the XSLT processor behaves as if they are there even when they
are not explicitly specified in the stylesheet.

<xsl:template match="*|/">
 <xsl:apply-templates/>
</xsl:template>
<xsl:template match="text()|@*">
 <xsl:value-of select="."/>
</xsl:template>
476 Stylus Studio User Guide

Working with Templates
About the Root/Element Built-In Template

The first built-in template matches *|/. This means it matches every element in the
source document and it matches the root node. This is the root/element built-in template.

This root/element built-in template contains only the xsl:apply-templates instruction.
The xsl:apply-templates instruction does not specify a select attribute, which means
that the XSLT processor operates on the children of the node for which the root/element
template was instantiated.

What does the XSLT processor do when it operates on these children nodes? It searches
for a template that matches each node. If there is no such template and if the node is an
element, the XSLT processor instantiates the root/element built-in template. If the node
is a text node and there is no matching template, the XSLT processor instantiates the
text/attribute built-in template.

If the node for which the root/element built-in template is instantiated has no children, the
XSLT processor does no processing for this node and proceeds to the next selected node.

The XSLT processor instantiates the root/element built-in template when it cannot find a
template that explicitly matches the root node or an element in the source document. As
you know, the XSLT processor always begins processing by instantiating the template
that matches the root node. If you do not define such a template in your stylesheet, the
XSLT processor begins processing by instantiating the root/element built-in template.

About the Text/Attribute Built-In Template

The second specified built-in template matches text()|@*. This means it matches the text
contents of every text node and every attribute in the source document. This is the
text/attribute template.

This template contains only the xsl:value-of instruction. Its select attribute specifies an
expression for selecting an XML node. The "." expression identifies the current node,
which is the node the template was instantiated for.

This template copies the text contained in the current text node or attribute to the result
document.
Stylus Studio User Guide 477

Working with XSLT
Creating Templates
To do anything beyond copying the text from your XML document to the result
document, you must create templates. You can create new templates several ways:

● In the source tree of the XSLT editor, double-click the element or attribute for which
you want to create a template. Stylus Studio creates an empty template that matches
the node you clicked. This template appears at the end of the stylesheet.

● Click New Template . Stylus Studio creates an empty template whose match
pattern is NewTemplate. Replace NewTemplate with a match pattern that has
meaning for your stylesheet. The new template appears at the end of the stylesheet.

● Drag an element or node from the source tree in the XSLT editor to the Full Source
pane and drop it in a location that is not in a template. Stylus Studio creates a new
template that matches the node you dragged in.

◆ Try creating a new template that matches an XML element in your document:

1. Double-click an element in the tree view of your XML document.

2. Enter the following instruction in the new template:
<xsl:value-of select="."/>

3. In another template, ensure that there is an xsl:apply-templates instruction that
selects the new template’s element for processing.

4. Press F5 to apply the stylesheet and refresh the current scenario in the Preview
window.

Notice that the text contents of the element for which you created the template are now
displayed in bold – the XSL instruction is formatted with and . Also, the XSLT
processor does not process this element's children (if there are any) because the new
template you created does not specify <xsl:apply-templates/>.

By creating additional templates to style portions of your XML document, you can
completely control how the document appears.

Saving a Template

To save a template, save the stylesheet. Click Save in the Stylus Studio tool bar, or
select File > Save from the Stylus Studio menu bar.
478 Stylus Studio User Guide

Using Third-Party XSLT Processors
Applying Templates
The xsl:apply-templates instruction allows you to control the order of operations when
you apply a stylesheet. For an in-depth description of how the XSLT processor applies
templates, see “How the XSLT Processor Applies a Stylesheet” on page 424.

To apply a template so that you can see the output in the Preview window, you must apply
the entire stylesheet. Press F5 to apply the stylesheet and refresh the output. If Stylus
Studio detects any errors in the stylesheet or in the XML source document, it displays a
message that indicates the cause and location of the error.

In the Preview window, in the Text view, the text with a gray background was generated
by the template the cursor is in. If the editor is in Template mode, the text with the gray
background was generated by the currently visible template.

Updating Templates
When you want to update a template, you can use all features that are available when you
are updating a stylesheet. See “Updating Stylesheets” on page 466.

Deleting Templates

◆ To delete a template:

1. Select the text for the template you want to delete.

2. Right-click in the editor to display the shortcut menu.

3. Click Cut.

Using Third-Party XSLT Processors
Stylus Studio includes several third-party XSLT processors, including Saxon 9.x,
MSXML, and .NET. Note, however, that only the following XSLT processors support
Stylus Studio stylesheet debugging and back-mapping functionality:

● Saxon 9.x

● Microsoft .NET (XslTransform and XslCompiledTransform)
Stylus Studio User Guide 479

Working with XSLT
Back-mapping and debugging are not supported by other XSLT processors, including
others bundled with Stylus Studio (MSXML 4.0, for example).

This section covers the following topics:

● How to Use a Third-Party Processor on page 480

● Setting Default Options for Processors on page 482

How to Use a Third-Party Processor
You specify XSLT processors for stylesheets individually. You can, of course, create
multiple scenarios for the same stylesheet, with each one using a different processor.
When you use a third-party XSLT processor, output from the processor appears in the
Preview window.

◆ To use a third-party XSLT processor:

1. Open the stylesheet.

2. In the XSLT Editor, in the scenario name field, click the down arrow to display the
scenarios associated with the stylesheet.

3. To use a third-party processor for an existing scenario, click the scenario name, and
then click to display the Scenario Properties dialog box.

To create a new scenario, click Create Scenario. See “Creating a Scenario” on
page 461.

4. In the Scenario Properties dialog box that appears, click the Processor tab.

5. Select the XSLT processor you want to use from the Processor drop-down list.

6. Optionally, change the default settings for the processor you selected.

Note You can use only the built-in XML parser with Stylus Studio.

Note Stylus Studio allow you to choose an MSXML option only if you have the MSXML
or MSXML .NET Framework (version 1.1 or 2.0) installed.
480 Stylus Studio User Guide

Using Third-Party XSLT Processors
7. If you selected a standard XSLT processor, you are done. Click OK.

If you selected Use custom processor (%1 xml, %2 xslt, %3 output):

a. In the Command line field, type the command line for invoking the processor you
want to run. You must specify the command line so that it is clear where to use
the three arguments. Following are two examples:
myparser %1 %2 %3
myparser -inputxslt %2 -inputxml %1 -out %3

b. In the Path field, specify any path that needs to be defined for the processor to
run. Typically, this is the location of the processor.

c. In the Classpath field, type any directories the external processor needs to access
that are not already specified in your CLASSPATH environment variable.

d. Click OK.

Using the Saxon Processor

Stylus Studio lets you execute XSLT transformations using either the Saxon-B (basic) or
Saxon-SA (schema-aware) processor. You specify which processor you want to use with
the Execution mode property in the Saxon XSLT Settings dialog box. Settings that have
command line equivalents in Saxon show the command in parentheses following the
property name. Some settings are available only if you are using Saxon-SA.

Stylus Studio’s Sense:X syntax coloring and auto-completion provides full support for
Saxon syntax, so long as the Saxon Logic XSLT processor is either associated with the
current XSLT scenario or has been set as the default XSLT processor.

If you want to use the Saxon processor:

1. On the Processors tab, click Saxon.

The Settings button becomes active.
Stylus Studio User Guide 481

Working with XSLT
2. Click the Settings button.

The Saxon XSLT Settings dialog box appears.

3. Complete the settings as desired. Press F1 to access the Stylus Studio online help, or
refer to the Saxon documentation for more information.

4. Click OK.

Passing Parameters

To pass parameters to the Microsoft .NET, Saxon, or MSXML processor, specify them in
the Parameters tab of the Scenario Properties dialog box. To pass parameters to a custom
external processor, you must specify them in the command line you enter.

Setting Default Options for Processors
If you want, you can set default values for XSLT processor options and designate a
processor other than the Saxon processor as the default processor used whenever you
create an XSLT scenario.

You can always override the default processor and individual processor settings at the
scenario level.

Figure 245. Saxon XSLT Settings Dialog Box
482 Stylus Studio User Guide

http://www.saxonica.com/documentation/index/intro.html

Using Third-Party XSLT Processors
◆ To set defaults for XSLT processors:

1. From the Stylus Studio menu, select Tools > Options.

Stylus Studio displays the Options dialog box.

2. Select Module Settings > XSLT Editor > Processor Settings.

3. Select the processor for which you want to specify default settings from the
Processor drop-down list.

4. If required, complete processor-specific settings. (Click the Settings button.)

5. If you want this processor to be used as the default processor for all XSLT scenarios,
click the Use as default processor check box.

6. Click OK.

Figure 246. Options for XSLT Processors
Stylus Studio User Guide 483

Working with XSLT
Validating Result Documents
You can optionally validate the XML document that results from XSLT processing. You
can validate using the

● Stylus Studio built-in validator (Xerces C++). If you use the Stylus Studio built-in
validator, you can optionally specify one or more XML Schemas against which you
want the result document to be validated.

● Any of the customizable processors supported by Stylus Studio, such as the .NET
XML Parser and XSV.

All validation is done before any post-processing that you might have specified.

◆ To validate XSLT scenario result documents:

1. Open the stylesheet whose results you want to validate.

2. In the XSLT Editor (XSLT Source or Mapper tabs), in the scenario name field, click
the down arrow and click the name of the scenario for which you want to perform
validation.

3. Click Browse to open the Scenario Properties dialog box.

4. Click the Validation tab.

5. Click Validate stylesheet result.

Figure 247. Validation Tab for XSLT Scenarios
484 Stylus Studio User Guide

Post-processing Result Documents
6. If you are using Stylus Studio’s built-in validation engine, optionally, specify the
XML Schemas against which you want to validate the XML result document.
Otherwise, go to Step 7

a. Click the Open file button ().
The Open dialog box appears.

b. Select the XML Schema you want to use for validation.

c. Click the Open button to add the XML Schema to the Validation tab.

d. Optionally, add other XML Schemas.

e. Go to Step 8.

7. Click the Use custom validator button, and select the validation engine you want to
use from the drop-down list box.

8. Click OK.

Post-processing Result Documents
You can use a scenario’s post-processing settings to specify that you want Stylus Studio
to initiate processing on the result of applying a stylesheet. If you do, Stylus Studio
performs the post-processing before it displays the result in the Preview window.

For example, you can choose to run the Apache Software Organization’s Formatting
Objects Processor (FOP) as a post-processor. You can run this on the result of stylesheets
that generate XML documents that contain FO. The Apache FOP included with Stylus
Studio converts FO XML into PDF and displays it in the Stylus Studio preview window.
See “Generating Formatting Objects” on page 486.

◆ To specify post-processing:

1. Open the stylesheet whose result you want to process.

2. In the XSLT Editor (XSLT Source or Mapper tabs), in the scenario name field, click
the down arrow and click the name of the scenario in which you want to specify post-
processing.

3. Click Browse to open the Scenario Properties dialog box.

4. Click the Post-process tab.
Stylus Studio User Guide 485

Working with XSLT
5. Click one of the following:

Post Process With Apache FOP if you want Stylus Studio to initiate the Apache FOP.
You are done. Click OK.

Custom Post-Process if you want Stylus Studio to initiate a postprocess you define.
With this selection, you must also do the following:

a. In the Command line field, type the command line for starting your
postprocessor. For example, mypostprocessor %1 %2. You can specify any
application or script that takes as input the result document generated by an XSLT
processor and generates a new file.

b. In the Generated File Extension field, type the extension on the file name of the
postprocessor output. For example, .pdf.

c. In the Additional Path field, optionally type any paths that need to be defined that
are not already defined in your PATH environment variable.

d. Click OK.

Generating Formatting Objects
You can use Stylus Studio to develop a stylesheet that generates XSL Formatting Objects
(FO). In the scenario in which you apply such a stylesheet, you can specify that Stylus
Studio should run a Formatting Objects Processor (FOP) on the stylesheet’s result
document. When you apply the stylesheet and preview the results, Stylus Studio displays
the formatted results.

Stylus Studio includes The Apache Software Organization’s FOP, and it is configured to
always generate PDF. If you want to run a FOP to generate some other type of output, you
must specify some other FOP in the Custom post-process fields of the Post-process tab
of the Scenario Properties dialog box.

Stylus Studio includes two sample stylesheets that generate formatting objects. These
files are in the examples\XSLFormattingObjects directory of your Stylus Studio
installation directory.

This section covers the following topics:

● Developing Stylesheets That Generate FO on page 487

● Troubleshooting FOP Errors on page 487

● Viewing the FO Sample Application on page 488
486 Stylus Studio User Guide

Generating Formatting Objects
● Deploying Stylesheets That Generate FO on page 490

● Using Apache FOP to Generate NonPDF Output on page 491

Developing Stylesheets That Generate FO

◆ To develop a stylesheet that generates FO:

1. Define the scenario in which you want to apply the stylesheet that generates FO. See
“Creating a Scenario” on page 461.

2. In the Scenario Properties dialog box, in the Post-process tab, do one of the
following:

❍ Select Postprocess with Apache FOP.
The Apache FOP included with Stylus Studio is configured to convert FO XML
into PDF. Stylus Studio then uses Acrobat Reader to display the PDF in the Stylus
Studio preview window.

❍ Specify some other FOP in the Custom post-process fields. You must do this
when you want to generate output other than PDF. If you want to use the Apache
FOP included with Stylus Studio to generate a format other than PDF, you can do
that here.

See “Post-processing Result Documents” on page 485.

3. In the XSLT editor, define a stylesheet that generates FO. As soon as you type <fo:,
Stylus Studio displays a completion menu of FO that you can select from.

4. Apply the stylesheet to an XML document.

After Stylus Studio transforms the XML document to generate a result XML
document that contains formatting objects, Stylus Studio automatically runs the FOP
you specified on the result document. Stylus Studio then displays the postprocess
result in the XSLT Preview window.

Troubleshooting FOP Errors
If the transformation works well, but the FOP generates an error, obtain a copy of
RenderX’s Unofficial DTD for XSL Formatting Objects. You can find this at

Note FO is a W3C recommendation for an XML vocabulary that describes how to format text.
FO is one part of XSL. This section assumes that you are familiar with FO. For additional
information about FO, see http://www.w3.org/TR/2001/REC-xsl-20011015/.
Stylus Studio User Guide 487

http://www.w3.org/TR/2001/REC-xsl-20011015/

Working with XSLT
http://www.renderx.com. Although this DTD is not official (it is more limited than what
the W3C XSL recommendation defines), it is a helpful debugging tool.

◆ To validate the generated XML against this DTD:

1. Copy the DTD to a location such as C:\fo.dtd.

2. Include a document type declaration, such as the following, in your generated
document:
<!DOCTYPE fo:root SYSTEM "/fo.dtd">

3. Turn off post-processing.

4. Apply the stylesheet.

5. Save the resulting XML document.

6. Open the saved XML document in Stylus Studio.

7. Click Validate Document .

Viewing the FO Sample Application

◆ To view the FO sample application included with Stylus Studio:

1. In Stylus Studio, open the examples\XSLFormattingObjects\minimal-catalog.xsl file
in your Stylus Studio installation directory.

Alternative: If the Stylus Studio examples project is open, you can access this file from
the Project window. To open the examples project, open examples.prj in the Stylus
Studio examples directory.

The video scenario has already been defined. In the Post-process tab of the Scenario
Properties dialog box, Postprocess with Apache FOP is selected.

In this scenario, Stylus Studio selects elements to operate on from three different
documents. These documents are in the examples directory of the Stylus Studio
installation directory. They are also in the examples project. The documents are:

❍ VideoCenter\videos.xml

❍ simpleMappings\books.xml
❍ simpleMappings\catalog.xml
488 Stylus Studio User Guide

http://www.renderx.com

Generating Formatting Objects
2. Click Preview Result . As you can see, the Output Window shows some post-
processing information messages.

After a few seconds, the Preview window displays the PDF result in Acrobat Reader.
The result contains a few lines of text for each video and book found in the XML
source documents. The title, author or director, and the description is included for
each item. It is hard to see where information for one item ends and another begins.

3. Examine the stylesheet. It contains the minimum FO instructions required to generate
FO. There is no formatting to make the result document easier to read. You can use
this stylesheet as a skeleton for creating your own stylesheets that generate FO.

4. Now open the examples\XSLFormattingObjects\catalog.xsl stylesheet.

Figure 248. Example of XSLT FO Processing
Stylus Studio User Guide 489

Working with XSLT
5. Click Preview Result .

This time the PDF result in the Preview window is nicely formatted. The catalog.xsl
stylesheet adds some basic formatting, as well as images, to the minimal-catalog.xsl
stylesheet. Now it is easy to distinguish the title, author or director, and description
for each video or book.

Deploying Stylesheets That Generate FO
When your stylesheet is complete, the process for creating a final document, such as a
PDF document, from an XML document is as follows:

1. Apply a stylesheet to an XML document. This results in an XML document that
contains XSL FO.

2. Run a FOP, such as Apache’s FOP, and use the generated XML as input.

Example

You can accomplish both steps with a single invocation of FOP on the command line. For
example:

Figure 249. Another Example of XSLT FO Processing

java -cp "C:\Program Files\StylusStudio\bin\Plugins\Fop\fop.jar;"
org.apache.fop.apps.Fop -xml ..\VideoCenter\videos.xml -xsl
catalog.xsl -pdf multimediacatalog.pdf
490 Stylus Studio User Guide

Generating Formatting Objects
Replace C:\Program Files\StylusStudio with the name of the directory in which Stylus
Studio is installed.

Using Apache FOP to Generate NonPDF Output
The Apache FOP included with Stylus Studio is configured to output PDF.

◆ To use this FOP to generate some other type of output:

1. Open the stylesheet whose results you want to postprocess with the Apache FOP.

2. Create or open a scenario in which to do the post-processing. See “Creating a
Scenario” on page 461. Stylus Studio displays the Scenario Properties dialog box.

3. In the Scenario Properties dialog box, click the Post-process tab.

4. Select Custom post-process.

5. In the Command line field, enter something like the following:

Modify this sample command line according to where Stylus Studio is installed and
what kind of output you want the FOP to generate. The last option, -svg in the
example, can be any of the following:

6. In the Generated file extension field, specify the extension that indicates the type of
output you want. For example, specify .txt if you want the FOP to generate a text file.

java -cp "C:\Program Files\StylusStudio\bin\Plugins\Fop\fop.jar"
org.apache.fop.apps.Fop -fo %1 -svg %2

Table 60. FOP Output Options

Setting Output

-mif MIF file

-pcl PCL file

-txt Text file

-svg SVG slides file

-at XML (representation of an area tree)

-pdf PDF file
Stylus Studio User Guide 491

Working with XSLT
7. If there is additional path information that the FOP will require to execute
successfully, type it in the Additional path field.

8. Click OK.

Generating Scalable Vector Graphics
The procedure for defining a stylesheet that generates an XML document that containts
Scalable Vector Graphics (SVG) is the same as for any other stylesheet. Simply create a
stylesheet that specifically creates SVG elements. You can then use Stylus Studio to
display the rendered SVG.

About SVG Viewers
If you have an installed SVG viewer, Stylus Studio automatically displays the rendered
SVG when you apply the stylesheet.

If you do not have an installed SVG viewer, you can still define a styelesheet that
generates SVG. However, when you try to preview the result of the stylesheet, Stylus
Studio displays the generated XML. You can download an SVG viewer from Adobe
Systems Incorporated at http://www.adobe.com/support/downloads/main.html. Under
Readers, select the SVG Viewer for Windows. After you install an SVG viewer, you must
restart Stylus Studio and Internet Explorer to be able to view the rendered graphics.

Note SVG is a W3C recommendation for an XML vocabulary that describes two-dimensional
graphics. It is assumed that you are familiar with SVG. For additional information about
SVG, see http://www.w3.org/Graphics/SVG.
492 Stylus Studio User Guide

http://www.w3.org/Graphics/SVG
http://www.adobe.com/support/downloads/main.html

Generating Java Code for XSLT
Running the SVG Example

◆ To run the SVG example that is included in Stylus Studio:

1. In Stylus Studio, open the examples\SVG\chart.xsl file in your Stylus Studio
installation directory.

Alternative: If the Stylus Studio examples project is open, you can access this file from
the Project window. To open the examples project, open examples.prj in the Stylus
Studio examples directory.

The SalesFigures scenario has already been defined. In this scenario, the stylesheet
operates on elements in the chart.xml source document. This file is also in the
examples project, and in the examples\SVG directory.

2. Click Preview XSLT Result . Stylus Studio automatically uses your installed
SVG viewer to render the resulting XML and display the SVG.

If you do not have an SVG viewer installed, Stylus Studio displays the resulting
XML.

Generating Java Code for XSLT

You can generate Java code for XSLT transformations in Stylus Studio. This section
describes the generated code, scenario settings that affect the generated code, as well as
procedures for generating, compiling, and running generated code.

A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

Java code generation is available only in Stylus Studio XML Enterprise Suite.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the Java Code Generation video.
Stylus Studio User Guide 493

http://www.stylusstudio.com/videos/code-generation1/code-generation1.html
http://www.stylusstudio.com/videos/code-generation1/code-generation1.html
http://www.stylusstudio.com/xml_videos.html

Working with XSLT
This section covers the following topics:

● What Does Stylus Studio Generate?

● Scenario Properties Used for Generating Code

● Java Code Generation Settings

● How to Generate Java Code for XSLT

● Compiling Generated Code

● Deploying Generated Code

What Does Stylus Studio Generate?
Stylus Studio generates a complete Java application that implements the XSLT
represented by the current XSLT transformation using settings from the current scenario.
The Java code can be compiled and run within Stylus Studio.

Scenario Properties Used for Generating Code
When you generate code for XSLT, Stylus Studio uses some of the information associated
with the active XSLT scenario, as specified in the Scenario Properties dialog box.

Tip You can also generate:

● C# code for XSLT. See Generating C# Code for XSLT

● Java code for XQuery. See Generating Java Code for XQuery
494 Stylus Studio User Guide

Generating Java Code for XSLT
The following tables summarizes the scenario properties that affect code generation.

Table 61. Scenario Properties that Affect Code Generation

Tab Comment

General The Code Generation wizard uses only the Source XML URL and the
Output URL field, if specified. All other properties on this page are
ignored.

Processor You can use the following XSLT processors for generating Java code:

● Saxon

● Java built-in

If the Stylus Studio URI Resolver property is selected, the generated
code includes lines that import and register ConverterFactory and
ConverterResolver classes from DataDirect XML Converters.

Note: If the scenario specifies an XSLT processor for which Java code
generation is not supported, Stylus Studio uses the Java built-in processor
for code generation purposes. The processor specified in the scenario is not
changed.

Parameter Values By default, parameter values are treated as a literal string. If you prefer to
have parameter values treated as XPath expressions in the generated code,
check the Parameter value is an XPath expression (not a string)
checkbox.

Profiling Options Ignored.

Validation You can use the following validation engines for validating your XSLT
Java code:

● Saxon

● Java built-in

If you choose a validation engine that is not supported, Stylus Studio uses
the Java built-in validation engine.

Post-process Only post-processing using Apache FOP and RenderX XEP is specified in
the generated code. Resulting PDF is written to the output URL specified
on the General tab.
Stylus Studio User Guide 495

Working with XSLT
Java Code Generation Settings
When you generate Java code for an XSLT transformation, Stylus Studio displays the
Java Code Generation dialog box.

You use this dialog box to specify

● The target directory in which you want the Java code created. c:\temp\myJavaCode,
for example. If the directory you name does not exist, Stylus Studio creates it when
you run the Code Generation wizard.

The default is a \sources directory created in your Windows user data directory –
C:\Documents and Settings\sula\My Documents\Stylus Studio\sources , for
example.

● Optionally, a package name. If you specify a package name, this name is used for a
subfolder created in the target directory you specify. If you specify myPackage as the
package name, for example, the generated code is written to
c:\temp\myJavaCode\myPackage. (Though optional, it is considered good practice to
create a package name.)

● The class name. Stylus Studio also uses the class name for the .java file created by
the Code Generation wizard. For example, if you provide the name myClass, Stylus
Studio creates c:\temp\myJavaCode\myPackage\myClass.java.

The default class name is taken from the XSLT file name.

● Whether or not you want to add the generated code to the current Stylus Studio
project. If you choose to add the generated code to the project, it creates a folder using
the package name you specify and places the .java file in that folder. If you do not

Figure 250. Java Code Generation Dialog Box
496 Stylus Studio User Guide

Generating Java Code for XSLT
specify a package name, the .java file is added directly below the project root in the
Project window.

How to Generate Java Code for XSLT

◆ To generate Java code for XSLT:

1. Open the XSLT file for which you want to generate Java code.

2. Define at least one scenario. The scenario must use the Saxon or Java built-in
processor. See Scenario Properties Used for Generating Code on page 494 for more
information.

3. Select the scenario for which you want to generate Java code.

4. Close the Scenario Properties dialog box.

5. Select XSLT > Generate Code > Generate Java Code from the Stylus Studio menu.

The Generate Java Code dialog box appears. (See Figure 250 on page 496.)

6. Specify the settings you want for the target directory, package and class names, and
so on. See Java Code Generation Settings if you need help with this step.

7. Click OK.

Stylus Studio generates Java code for the XSLT. When the code generation is
complete, the resulting file (classname.java) is opened in the Stylus Studio Java
Editor.
Stylus Studio User Guide 497

Working with XSLT
Compiling Generated Code
The generated code contains a commented list of the DLL files required in order to
compile.

How to Compile and Run Java Code in Stylus Studio

◆ To compile Java code in Stylus Studio:

1. Make sure the Java Editor is the active window.

2. Click the Compile button ().

Alternatives: Press Ctrl + F7, or select Java > Compile from the Stylus Studio menu.

Stylus Studio compiles the Java code. Results are displayed in the Output window.

◆ To run Java code in Stylus Studio:

1. Make sure the Java Editor is the active window.

2. Click the Run button ().

Alternatives: Press Ctrl + F5, or select Java > Run from the Stylus Studio menu.

If the code has not been compiled, Stylus Studio displays a prompt asking if you want
to compile the code now. Otherwise, Stylus Studio runs the Java code. Results are
displayed in the Output window.

Deploying Generated Code
If your XSLT uses built-in DataDirect XML Converters – to convert CSV or EDI to
XML, for example – you need to purchase licenses for the DataDirect XML Converters
you wish to use if you wish to deploy your code in any environment on a machine (such
as a test or application server) that does not have a license for the DataDirect XML
Converters. Licenses for DataDirect XML Converters are purchased separately from
Stylus Studio XML Enterprise Suite.

Write Stylus Studio at stylusstudio@stylusstudio.com, or call 781.280.4488 for more
information.
498 Stylus Studio User Guide

Generating C# Code for XSLT
Generating C# Code for XSLT

You can generate C# code for XSLT transformations in Stylus Studio. This section
describes the generated code, scenario settings that affect the generated code, as well as
procedures for generating, compiling, and running generated code.

This section covers the following topics:

● What Does Stylus Studio Generate?

● Scenario Properties Used for Generating Code

● C# Code Generation Settings

● How to Generate C# Code for XSLT

● Compiling Generated Code

● Deploying Generated Code

What Does Stylus Studio Generate?
Stylus Studio generates a C# application that implements the XSLT represented by the
current XSLT transformation using settings from the current scenario. The C# code can
be compiled and run within Stylus Studio.

Scenario Properties Used for Generating Code
When you generate code for XSLT, Stylus Studio uses some of the information associated
with the active XSLT scenario, as specified in the Scenario Properties dialog box.

C# code generation is available only in Stylus Studio XML Enterprise Suite
.

Tip You can also generate:

● Java code for XSLT. See Generating Java Code for XSLT

● C# code for XQuery. See Generating C# Code for XQuery
Stylus Studio User Guide 499

Working with XSLT
The following tables summarizes the scenario properties that affect code generation.

Table 62. Scenario Properties that Affect Code Generation

Tab Comment

General The Code Generation wizard uses only the Source XML URL and the
Output URL field, if specified. All other properties on this page are
ignored.

Processor You can use the following XSLT processors for generating Java code:

● Microsoft XslCompiledTransform

● Saxon

Note: If the scenario specifies an XSLT processor for which C# code
generation is not supported, Stylus Studio uses the Microsoft
XslCompiledTransform processor for code generation purposes. The
processor specified in the scenario is not changed.

Parameter Values By default, parameter values are treated as a literal string. If you prefer to
have parameter values treated as XPath expressions in the generated code,
check the Parameter value is an XPath expression (not a string)
checkbox.

Profiling Options Ignored.

Validation You can use the following validation engines for validating your XSLT C#
code:

● .NET XML Parser

● Saxon

If you choose a validation engine that is not supported, Stylus Studio uses
the .NET XML parser.

Post-process Only post-processing using Apache FOP and RenderX XEP is specified in
the generated code. Resulting PDF is written to the output URL specified
on the General tab.
500 Stylus Studio User Guide

Generating C# Code for XSLT
C# Code Generation Settings
When you generate C# code for an XSLT transformation, Stylus Studio displays the C#
Code Generation dialog box.

You use this dialog box to specify

● The target directory in which you want the C# code created. c:\temp\myC#Code, for
example. If the directory you name does not exist, Stylus Studio creates it when you
run the Code Generation wizard.

The default is a \sources directory created in your Windows user data directory –
C:\Documents and Settings\sula\My Documents\Stylus Studio\sources , for
example.

● Optionally, a namespace name. If you specify a namespace name, this name is used
for a subfolder created in the target directory you specify. If you specify
myNamespace as the package name, for example, the generated code is written to
c:\temp\myC#Code\myNamespace. (Though optional, it is considered good practice to
create a namespace name.)

Figure 251. C# Code Generation Dialog Box
Stylus Studio User Guide 501

Working with XSLT
● The class name. Stylus Studio also uses the class name for the .cs file created by the
Code Generation wizard. For example, if you provide the name myClass, Stylus
Studio creates c:\temp\myC#Code\myNamespace\myClass.cs.

the default class name.

● The location of Saxon .NET on your system. Stylus Studio adds this URL to the
Microsoft Visual Studio 2005 project, allowing the generated C# code for .NET to
compile.

● Whether or not you want the resulting .cs file to contain a static void Main(String
[] args) method.

● Whether or not you want to open the generated code in a third-party development
tool, like Microsoft Visual Studio, for example.

● Whether or not you want add the class to a new Visual Studio 2005 project or update
an existing one. If a new project is created, it is automatically opened with whatever
application is registered to open .csproj files. The .csproj file contains all the
necessary references to the generated .cs file, as well as all the .dll files that the .cs
file requires.

To run the .cs file, simply press Ctrl+F5 in Visual Studio.

How to Generate C# Code for XSLT

◆ To generate C# code for XSLT:

1. Open the XSLT for which you want to generate C# code.

2. Define at least one scenario for the XSLT transformation. The scenario must use the
Saxon processor. See Scenario Properties Used for Generating Code for more
information.

3. Select the scenario for which you want to generate C# code.

4. Close the Scenario Properties dialog box.

5. Select XSLT > Generate Code > Generate C# Code from the Stylus Studio menu.

The Generate C# Code dialog box appears. (See Figure 251 on page 501.)

6. Specify the settings you want for the target directory, package and class names, and
so on. See C# Code Generation Settings if you need help with this step.

7. Click OK.
502 Stylus Studio User Guide

Generating C# Code for XSLT
Stylus Studio generates C# code for the XSLT. When the code generation is
complete, the resulting file (classname.cs) is opened in a third-party editor if you
chose the Open the generated file option.

Compiling Generated Code
The generated code contains a commented list of the DLL files required in order to
compile.

Deploying Generated Code
If your XSLT uses built-in DataDirect XML Converters – to convert CSV or EDI to
XML, for example – you need to purchase licenses for the DataDirect XML Converters
you wish to use if you wish to deploy your code in any environment on a machine (such
as a test or application server) that does not have a license for the DataDirect XML
Converters. Licenses for DataDirect XML Converters are purchased separately from
Stylus Studio XML Enterprise Suite.

Write Stylus Studio at stylusstudio@stylusstudio.com, or call 781.280.4488 for more
information.
Stylus Studio User Guide 503

Working with XSLT
XSLT Instructions Quick Reference
This section provides a quick reference for the XSLT instructions supported by the Stylus
Studio XSLT processor.

For more information on

● XSLT 1.0, go to http://www.w3.org/TR/xslt

● XSLT 2.0, go to http://www.w3.org/TR/xslt/20

This section covers the following instructions:

● xsl:apply-imports on page 506

● xsl:apply-templates on page 506

● xsl:attribute on page 507

● xsl:attribute-set on page 508

● xsl:call-template on page 510

● xsl:character-map on page 511

● xsl:choose on page 513

● xsl:comment on page 514

● xsl:copy on page 514

● xsl:copy-of on page 515

● xsl:decimal-format on page 516

● xsl:element on page 517

● xsl:fallback on page 518

● xsl:for-each on page 518

● xsl:for-each-group on page 520

● xsl:function on page 521

● xsl:if on page 522

● xsl:import on page 523

● xsl:import-schema on page 523

● xsl:include on page 525

● xsl:key on page 526

● xsl:message on page 527

● xsl:namespace-alias on page 527

● xsl:number on page 528
504 Stylus Studio User Guide

http://www.w3.org/TR/xslt20
http://www.w3.org/TR/xslt

XSLT Instructions Quick Reference
● xsl:otherwise on page 529

● xsl:output on page 529

● xsl:output-character on page 531

● xsl:param on page 532

● xsl:preserve-space on page 533

● xsl:processing-instruction on page 533

● xsl:sequence on page 534

● xsl:sort on page 535

● xsl:strip-space on page 537

● xsl:stylesheet on page 537

● xsl:template on page 538

● xsl:text on page 539

● xsl:transform on page 540

● xsl:value-of on page 540

● xsl:variable on page 541

● xsl:when on page 542

● xsl:with-param on page 542
Stylus Studio User Guide 505

Working with XSLT
xsl:apply-imports
Invokes overridden template rules.

Stylus Studio does not support the xsl:apply-imports instruction.

xsl:apply-templates
Selects source nodes for processing.

Format

Description

If you specify the select attribute, specify a pattern that resolves to a set of source nodes.
For each source node in this set, the XSLT processor searches for a template that matches
the node. When it finds a matching template, it instantiates it and uses the node as the
context node. For example:

When the XSLT processor executes this instruction, it constructs a list of all nodes that
match the pattern in the select attribute. For each node in the list, the XSLT processor
searches for the template whose match pattern best matches that node.

If you do not specify the select attribute, the XSLT processor uses the default pattern,
"node()", which selects all child nodes of the current node.

If you specify the mode attribute, the selected nodes are matched only by templates with a
matching mode attribute. The value of mode must be a qualified name or an asterisk (*). If
you specify an asterisk, it means continue the current mode, if any, of the current
template.

If you do not specify a mode attribute, the selected nodes are matched only by templates
that do not specify a mode attribute

<xsl:apply-templates [select="pattern"][mode="qname"]>
 [<xsl:sort/>]
 [<xsl:with-param/>
</xsl:apply-templates>

<xsl:apply-templates select="/bookstore/book">
506 Stylus Studio User Guide

XSLT Instructions Quick Reference
By default, the new list of source nodes is processed in document order. However, you
can use the xsl:sort instruction to specify that the selected nodes are to be processed in
a different order. See “xsl:sort” on page 535.

Example

In the previous example, the XSLT processor searches for a template that matches
/bookstore/book. The following template is a match:

The XSLT processor instantiates this template for each book element.

xsl:attribute
Creates an attribute.

Format

Description

You can specify the xsl:attribute instruction in the

● Contents of a stylesheet element that creates a result element

● Contents of an xsl:attribute-set instantiation

In a stylesheet element that creates a result element, the xsl:attribute instruction causes
an attribute to be added to the created result element.

The prefix part of the name attribute value becomes the prefix for the attribute you are
creating. The local part of the name attribute value becomes the local name of the attribute
you are creating.

Tip You can create an xsl:apply-templates element automatically using the XSLT mapper.

<xsl:template match="book">
 <tr>
 <td><xsl:value-of select="title"/></td>
 <td><xsl:value-of select="author"/><td>
 <td><xsl:value-of select="price"/><td>
 </tr>
</xsl:template>

<xsl:attribute name="qualified_name">
 attribute_value
</xsl:attribute>
Stylus Studio User Guide 507

Working with XSLT
The XSLT processor interprets the name attribute as an attribute value template. The string
that results from instantiating the attribute value template must be a qualified name. If it
is not, the XSLT processor reports an error.

The result of instantiating the content of the xsl:attribute instruction is used as the value
of the created attribute. It is an error if instantiating this content generates anything other
than characters.

If you add an attribute to an element and that element already has an attribute with the
same expanded name, the attribute you are creating replaces the existing attribute.

Example

If this instruction is inside a book element, the resulting book element would include the
following attribute:

The XSLT processor reports an error if you try to do any of the following:

● Add an attribute to a node that is not an element.

● Add an attribute to an element that already has child nodes.

● Create anything other than characters during instantiation of the contents of the
xsl:attribute element.

xsl:attribute-set
Defines a named set of attributes.

Format

<xsl:attribute name="library:ISBN"
 namespace="http://www.library.org/namespaces/library">
 1-2222-333-4
</xsl:attribute>

library:ISBN="1-22222-333-4"

<xsl:attribute-set name="set_name">
 <xsl:attribute name="attr_name">attr_value</xsl:attribute>
 <xsl:attribute name="attr_name">attr_value</xsl:attribute>
 ...
</xsl:attribute-set>
508 Stylus Studio User Guide

XSLT Instructions Quick Reference
Description

The name attribute specifies the name of the attribute set. This must be a qualified name.
The contents of the xsl:attribute-set element consists of zero or more xsl:attribute
elements. Each xsl:attribute element specifies an attribute in the set.

To use an attribute set, specify the use-attribute-sets attribute in one of the following
elements:
● xsl:element

● xsl:copy

● xsl:attribute-set

The value of the use-attribute-sets attribute is a white-space-separated list of names of
attribute sets. When you specify the use of an attribute set, it is equivalent to adding an
xsl:attribute element for each attribute in each named attribute set to the beginning of
the contents of the element in which you specify the use-attribute-sets attribute.

An attribute set cannot include itself. In other words, if attribute set A specifies the use-
attribute-sets attribute, the list of attribute sets to use cannot include attribute set A.

You can also specify an attribute set in an xsl:use-attribute-sets attribute on a literal
result element. The value of the xsl:use-attribute-sets attribute is a white-space-
separated list of names of attribute sets. The xsl:use-attribute-sets attribute has the
same effect as the use-attribute-sets attribute on xsl:element with one additional rule.
The additional rule is that attributes specified on the literal result element itself are treated
as if they were specified by xsl:attribute elements before any actual xsl:attribute
elements but after any xsl:attribute elements implied by the xsl:use-attribute-sets
attribute.

Thus, for a literal result element, attributes from attribute sets named in an xsl:use-
attribute-sets attribute are added first, in the order listed in the attribute. Next, attributes
specified on the literal result element are added. Finally, any attributes specified by
xsl:attribute elements are added. Since adding an attribute to an element replaces any
existing attribute of that element with the same name, this means that attributes specified
in attribute sets can be overridden by attributes specified on the literal result element
itself.

The template within each xsl:attribute element in an xsl:attribute-set element is
instantiated each time the attribute set is used. It is instantiated using the same current
node and current node list as is used for instantiating the element bearing the use-
attribute-sets or xsl:use-attribute-sets attribute. However, it is the position in the
stylesheet of the xsl:attribute element rather than of the element bearing the use-
Stylus Studio User Guide 509

Working with XSLT
attribute-sets or xsl:use-attribute-sets attribute that determines which variable
bindings are visible. Consequently, only variables and parameters declared by top-level
xsl:variable and xsl:param elements are visible.

The XSLT processor merges multiple definitions of an attribute set with the same
expanded name. If there are two attribute sets with the same expanded name that both
contain the same attribute, the XSLT processor chooses the attribute definition that was
specified last in the stylesheet.

Example

The following example creates a named attribute set, title-style, and uses it in a
template rule:

xsl:call-template
Instantiates a named template.

Format

Description

The name attribute is required and the value must be a qualified name. It specifies the name
of the template you want to instantiate. The template you want to instantiate must specify
the name attribute with a value identical to template_name.

Unlike the xsl:apply-templates instruction, the xsl:call-template instruction does not
change the current node.

<xsl:template match="chapter/heading">
 <fo:block quadding="start" xsl:use-attribute-sets="title-style">
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>
 <xsl:attribute-set name="title-style">
 <xsl:attribute name="font-size">12pt</xsl:attribute>
 <xsl:attribute name="font-weight">bold</xsl:attribute>
</xsl:attribute-set>

<xsl:call-template name="template_name">
 [<xsl:with-param/>]
</xsl:apply-templates>

Tip You can create an xsl:call-template element automatically using the XSLT mapper.
510 Stylus Studio User Guide

XSLT Instructions Quick Reference
xsl:character-map
Declares a character map defined by a unique name. A stylesheet cannot contain two or
more character maps with the same name. Character maps are supported by XSLT 2.0
only.

Format

Description

A character map allows a specific character appearing in a text or attribute node in the
final result tree to be substituted by a specified string of characters during serialization.
The character map that is supplied as a parameter to the serializer is determined from the
xsl:character-map elements referenced from the xsl:output declaration for the selected
output definition.

Character/string mappings can be defined in the body of the xsl:character-map element
using one or more xsl:output-character elements, or they can be defined in an external
character map referenced using the optional use-character-maps attribute. If the character
map references multiple external character maps, separate each character map’s Qname
with a space.

An output definition, after recursive expansion of character maps referenced via its use-
character-maps attribute, may contain several mappings for the same character. In this
situation, the last character mapping takes precedence.

If a character is mapped, it is not subjected to XML or HTML escaping.

Tip Character maps are an alternative to defining character entities using a DTD, which was
required by XSLT 1.0.

<xsl:character-map
 name = qname
 [use-character-maps = qnames]>
 [<xsl:output-character> ...]
</xsl:character-map>
Stylus Studio User Guide 511

Working with XSLT
Example

This example shows a composite character map – one constructed using both internally
defined character mappings (xsl:output-character), and references to externally defined
character maps (the use-character-maps attribute):

<xsl:output name="htmlDoc" use-character-maps="htmlDoc" />

<xsl:character-map name="htmlDoc"
 use-character-maps="html-chars doc-entities windows-format" />

<xsl:character-map name="html-chars"
 use-character-maps="latin1 ..." />

<xsl:character-map name="latin1">
 <xsl:output-character character=" " string="&nbsp;" />
 <xsl:output-character character="¡" string="&iexcl;" />
 ...
</xsl:character-map>

<xsl:character-map name="doc-entities">
 <xsl:output-character character="" string="&t-and-c;" />
 <xsl:output-character character="" string="&chap1;" />
 <xsl:output-character character="" string="&chap2;" />
 ...
</xsl:character-map>

<xsl:character-map name="windows-format">
 <!-- newlines as CRLF -->
 <xsl:output-character character="
" string="
" />

 <!-- tabs as three spaces -->
 <xsl:output-character character="	" string=" " />

 <!-- images for special characters -->
 <xsl:output-character character=""
 string="" />
 <xsl:output-character character=""
 string="" />
 ...
</xsl:character-map>
512 Stylus Studio User Guide

XSLT Instructions Quick Reference
xsl:choose
Selects one template to instantiate from a group of templates.

Format

Description

An xsl:choose element contains one or more xsl:when elements followed by zero or one
xsl:otherwise element. Each xsl:when element contains a required test attribute, whose
value is an expression. Each xsl:when and xsl:otherwise element contains a template.

When the XSLT processor processes an xsl:choose element, it starts by evaluating the
expression in the first xsl:when element. The XSLT processor converts the result to a
Boolean value. If the result is true, the XSLT processor instantiates the template
contained by that xsl:when element. If the result is false, the XSLT processor evaluates
the expression in the next xsl:when element.

The XSLT processor instantiates the template of only the first xsl:when element whose
test expression evaluates to true. If no expressions evaluate to true and there is an
xsl:otherwise element, the XSLT processor instantiates the template in the
xsl:otherwise element.

If no expressions in xsl:when elements are true and there is no xsl:otherwise element,
the xsl:choose element has no effect.

<xsl:choose>
 <xsl:when test="expression1">
 template_body
 </xsl:when>
 [<xsl:when test="expression2">
 template_body
 </xsl:when>] ...
 [<xsl:otherwise>
 template_body
 </xsl:otherwise>]
</xsl:choose>

Tip You can create an xsl:choose element automatically using the XSLT mapper.
Stylus Studio User Guide 513

Working with XSLT
xsl:comment
Adds a comment node to the result tree.

Format

Description

The XSLT processor instantiates the contents of the instruction to generate the text of the
new comment.

The XSLT processor reports an error if instantiating the contents of the xsl:comment
instruction creates anything other than characters, or if the resulting string contains the
substring "--" or ends with "-".

Example

The following instruction creates a comment in the result document:

The comment is

xsl:copy
Adds a copy of the current node to the result tree.

Format

Description

The copy includes the current node’s namespace information but does not include the
current node’s attributes or children. The contents of the xsl:copy element is a template
for the attributes and children of the node being created. If the current node cannot have

<xsl:comment>
 comment_text
</xsl:comment>

<xsl:comment>Unique Irish band</xsl:comment>

<!--Unique Irish band-->

<xsl:copy>copy_contents</xsl:copy>
514 Stylus Studio User Guide

XSLT Instructions Quick Reference
attributes or children (that is, if it is an attribute, text, comment, or processing instruction
node), the content of the instruction is ignored.

If the current node is the root node, the XSLT processor does not create a root node.
Instead, it uses copy_contents as a template.

Example

Following is an example from the W3C XSLT Recommendation. It generates a copy of
the source document.

xsl:copy-of
Inserts the value of an expression into the result tree, without first converting it to a string.

Format

Description

The required select attribute contains an expression. When the result of evaluating the
expression is a result tree fragment, the XSLT processor copies the complete fragment
into the result tree. When the result is a node set, the XSLT processor copies all nodes in
the set, together with their contents, in document order into the result tree. When the result
is of any other type, the XSLT processor converts the result to a string and then inserts the
string into the result tree in the same way that xsl:value-of does.

<xsl:template match="@* | node() ">
 <xsl:copy>
 <xsl:apply-templates select="@* | node() " />
 </xsl:copy>
</xsl:template>

<xsl:copy-of select = "expression" />

Tip You can also use xsl:sequence to add atomic values to a sequence. See xsl:sequence on
page 534 for more information.
Stylus Studio User Guide 515

Working with XSLT
xsl:decimal-format
Declares a decimal format.

Format

Description

The xsl:decimal-format instruction declares a decimal format, which controls the
interpretation of a format pattern that is used by the format-number() function.

If there is a name attribute, the element declares a named decimal format. Otherwise, it
declares the default decimal format. The value of the name attribute is a qualified name.

The other attributes on xsl:decimal-format correspond to the methods on the JDK
DecimalFormatSymbols class. For each get/set method pair, there is an attribute defined for
the xsl:decimal-format instruction.

The following attributes control the interpretation of characters in the format pattern and
specify characters that can appear in the result of formatting the number:

● decimal-separator specifies the character used for the decimal sign; the default value
is the dot character (.).

● grouping-separator specifies the character used as a grouping (for example,
thousands) separator; the default value is the comma character (,).

● percent specifies the character used as a percent sign; the default value is the percent
character (%).

● per-mille specifies the character used as a per mille sign; the default value is the
Unicode per mille character (#x2030).

● zero-digit specifies the character used as the digit zero; the default value is the digit
zero (0).

The following attributes control the interpretation of characters in the format pattern:

<xsl:decimal-format
 name = qname
 decimal-separator = char
 grouping-separator = char
 infinity = string
 minus-sign = char
 NaN = string
 percent = char
 per-mille = char
 zero-digit = char
 digit = char
 pattern-separator = char />
516 Stylus Studio User Guide

XSLT Instructions Quick Reference
● digit specifies the character used for a digit in the format pattern; the default value is
the number sign character (#).

● pattern-separator specifies the character used to separate positive and negative
subpatterns in a pattern; the default value is the semicolon character (;).

The following attributes specify characters or strings that can appear in the result of
formatting the number:

● infinity specifies the string used to represent infinity; the default value is the string
"Infinity".

● minus-sign specifies the character used as the default minus sign; the default value is
the hyphen (minus) character (-, #x2D).

● NaN specifies the string used to represent the NaN value; the default value is the string
"NaN".

xsl:element
Adds an element to the result tree.

Format

Description

The XSLT processor uses the contents of the xsl:element instruction as a template for the
attributes and contents of the new element.

The prefix part of the name attribute becomes the prefix for the element you are creating.
The local part of the name attribute becomes the local name of the element you are
creating.

The XSLT processor interprets the name attribute as an attribute value template. The string
that results from instantiating the attribute value template must be a qualified name. If it
is not, the XSLT processor reports an error.

<xsl:element name="qualified_name">
 element_contents
</xsl:element>
Stylus Studio User Guide 517

Working with XSLT
Example

The result of this instruction looks like the following:

xsl:fallback
Normally, instantiating an xsl:fallback element does nothing. However, when an XSLT
processor performs fallback for an instruction element, if the instruction element has one
or more xsl:fallback children, then the content of each of the xsl:fallback children must
be instantiated in sequence; otherwise, an error is signaled. The content of an
xsl:fallback element is a template.

xsl:for-each
Selects a set of nodes in the source document and instantiates the contained template once
for each node in the set.

Format

Description

The select attribute is required and the pattern must evaluate to a node set. The XSLT
processor instantiates the embedded template with the selected node as the current node
and with a list of all selected nodes as the current node list.

By default, the new list of source nodes is processed in document order. However, you
can use the xsl:sort instruction to specify that the selected nodes are to be processed in
a different order. See “xsl:sort” on page 535.

<xsl:element name="audio:CD">
 <xsl:element name="audio:title">Celtic Airs</xsl:element>
 <xsl:element name="audio:artist">Chieftains</xsl:element>
</xsl:element>

<audio:CD>
 <audio:title>Celtic Airs</audio:title>
 <audio:artist>Chieftains</audio:artist>
</audio:CD>

<xsl:for-each select="pattern">
 [<xsl:sort[select="expression"][optional_attribute]/>]
 template_body
</xsl:for-each>
518 Stylus Studio User Guide

XSLT Instructions Quick Reference
The xsl:for-each instruction is useful when the result document has a regular, known
structure. When you know that you want to instantiate the same template for each node in
the current node list, the xsl:for-each instruction eliminates the need to find a template
that matches each node.

Example

For example, suppose your source document includes the following XML:

The following stylesheet creates an HTML document that contains a list of authors. Each
author is followed by the titles of the books the author wrote. It does not matter how many
authors there are nor how many titles are associated with each author. The stylesheet uses
the xsl:for-each instruction to process each author and to process each title associated
with each author.

Tip You can create an xsl:for-each element automatically using the XSLT mapper.

<books>
 <author>
 <name>Sara Peretsky</name>
 <booktitle>Bitter Medicine</booktitle>
 <booktitle>Killing Orders</booktitle>
 </author>
 <author>
 <name>Dick Francis</name>
 <booktitle>Reflex</booktitle>
 <booktitle>Proof</booktitle>
 <booktitle>Nerve</booktitle>
 </author>
</books>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:template match = "/">
 <html>
 <head><title>Authors and Their Books</title></head>
 <body>
 <xsl:for-each select = "books/author">
 <p>
 <xsl:value-of select = "name"/>

 <xsl:for-each select = "booktitle">
 <xsl:value-of select = "."/>

 </xsl:for-each>
 </p>
 </xsl:for-each>
 </body>
 </html>
</xsl:template>
</xsl:stylesheet>
Stylus Studio User Guide 519

Working with XSLT
The result document looks like this:

xsl:for-each-group
Allocates the items in an input sequence into groups of items (that is, it establishes a
collection of sequences) based either on common values of a grouping key, or on a pattern
that the initial or final node in a group must match.

Format

Description

The xsl:for-each-group element is an instruction that can be used anywhere within a
sequence constructor. The sequence of items to be grouped is referred to as a population.
A group cannot be empty. If the population is zero (that is, empty), the number of groups
is zero. How items are assigned to groups is determined by the group-by, group-adjacent,
group-starting-with, and group-ending-with attributes.

<html>
<head>
<title>Authors and Their Books</title>
</head>
<body>
<p>
Sara Peretsky

Bitter Medicine

Killing Orders

</p>
<p>
Dick Francis

Reflex

Proof

Nerve

</p>
</body>
</html>

<xsl:for-each-group
 select = expression
 [group-by = expression]
 [group-adjacent = expression]
 [group-starting-with = pattern]
 [group-ending-with = pattern]
 [collation = { uri }>
 <!-- Content: (xsl:sort*, sequence-constructor) -->
</xsl:for-each-group>
520 Stylus Studio User Guide

XSLT Instructions Quick Reference
xsl:function
Allows the creation of user-defined stylesheet function that can be called from any XPath
expression within the stylesheet in which the function is defined. This instruction is
supported in XSLT 2.0 only.

Format

Description

The value of the name attribute, Qname, is a qualified name and takes the form prefix:name.
The prefix is required in order to avoid possible conflicts with any functions in the default
function namespace. The prefix cannot refer to a reserved namespace.

The function_body contains zero or more xsl:param elements that specify the formal
arguments of the function. These xsl:param elements are followed by a sequence
constructor that defnes the value to be returned by the function. The xsl:param elements
within an xsl:function element must be empty; they cannot have a select attribute
because they must be specified.

An xsl:function declaration can only appear as a top-level element in a stylesheet.

<xsl:function name=”Qname" as=”sequence type” [override=”yes” | “no”]>
function_body
</xsl:function>
Stylus Studio User Guide 521

Working with XSLT
Example

Here is an example from the W3C XSLT Working Draft of a simple function that reverses
the order of the words in a sentence.

xsl:if
Conditionally instantiates the contained template body.

Format

Description

The XSLT processor evaluates the expression and converts the result to a Boolean value.
If the result is true, the XSLT processor instantiates template_body. If the result is false,
the xsl:if element has no effect.

<xsl:transform
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:str="http://example.com/namespace"
 version="2.0"
 exclude-result-prefixes="str">

<xsl:function name="str:reverse" as="xs:string">
 <xsl:param name="sentence" as="xs:string"/>
 <xsl:sequence
 select="if (contains($sentence, ' '))
 then concat(str:reverse(substring-after($sentence, ' ')),
 ' ',
 substring-before($sentence, ' '))
 else $sentence"/>
</xsl:function>

<xsl:template match="/">
<output>
 <xsl:value-of select="str:reverse('DOG BITES MAN')"/>
</output>
</xsl:template>

</xsl:transform>

<xsl:if test = "expression">
template_body
</xsl:if>
522 Stylus Studio User Guide

XSLT Instructions Quick Reference
Example

This following example formats a group of names as a comma-separated list:

If you want the XSLT processor to choose which template to instantiate from several
possibilities, specify the xsl:choose instruction. See “xsl:choose” on page 513.

xsl:import
Imports a stylesheet into the stylesheet containing this instruction.

Format

stylesheet_path specifies the stylesheet you want to import. Specify a URL, a relative
path, or a DOS-style path.

Description

An XSLT stylesheet can import another XSLT stylesheet by using an xsl:import
instruction. Importing a stylesheet is the same as including it, except that definitions and
template rules in the importing stylesheet take precedence over template rules and
definitions in the imported stylesheet.

The xsl:import element is only allowed as a top-level element. The xsl:import element
children must precede all other element children of an xsl:stylesheet element, including
any xsl:include element children. When xsl:include is used to include a stylesheet, any
xsl:import elements in the included document are moved up in the including document
to after any existing xsl:import elements in the including document.

When you use the xsl:import instruction, templates have an importance property.

xsl:import-schema
Identifies schema components (top-level type definitions and top-level element and
attribute declarations) that need to be available statically, that is, before any source

<xsl:template match="namelist/name">
 <xsl:value-of select="." />
 <xsl:if test="not(position()=last())">, </xsl:if>
</xsl:template>

<xsl:import href="stylesheet_path">
Stylus Studio User Guide 523

Working with XSLT
document is available. Allows you to extend XSLT built-in types with the types defined
in the imported XML Schema.

Format

Description

The xsl:import-schema declaration identifies a namespace containing the names of the
components to be imported (or indicates that components whose names are in no
namespace are to be imported). The effect is that the names of top-level element and
attribute declarations and type definitions from this namespace (or non-namespace)
become available for use within XPath expressions in the stylesheet, and within other
stylesheet constructs such as the type and as attributes of various XSLT elements.

The same schema components are available in all stylesheet modules; importing
components in one stylesheet module makes them available throughout the stylesheet.

The namespace and schema-location elements are optional. The namespace attribute
indicates that a schema for the given namespace is required by the stylesheet. This
information may be enough on its own to enable an implementation to locate the required
schema components. The namespace attribute may be omitted to indicate that a schema for
names in no namespace is being imported. The zero-length string is not a valid namespace
URI, and is therefore not a valid value for the namespace attribute.

The schema-location attribute is a URI Reference that describes where a schema
document or other resource containing the required definitions may be found. It is likely
that a schema-aware XSLT processor will be able to process a schema document found
at this location.

The use of a namespace in an xsl:import-schema declaration does not by itself associate
any namespace prefix with the namespace. If names from the namespace are used within
the stylesheet module then a namespace declaration must be included in the stylesheet
module, in the usual way.

You can also define an inline schema document using the xs:schema element as a child of
xsl:import-schema. An inline schema document has the same status as an external schema
document, in the sense that it acts as a hint for a source of schema components in the

<xsl:import-schema
 namespace = uri-reference
 schema-location = uri-reference>
 <!-- Content: xs:schema -->
</xsl:import-schema>
524 Stylus Studio User Guide

XSLT Instructions Quick Reference
relevant namespace. To ensure that the inline schema document is always used, it is
advisable to use a target namespace that is unique to this schema document.

Example

The following example shows an inline schema document defined using the xs:schema
subelement. This schema declares a simple type local:yes-no, which the stylesheet then
uses in the declaration of a variable. The example assumes the namespace declaration
xmlns:local="http://localhost/ns/yes-no".

xsl:include
Specifies an XSLT stylesheet that is included in and combined with the stylesheet that
specifies xsl:include.

Format

Description

The xsl:include instruction must be a child of an xsl:stylesheet element. The XSLT
processor effectively replaces the xsl:include instruction with the children of the root
xsl:stylesheet element of the included stylesheet. If the root element of the included
stylesheet is a literal result element, the XSLT processor effectively replaces the
xsl:include instruction with the following new element whose only child is that literal
result element:

A stylesheet cannot include itself directly or indirectly.

<xsl:import-schema>
 <xs:schema targetNamespace="http://localhost/ns/yes-no">
 <xs:simpleType name="local:yes-no">
 <xs:restriction base="xs:string">
 <xs:enumeration value="yes"/>
 <xs:enumeration value="no"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>
</xs:import-schema>

<xs:variable name="condition" select="'yes'" as="local:yes-no"/>

<xsl:include href="stylesheet_path">

<xsl:template match="/">
Stylus Studio User Guide 525

Working with XSLT
xsl:key
Declares a key for a document.

Format

Description

Keys provide a way to work with documents that contain an implicit cross-reference
structure. A stylesheet declares a key for a document with the xsl:key instruction.

The xsl:key instruction must be a top-level element. It has no contents, but it specifies
three attributes.

Replace qname with the name of the key. You must specify a qualified name.

Replace pattern with a pattern that identifies one or more nodes that have this key. In
other words, the nodes in the document that match the pattern are included in the key. The
default is node().

Replace use with an expression that you want to use for the key values. The XSLT
processor evaluates the expression once for each node in the set identified by pattern.

Each key name represents a separate, independent set of identifiers. Each node included
in a key is associated with a set of string key values. These values result from evaluating
the use expression with that node as the current node.

A document can contain multiple keys with the same node and the same key name, but
with different key values. A document can contain multiple keys with the same key name
and value, but with different nodes. In other words:

● A node can be included in more than one key.

● For a given key, a key value can be associated with more than one node.

● The same key value can be associated with different nodes in different keys.

The value of a key can be an arbitrary string. It need not be a name.

Use the XSLT key() function to retrieve the list of nodes included in a given key that have
given key values. See “Finding an Element with a Particular Key” on page 804.

You cannot specify multiple declarations for the same key in a stylesheet. Stylus Studio
expects to remove this restriction in a future release.

<xsl:key name="qname"
match = "pattern"
use = "use" />
526 Stylus Studio User Guide

XSLT Instructions Quick Reference
xsl:message
Sends a message in a way that is dependent on the XSLT processor.

Format

Description

The content of the xsl:message instruction is a template. If the value of the terminate
attribute is yes, the XSLT processor instantiates the template to create text. The processor
aborts stylesheet processing and sends the text as part of the error message that indicates
that stylesheet processing has terminated.

The default value of the terminate attribute is no. If you specify terminate="no" or if you
do not specify the terminate attribute,

xsl:namespace-alias
Causes the namespace URI to be changed in the output.

Format

Description

Declares that one namespace URI is an alias for another namespace URI. When a literal
namespace URI has been declared to be an alias for another namespace URI, then the
namespace URI in the result tree is the namespace URI that the literal namespace URI is
an alias for, instead of the literal namespace URI itself.

<xsl:message terminate="yes" | "no">
 <!-- Content: template -->
</xsl:message>

<xsl:namespace-alias
 stylesheet-prefix = prefix | "#default"
 result-prefix = prefix | "#default" />
Stylus Studio User Guide 527

Working with XSLT
xsl:number
Inserts a formatted number into the result tree.

Format

Description

You can use the value attribute to specify an expression for the number to be inserted. The
XSLT processor evaluates the expression. The resulting object is converted to a number
as if by a call to the number() function. The processor rounds the number to an integer and
then uses the specified attributes to convert it to a string. The value of each attribute is
interpreted as an attribute value template. After conversion, the resulting string is inserted
in the result tree.

The following attributes control how the current node is to be numbered:

● The level attribute specifies what levels of the source tree should be considered. The
default is single.

● The count attribute is a pattern that specifies what nodes should be counted at those
levels.

● The from attribute is a pattern that specifies where counting starts.

● The value attribute can specify an expression that represents the number you want to
insert. If no value attribute is specified, the XSLT processor inserts a number based
on the position of the current node in the source tree.

● The format attribute specifies the format for each number in the list. The default is 1.

● The lang attribute specifies which language’s alphabet is to be used.

● The letter-value attribute distinguishes between the numbering sequences that use
letters.

● The grouping-separator attribute specifies the separator used as a grouping (for
example, thousands) separator in decimal numbering sequences.

● The grouping-size attribute specifies the size of the grouping. Normally, this is 3.

<xsl:number
 [level = "single" | "multiple" | "any"]
 [count = pattern]
 [from = pattern]
 [value = number-expression]
 [format = {string}]
 [lang = {nmtoken}]
 [letter-value = {"alphabetic" | "traditional"}]
 [grouping-separator = {char}]
 [grouping-size = {number}]/>
528 Stylus Studio User Guide

XSLT Instructions Quick Reference
Example

The following example numbers a sorted list:

xsl:otherwise
See “xsl:choose” on page 513.

xsl:output
Specifies the output for the result tree.

Format

Description

The xsl:output instruction specifies how you want the result tree to be output. However,
if you use the XSLT processor to format the result as a string, or to generate DOM nodes,
the xsl:output instruction has no effect.

If you specify the xsl:output instruction, the XSLT processor outputs the result tree
according to your specification. If you specify it, the xsl:output instruction must be a
top-level element.

The attribute list can include the method attribute. The method attribute identifies the
overall method you want the XSLT processor to use to output the result tree. The value
must be xml, html, or text.

● xml formats the result tree as XML.

● html formats the result tree as HTML. The stylesheet applies special formatting rules
for empty tags, binary attributes, and character escaping, among other things. The
values of the attributes named href and src are URL encoded.

<xsl:template match="items">
 <xsl:for-each select="item">
 <xsl:sort select="."/>
<p>
 <xsl:number value="position()" format="1. "/>
 <xsl:value-of select="."/>
</p>
 </xsl:for-each>
</xsl:template>

<xsl:output attribute_list />
Stylus Studio User Guide 529

Working with XSLT
● text concatenates the text nodes in the result tree. The concatenated string does not
include any tags.

Note that the XSLT processor formats the results of applying the stylesheet. If your
stylesheet generates XML or HTML that does not follow all syntax rules, the XSLT
processor does not do anything to fix this. For example, if a stylesheet generates multiple
root elements, the XSLT processor neither fixes this nor generates an error. You receive
a string, and it is only upon examination or use of the string that you would learn that it is
not well-formed XML.

If you do not specify an xsl:output instruction that includes the method attribute, the
XSLT processor chooses a default as follows:

● html is the default output method if the name of the first element child of the root node
is html.

● text is the default output method if the root node has no element child nodes.

● xml is the default output method in all other cases.

The other attributes that you can specify in attribute_list provide parameters for the
output method. You can specify the following attributes:

● doctype-public specifies the public identifier to be used in the document type
declaration.

● doctype-system specifies the system identifier to be used in the document type
declaration.

● encoding specifies the preferred character encoding that the XSLT processor should
use to encode sequences of characters as sequences of bytes.

● indent specifies whether the XSLT processor can add additional white space when
outputting the result tree. The value must be yes or no.

● media-type specifies the media type (MIME content type) of the data that results from
outputting the result tree. Do not explicitly specify the charset parameter. Instead,
when the top-level media type is text, add a charset parameter according to the
character encoding actually used by the output method.

● omit-xml-declaration specifies whether the XSLT processor should omit or output
an XML declaration. The value must be yes or no. If you do not specify this attribute,
whether or not the output contains an XML declaration depends on the output
method.

❍ If the output method is html, the XSLT processor does not insert an XML
declaration.

❍ If the output method is xml, the XSLT processor inserts an XML declaration.
530 Stylus Studio User Guide

XSLT Instructions Quick Reference
The XSLT processor ignores this attribute when the output method is text.

● standalone specifies whether the XSLT processor should output a stand-alone
document declaration. The value must be yes or no.

● use-character-map specifies the name, if any, of the character map you want to use
for the output. A character map substitutes characters based on character/string
mappings declared in the xsl:character-map element.

A stylesheet can include multiple xsl:output elements. The XSLT processor effectively
merges multiple xsl:output elements into one xsl:output element. If there are multiple
values for the same attribute, the XSLT processor uses the last specified value.

In this release, the XSLT processor ignores the following attributes:

● cdata-section-elements specifies a list of the names of elements whose text node
children should be output using CDATA sections.

● version specifies the version of the output method.

xsl:output-character
Declares character/string mappings used by the xsl:character-map declaration.
xsl:output-character is supported in XSLT 2.0 only.

Format

Description

The character map that is passed as a parameter to the serializer contains a mapping for
the character specified in the character attribute to the string specified in the string
attribute.

Example

See xsl:character-map on page 511.

<xsl:output-character
 character = char
 string = string />
Stylus Studio User Guide 531

Working with XSLT
xsl:param
Declares a parameter for a stylesheet or template, and specifies a default value for the
parameter.

Format

Description

The xsl:param instruction declares a parameter and specifies its default value. Another
value can be passed to this parameter when the template or stylesheet that contains this
xsl:param instruction is invoked.

The xsl:param element must be a child of either an xsl:stylesheet or xsl:template
element.

The name attribute is required, and it must be a string. The value of the name attribute is a
qualified name.

The value that you bind to a parameter can be an object of any of the types that are
returned by expressions. You can specify the value of the parameter in several ways:

● Specify the select attribute. The value of the select attribute must be an expression.
The XSLT processor evaluates the expression, and the result is the default value of
the parameter. If you specify the select attribute, the XSLT processor ignores any
value you might specify for the expr attribute, and also ignores any contents of
xsl:param.

● Specify the expr attribute. The expr attribute allows computation of an expression.
For example:

The XSLT processor interprets the value of the expr attribute as an attribute value
template and uses the resulting string as if it were the value of the select attribute. If
you specify the expr attribute, the XSLT processor ignores any contents of xsl:param.

The use of the expr attribute is an extension to the XSLT specification.

<xsl:param name="parameter_name"
 [select = "expression1"]
 [expr = "expression2"]>
 [template_body]
</xsl:param>

<xsl:param name="query" expr="//VEHICLE[MAKE='{$make}']"/>
532 Stylus Studio User Guide

XSLT Instructions Quick Reference
● Specify template_body. The XSLT processor instantiates this template to obtain the
default value of the parameter.

● If you do not specify the select attribute, the expr attribute, or template_body, the
default value of the parameter is an empty string.

For any use of the xsl:param element, there is a region of the stylesheet tree within which
the binding is visible. This region includes the siblings that follow the xsl:param
instruction together with their descendants. Within this region, any binding of the
parameter that was visible on the xsl:param element itself is hidden. Thus, only the
innermost binding of a parameter is visible. The set of parameter bindings in scope for an
expression consists of those bindings that are visible at the point in the stylesheet where
the expression occurs.

The xsl:param instruction can be a top-level element. If it is, it declares a global parameter
that is visible to the entire stylesheet. When the XSLT processor evaluates the select or
expr attribute in a top-level xsl:param instruction, the current node is the root node of the
document.

Passing parameters to templates

Use the xsl:with-param instruction to pass a value for a parameter to a template. See
“xsl:with-param” on page 542.

xsl:preserve-space
The xsl:preserve-space instruction is not supported by Stylus Studio. If this instruction
is in a stylesheet, it is ignored.

xsl:processing-instruction
Adds a processing instruction node to the result tree.

Format

<xsl:processing-instruction name = "pi_name">
processing_instruction
</xsl:processing-instruction>
Stylus Studio User Guide 533

Working with XSLT
Description

The XSLT processor interprets the name attribute as an attribute value template, and uses
the resulting string as the target of the created processing instruction. The XSLT
processor then instantiates the contents of xsl:processing-instruction to generate the
remaining contents of the processing instruction.

Errors are reported under the following conditions:

● If the string that results from evaluating the name attribute is not both an NCName and a
PITarget (see the XSLT Recommendation). Also, the value of the name attribute
cannot be xml.

● If instantiation of the contents of the xsl:processing-instruction element creates
anything other than characters or if the resulting string contains the substring "?>".

Example

This instruction creates the following processing instruction in the result document:

xsl:sequence
Used within a sequence constructor to construct a sequence of nodes or atomic values.
The sequence is returned as a result of the instruction.

Format

Description

Unlike most other instructions, xsl:sequence can return a sequence containing existing
nodes, rather than constructing new nodes. The items comprising the result sequence are
selected using the select attribute. When xsl:sequence is used to add atomic values to a
sequence, the effect is very similar to the xsl:copy-of instruction.

<xsl:processing-instruction name = "xml-stylesheet">
 href="book.css" type="text/css"
</xsl:processing-instruction>

<?xml-stylesheet href="book.css" type="text/css"?>

<xsl:sequence
 select = expression>
 [xsl:fallback]
</xsl:sequence>
534 Stylus Studio User Guide

XSLT Instructions Quick Reference
Any optional xsl:fallback instructions are ignored by XSLT 2.0 processors, but they can
be included to define fallback behavior for XSLT 1.0 processors.

Example

This code produces the output, 37.

xsl:sort
Sorts the set of nodes selected by an xsl:apply-templates or xsl:for-each instruction.

Format

Description

The xsl:sort instruction must be the child of an xsl:apply-templates or xsl:for-each
instruction. Each xsl:apply-templates and xsl:for-each instruction can contain more
than one xsl:sort instruction. The first xsl:sort child specifies the primary sort key. The
second xsl:sort child, if any, specifies the secondary sort key, and so on.

When an xsl:apply-templates or xsl:for-each element contains an xsl:sort instruction,
the selected nodes are processed in the order specified by the xsl:sort instructions. When
xsl:sort elements are in an xsl:for-each element, they must appear first before all other
child elements.

You can specify the sort key by using the select attribute, whose value is an expression.
For each node selected by the xsl:apply-templates or xsl:for-each instruction, the
XSLT processor evaluates the expression using the node as the context node. The
resulting string is the sort key for that node. If you do not specify the select attribute, the
XSLT processor uses the string value of the node as the sort key.

When all sort keys for two nodes are equal, nodes remain in document order.

<xsl:variable name="values" as="xs:integer*">
 <xsl:sequence select="(1,2,3,4)"/>
 <xsl:sequence select="(8,9,10)"/>
</xsl:variable>
<xsl:value-of select="sum($values)"/>

<xsl:sort
 [select="expression" | expr="expression"]
 [optional_attribute]/>
Stylus Studio User Guide 535

Working with XSLT
The following optional attributes on xsl:sort determine how the XSLT processor sorts
the list of sort keys. The XSLT processor interprets each of these attribute values as an
attribute value template.

● data-type specifies the data type of the strings. The following values are allowed:

❍ text specifies that the sort keys should be sorted lexicographically. All text
sorting is based on Unicode text values.

❍ number specifies that the sort keys should be converted to numbers and then sorted
according to the numeric value. Sort keys that are strings that do not match the
syntax for numbers are sorted as zeros.

The default value is text.

● order specifies whether the strings should be sorted in ascending or descending order.
The default is ascending. If the value of the data-type attribute is text, ascending
means that keys are sorted in alphabetical order, and descending means that keys are
sorted in reverse alphabetical order. If the value of data-type is number, ascending
means that keys are sorted in increasing order, and descending means that keys are
ordered in descending order.

The XSLT processor can evaluate xsl:sort order at run time by using an attribute
value template. For example:

$order is a run-time specified attribute value template.

The XSLT processor ignores the lang and case-order attributes.

Example

The following example is from the W3C XSLT Recommendation. Suppose an employee
database has the following form:

<xsl:sort order="{$order)"

<employees>
 <employee>
 <name>
 <first>James</first>
 <last>Clark</last>
 </name>
...
 </employee>
</employees>
536 Stylus Studio User Guide

XSLT Instructions Quick Reference
The following stylesheet fragment sorts the list of employees by name:

xsl:strip-space
The xsl:strip-space instruction is not supported by Stylus Studio. If this instruction is in
a stylesheet, it is ignored.

xsl:stylesheet
Specifies the start of a stylesheet.

Format

Description

A stylesheet must specify the xsl:stylesheet element unless it contains only a literal
result element as the root element. The xsl:transform instruction is a synonym for
xsl:stylesheet.

All XSLT elements must appear between the <xsl:stylesheet> and </xsl:stylesheet>
tags. An element that is a child of an xsl:stylesheet element is a top-level element.

<xsl:template match="employees">

 <xsl:apply-templates select="employee">
 <xsl:sort select="name/last"/>
 <xsl:sort select="name/first"/>
 </xsl:apply-templates>

</xsl:template>
<xsl:template match="employee">

 <xsl:value-of select="name/first"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="name/last"/>

</xsl:template>

<xsl:stylesheet
xmlns:xsl="http:///www.w3.org/1999/XSL/Transform" version="1.0" >
 stylesheet_body
</xsl:stylesheet>
Stylus Studio User Guide 537

Working with XSLT
xsl:template
Specifies a template rule.

Format

Description

The match attribute is required except when you specify the name attribute. The pattern you
specify for the match attribute identifies the source node or set of source nodes to which
the template rule applies.

The optional name attribute specifies a name for the template. You can use the name of a
template to invoke it with the xsl:call-template instruction. The value you specify for
name must be a qualified name. If you specify a name attribute, a match attribute is not
required.

The optional mode attribute prevents the template from matching nodes selected by an
xsl:apply-templates instruction that specifies a different mode. The value of mode must
be a qualified name or an asterisk (*). If you specify an asterisk, it means match any node.

If an xsl:apply-templates instruction contains a mode attribute, the xsl:apply-templates
instruction can apply to only those xsl:template instructions that specify a mode attribute
with the same value. If an xsl:apply-templates instruction does not contain a mode
attribute, the xsl:apply-templates instruction can apply to only those xsl:template
instructions that do not specify a mode attribute.

If you specify the match and mode attributes, they have no effect if the template is
instantiated by the xsl:call-template instruction. If you specify the name attribute, you
can still instantiate the template as a result of an xsl:apply-templates instruction.

If two or more templates have the same name, Stylus Studio uses the template that appears
last in the stylesheet.

The template body contains literal results and XSLT instructions. The XSLT processor
instantiates the template body for each node identified by pattern. This means the XSLT
processor copies literal results to the result document and executes the XSLT instructions.

<xsl:template
 [match = "pattern"]
 [name = "qname"]
 [mode = "mode"]
 [priority = "priority"]>
 template_body
</xsl:template>
538 Stylus Studio User Guide

XSLT Instructions Quick Reference
If there is more than one matching template rule, the XSLT processor chooses the
matching template rule with the higher priority. If both have the same priority, the XSLT
processor chooses the one that occurs last in the stylesheet.

For examples and additional information about templates, see “Working with Templates”
on page 474.

xsl:text
Adds a text node to the result tree.

Format

Description

The XSLT processor reports an error if instantiating text_node_contents results in
anything other than characters.

You can also add text nodes to result documents by embedding the text in elements that
you define.

You can specify the disable-output-escaping attribute of the xsl:text instruction. The
allowed values are yes or no. The default is no. If the value is yes, the text node generated
by instantiating the xsl:text element is output without any escaping. For example:

This instruction generates the single character <.

Tip You can create an xsl:template element automatically using the XSLT mapper.

<xsl:text [disable-output-escaping="yes|no"]>
 text_node_contents
</xsl:text>

<xsl:text disable-output-escaping="yes"><</xsl:text>
Stylus Studio User Guide 539

Working with XSLT
Examples

The following fragment adds two text nodes by embedding text.

The next example specifies the xsl:text instruction:

xsl:transform
The xsl:transform instruction is a synonym for xsl:stylesheet. See “xsl:stylesheet” on
page 537.

xsl:value-of
Creates a new text node that contains the string value of an expression.

Format

Description

The XSLT processor evaluates expression and converts the result to a string. If the string
is not empty, a text node is created and added to the result. If the string is empty, the
xsl:value-of instruction has no effect.

You can specify the disable-output-escaping attribute of the xsl:value-of instruction.
The allowed values are yes and no. The default is no. If the value is yes, the text node
generated by instantiating the xsl:value-of element is output without any escaping.

<xsl:template match = "/">
 <html>
 <head><title>Authors and Their Books</title></head>
 <body>
 <intro>Books in stock are listed here.</intro>
 ...
 </body>
 </html>
</xsl:template>

<xsl:text>Following is a list of authors.</xsl:text>

<xsl:value-of select="expression"
 [disable-output-escaping="yes|no"]/>

Tip You can create an xsl:value-of element automatically using the XSLT mapper.
540 Stylus Studio User Guide

XSLT Instructions Quick Reference
Example

This example creates an HTML paragraph from an author element. The author element
has first-name and last-name children. The resulting paragraph contains the value of the
first first-name child element of the current node, followed by a space, followed by the
value of the first last-name child element of the current node.

xsl:variable
Declares a variable and binds a value to that variable.

Format

Description

The name attribute is required, and it must be a string. The value of the name attribute is a
qualified name.

The value that you bind to a variable can be an object of any of the types that are returned
by expressions. You can specify the value of the variable in several ways:

● Specify the select attribute. The value of the select attribute must be an expression.
The XSLT processor evaluates the expression, and the result is the value of the
variable. If you specify the select attribute, you must not specify any contents for the
xsl:variable instruction. In other words, do not specify template_body.

● Specify the expr attribute. It is interpreted as an attribute value template. It allows
computation of the value expression.

The expr attribute of the xsl:variable instruction is an extension of the XSLT
standard. If you want to use an XSLT processor other than the Stylus Studio
processor, you cannot specify the expr attribute in your stylesheet.

<xsl:template match = "author">
<p>
 <xsl:value-of select = "first-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select = "last-name"/>
</p>
</xsl:template>

<xsl:variable name="variable_name"
 [select = "expression2"]
 [expr = "expression3"]>
template_body
</xsl:variable>
Stylus Studio User Guide 541

Working with XSLT
● Specify template_body. The XSLT processor instantiates this template to obtain the
value of the variable. If you specify template_body, you must not specify the select
attribute.

● Specify none of the above. In this case, the value of the variable is an empty string.

The difference between the xsl:param and xsl:variable instructions is that xsl:param
defines a default value while xsl:variable defines a fixed value.

For any use of the xsl:variable element, there is a region of the stylesheet tree within
which the binding is visible. This region includes the siblings that follow the
xsl:variable instruction together with their descendants. Within this region, any binding
of the variable that is visible on the xsl:variable element itself is hidden. Thus, only the
innermost binding of a variable is visible. The set of variable bindings in scope for an
expression consists of those bindings that are visible at the point in the stylesheet where
the expression occurs.

The xsl:variable instruction can be a top-level element. If it is, it declares a global
variable that is visible to the entire stylesheet. When the XSLT processor evaluates the
select or expr attribute in a top-level xsl:variable instruction, the current node is the root
node of the document. The xsl:variable instruction is also allowed anywhere in a
template that an XSLT instruction is allowed.

xsl:when
See “xsl:choose” on page 513.

xsl:with-param
Passes a parameter value to a template.

Format

Description

The xsl:with-param instruction passes a parameter value to a template. If the template has
no matching xsl:param declaration, the XSLT processor ignores the parameter. The value
of parameter_name is a qualified name.

<xsl:with-param name = "parameter_name"
 [select = "expression1]"
</xsl:with-param>
542 Stylus Studio User Guide

XSLT Instructions Quick Reference
The name attribute is required, and it must be a string. The value of the name attribute is a
qualified name.

The value that you pass to a template can be an object of any of the types that are returned
by expressions. You can specify the value of the parameter in several ways:

● Specify the select attribute. The value of the select attribute must be an expression.
The XSLT processor evaluates the expression, and the result is the value of the
parameter. If you specify the select attribute, you must not specify any contents for
the xsl:with-param instruction. In other words, do not specify parameter_value.

● Specify the expr attribute. It is interpreted as an attribute value template. It allows
computation of the value expression.

● Specify parameter_value. If you specify parameter_value, you must not specify the
select or expr attribute.

● Specify none of the above. In this case, the value of the parameter is an empty string.

The xsl:with-param element must be a child of xsl:apply-templates or xsl:call-
template.

You can specify the xsl:with-param instruction in xsl:call-template and xsl:apply-
template instructions.

Example

Suppose you specify the following parameter for a template:

You can pass another value for this variable as follows:

<xsl:template name="Appendix">
 <xsl:param name = "heading"> 1. </xsl-param>
 ...
</xsl:template>

<xsl:call-template name = "Appendix">
 <xsl:with-param name = "heading"> A. </xsl:with-param>
</xsl:call-template>
Stylus Studio User Guide 543

Working with XSLT
544 Stylus Studio User Guide

Chapter 6 Creating XSLT Using the XSLT Mapper
In addition to writing XSLT manually in the XSLT text editor, Stylus Studio provides a
graphical tool, the XSLT mapper, that allows you quickly compose XSLT without writing
any code. This chapter describes the XSLT mapper, how to use it, and its relationship to
the XSLT displayed on the XSLT Source tab.

For a brief introduction to the mechanics of using the XSLT mapper and some of its
features, see “Using the XSLT Mapper – Getting Started” on page 82.

This chapter covers the following topics:

● “Overview of the XSLT Mapper” on page 546

● “Source Documents” on page 554

● “Target Structures” on page 561

● “Mapping Source and Target Document Nodes” on page 564

● “Working with XSLT Instructions in XSLT Mapper” on page 566

● “Processing Source Nodes” on page 573

● “Creating and Working with Templates” on page 580

● “Creating an XSLT Scenario” on page 582

The XSLT Mapper is available only in Stylus Studio XML Enterprise Suite and
Stylus Studio XML Professional Suite.
Stylus Studio User Guide 545

Creating XSLT Using the XSLT Mapper
Overview of the XSLT Mapper
The XSLT mapper helps you compose XSLT that aggregates data from one or more
source documents, regardless of their origin or XML. For example, an inventory
application might use information from multiple vendors, each of whom organizes
invoices in a different way. You can use the XSLT mapper to identify source documents,
map the relevant nodes from each to a target document, and in doing that define any
required XSLT instructions, XPath or Java functions, and logical operators graphically.

To use the XSLT mapper to create an XSLT stylesheet, you start by specifying one or
more source documents and one target document.

The Mapper tab consists of these areas:

● Source document pane, in which you add one or more source documents.

● Target structure pane, in which you specify the structure of the result you want the
XSLT to return.

Figure 252. Example of XSLT Mapper
546 Stylus Studio User Guide

Overview of the XSLT Mapper
● Mapper canvas, on which you can define conditions, functions, and operations for
source document nodes to filter return values that are then mapped to the target node.

● Source code pane (not shown in Figure 252). The source code pane allows you to
view the source code while using the mapper. This is a great way to see how changes
to the mapper affect the source, without the need to switch to the XSLT Source tab.
Of course, the XSLT Source tab is available if you prefer working with the source
using a full-page view. All views – Mapper tab, XSLT Source tab, and the source pane
– are synchronized. When displayed, the source pane spans the width of the XSLT
editor.

As you link elements and define XSLT instruction and function blocks in the mapper,
Stylus Studio composes XSLT for you, which is visible (and editable) any time you click
the XSLT editor’s XSLT Source tab. When you have finished mapping, you can apply the
stylesheet to XML documents that have the same schema as the source document. The
result document also has the same schema as the destination document.

As with the XSLT Source tab, you can preview XSLT results from the Mapper tab by
clicking the Preview Result button (). Debugging, however, can be performed from the
XSLT Source tab only.

This section covers the following topics:

● Example on page 547

● Graphical Support for Common XSLT Instructions and Expressions on page 548

● Setting Options for the XSLT Mapper on page 549

● Simplifying the Mapper Canvas Display on page 550

● Exporting Mappings on page 552

● Searching Document Panes on page 553

● Ensuring That Stylesheets Output Valid XML on page 553

Example
Suppose you open the XML mapper and select books.xml as the source document and
catalog.xml as the target document. You then map elements in the books.xml document
or structure to elements in the catalog.xml document or structure. The result is a
stylesheet that you can apply to books.xml and to other files that have a structure similar
to that of books.xml. When you apply this stylesheet, the result is an XML document
whose structure is consistent with that of catalog.xml.
Stylus Studio User Guide 547

Creating XSLT Using the XSLT Mapper
Now suppose you want to apply a stylesheet to catalog.xml and output an XML file that
has a structure similar to books.xml. To do this, you must use the XSLT mapper to create
a second stylesheet. This time, catalog.xml is the source document and books.xml is the
destination document. The result of this mapping is a stylesheet that you can apply to
documents that have a structure similar to that of catalog.xml.

Graphical Support for Common XSLT Instructions and
Expressions

The XSLT mapper has graphical support for

● XSLT instructions

● XPath functions

● Logical operators

● Java functions

Using special symbols, called blocks, you can quickly and easily create complex XSLT
without writing any code, as shown in Figure 253:

Note The availability of specific XSLT functions is determined by the version of XSLT
specified in the stylesheet. XSLT 2.0 has a much more extensive set of built-in functions
than XSLT 1.0.

Figure 253. XSLT Operation, Function, and Logical Operator Blocks
548 Stylus Studio User Guide

Overview of the XSLT Mapper
Blocks can be created

● Automatically, when you link one node to another. For example, if you link repeating
elements in the source and target documents, Stylus Studio automatically creates an
xsl:for-each instruction block in the mapper.

● Manually, by selecting the instruction or expression you want to create from the
shortcut menu on the mapper canvas (right click on the mapper canvas to display this
menu).

● By reverse-engineering the XSLT that you write on the XSLT Source tab – when you
click the Mapper tab, XSLT that can be represented graphically is displayed on the
mapper canvas.

See Working with XSLT Instructions in XSLT Mapper and Processing Source Nodes to
learn more about working with blocks in the XSLT mapper.

Setting Options for the XSLT Mapper
There are a few options you can set that affect the XSLT stylesheets generated by the
XSLT mapper. To display the Options dialog box, in the Stylus Studio tool bar, select
Tools > Options.

Under Module Settings > XSLT Editor, click Mapper. The mapper has an option that
determines whether Stylus Studio creates empty elements for unlinked nodes when the
associated schema specifies that the elements are required. You might want to select this
option to help ensure that your XSLT generates valid XML by ensuring that all required
elements are accounted for.

Among other options under the XSLT Editor heading, consider clicking XSLT Settings and
specifying whether or not you want Stylus Studio to save scenario metainformation in the
stylesheet. Scenario metainformation includes anything specified in the Scenario
Properties dialog box – source and output URLs, parameter values, post-processing
options, and so on.

If you choose not to save scenario metainformation in the stylesheet, and if the stylesheet
belongs to a project, Stylus Studio saves mapper metainformation in the project. If the

Tip A red check appears on the symbol for required nodes in the target document tree
displayed in the structure pane.

Note If you select this option, Stylus Studio also saves mapper metainformation in the
stylesheet; mapper metainformation includes the names of source files, node mapping
information, and so on.
Stylus Studio User Guide 549

Creating XSLT Using the XSLT Mapper
stylesheet does not belong to a project, and you choose not to save metainformation in the
stylesheet, mapping metainformation is not saved.

Simplifying the Mapper Canvas Display
By default, the XSLT Mapper displays all links between source and target document
nodes, regardless of whether or not the node associated with a link is currently visible in
the Source Document or Target Document pane. Further, as your XSLT code becomes
more complex, the mapper canvas can become dense with graphical representations of the
functions defined in the code and the links that represent them. Consider this example of
sample2Video.xsl, one of the sample XSLT stylesheets in the Examples project installed
with Stylus Studio.

Figure 254. Mapper Shows Links to All Nodes, Visible or Not
550 Stylus Studio User Guide

Overview of the XSLT Mapper
You can hide links for nodes that are not currently visible in the Source Document or
Target Document pane by clicking the Hide Links for Nodes that are not Visible button,
as shown in Figure 255:

When you use this feature, Stylus Studio displays

● Links in the Mapper canvas only if both nodes are currently visible in the document
panes

● Green arrows (like the ones shown in Figure 256) in the document panes if only one
of two linked nodes is currently visible.

Figure 255. Simply the Mapper by Hiding Links

Figure 256. Arrows Identify Partially Available Links
Stylus Studio User Guide 551

Creating XSLT Using the XSLT Mapper
Other Mapper Display Features

In addition to displaying links for only those nodes that are visible in both document
panes, you can use the document node shortcut menu (right-click on a node in a document
pane) to

● Show links to a specific node

● Hide links to a specific node

● Show/hide all links

Exporting Mappings
You can export a mapping – source and target document trees and Mapper canvas
contents – as an image file. The default image format is JPEG (.jpg), but you can choose
from other popular image file formats such as .bmp and .tiff.

The exported image reflects the document trees at the time you export the image – if you
have collapsed a node in Stylus Studio, for example, that node is also collapsed in the
exported image. However, the exported image includes the entire document tree and
Mapper canvas, not just what is currently visible on the Mapper tab.

By default, all source-target document links are displayed. However, if you have chosen
to hide or show links for only certain nodes, the exported image reflects that choice and
displays only the links for the nodes as you have specified. See “Simplifying the Mapper
Canvas Display” on page 550 for more information on hiding and showing links.

◆ To export an XSLT mapping:

1. Optionally, hide links for any nodes in the source or target documents that you do not
want to appear in the exported image.

2. Select XSLT > Export Mapping as Image from the Stylus Studio menu.

Stylus Studio displays the Save As dialog box.

3. Specify a URL for the file.

4. Optionally, change the image type. (The default is JPEG; .bmp and .tiff are also
available.)

5. Click Save.
552 Stylus Studio User Guide

Overview of the XSLT Mapper
Searching Document Panes
You can search document panes using the Find dialog box.

You can restrict your search to elements and/or attributes, and you can even search using
regular expressions to define your match pattern.

◆ To display the Find dialog box:

1. Right-click in the document pane.

2. Select Find from the shortcut menu.

Ensuring That Stylesheets Output Valid XML
Stylus Studio cannot automatically generate a stylesheet that will always generate a valid
XML document. As defined by the W3C, an XML document is considered to be valid if
it conforms to the DTD with which it is associated.

For example, consider a stylesheet that has required attributes. In order to specify
meaningful values for them, you need to have insight as to the semantics of the operation
the stylesheet is performing, and it is difficult for any application to infer this type of
information. Always check to see that the stylesheets you create using the XSLT mapper
generate valid input.

Steps for Mapping XML to XML

◆ To create an XSLT stylesheet using the XSLT mapper:

1. From the Stylus Studio menu bar, select File > New > XSLT: Mapper.

Stylus Studio displays the XSLT editor with the Mapper tab selected.

2. Select one or more source documents and a target document.

Figure 257. You Can Search Document Panes
Stylus Studio User Guide 553

Creating XSLT Using the XSLT Mapper
3. In both the source and the target panes, click the root element and then press the
asterisk key (*) in the numeric key pad to expand the schema tree.

4. Map nodes in the source documents to nodes in the target document, define XSLT
instructions and functions, and create named and matched templates using the
mapper’s graphical tools.

5. Check the XSLT Source view from time to time. This allows you to confirm that the
stylesheet is doing what you expect it to do (and it is also a good way to teach yourself
XSLT). Changes you make directly to the source are reflected on the Mapper tab, and
vice versa.

Each of these steps is described in greater detail in the following sections.

Source Documents
In Stylus Studio, a source document in the XSLT mapper can be one or more of the
following:

● An XML document

● An XML Schema (XSD)

● A document type definition (DTD)

● Zip Archive formatted documents (Microsoft Office Open XML, OpenDocument
Format, and .zip)

The role of a source document is to provide Stylus Studio with a structure that it can use
to compose the XSLT stylesheet, based on how you map individual source document
elements and attributes to nodes in the target structure. Stylus Studio infers the target
structure from the document (XML, XSD, or DTD) you specify and displays this structure
on the Mapper tab.

This section covers the following topics:

● Choosing Source Documents

● Source Documents and XML Instances

● How to Add a Source Document

● How to Remove a Source Document

● How Source Documents are Displayed

Tip Consider working through the source document in document order as you map source
and target elements.
554 Stylus Studio User Guide

Source Documents
For information on using Zip Archive formatted documents as source documents, see
“Working with Zip Archive Format Files as Data Sources” on page 901.

Choosing Source Documents
You can use one or more source documents to build a stylesheet in the Stylus Studio
XSLT mapper. You might want to select more than one document if you need their
elements or attributes to fully describe the target structure or the desired XSLT result
content, or if you want to aggregate multiple sources in a single document, for example.

If you choose an XSD or DTD document, you must also choose an XML instance
document to associate with it. Stylus Studio uses the instance document associated with
an XSD or DTD source document to generate the XPath document() function in the
finished XSLT. As a result, it is this document that is used to preview XSLT results.

See Source Documents and XML Instances to learn more about how Stylus Studio treats
source documents. See Creating an XSLT Scenario to learn more about XSLT scenarios.

Source Documents and XML Instances
As described previously, Stylus Studio uses the source documents you specify to display
a structure you can use to create mappings to the target structure. In addition to the
document structure, Stylus Studio needs document content information in order to
compose a correct XSLT stylesheet. You provide this information by associating a XML
instance to each source document you specify.

Tip If you want to examine the contents of the XML document specified as the source file in
the scenario, click Open XML From Scenario , which is at the top of the XML mapper
window. Stylus Studio displays the source document in the XML editor.
Stylus Studio User Guide 555

Creating XSLT Using the XSLT Mapper
Types of associations

Source documents can have one of three associations, each of which has implications for
the XPath expressions written by Stylus Studio, which uses these documents when it
composes the XSLT stylesheet. A source document can be associated with

● Itself. That is, the document represented by structure displayed on the Mapper tab and
the XML instance are one in the same. In this situation, Stylus Studio generates the
document() function in the XSLT stylesheet. For example:

● The XML document specified in the XSLT scenario. Only one source document can
be associated with the XSLT scenario. In this situation, Stylus Studio does not
generate the document() function in the XSLT stylesheet. In this situation, the
document() function is not necessary because Stylus Studio uses the XSLT input
document specified in the Scenario Properties dialog box.

document("file://c:\Program Files\Stylus
Studio\examples\simpleMappings\catalog.xml")/books/book

Note The previous example shows the XSLT that results when an XML document is used
to specify the source structure. This is not possible with XSD or DTD source
documents.
556 Stylus Studio User Guide

Source Documents
By default, Stylus Studio uses the first XML document you add to the XSLT mapper
as the source XML for the XSLT scenario, as shown here:

The document specified in the Source XML URL field on the Scenario Properties
dialog box is the document to which the XSLT is applied when you preview the
XSLT. You can select this association for another XML document if you choose, but
only one source document may have this association.

● Some other XML instance. A XSD or DTD document used as a mapper source
document must always be associated with an XML instance. In this situation, Stylus
Studio generates the document() function in the XSLT stylesheet when accessing
nodes of the document structure.

Figure 258. XSLT Scenario

Note If you specify an XML document as the first source document, Stylus Studio creates
a scenario for you automatically, using that document as the scenario’s source XML.
If you specify some other type of document (XSD or DTD), Stylus Studio prompts
you to create a scenario – and to specify an XML document as the source – when you
preview the XSLT. See Creating an XSLT Scenario.
Stylus Studio User Guide 557

Creating XSLT Using the XSLT Mapper
Source document icons

Stylus Studio uses different document icons to indicate how a source document structure
is related to corresponding XML document content.

How to change a source document association

◆ To change a source document association:

1. Click the Mapper tab if necessary.

2. Right click the source document whose association you want to change.

The source document shortcut menu appears.

3. Click Associate With, and then select the document you want to associate with the
source document.

How to Add a Source Document

◆ To add a source document to XSLT mapper:

1. Click the Mapper tab if necessary.

2. Click the Add Source Document button at the top left of the Mapper tab.

The Open dialog box appears.

Table 63. Source Document Icons

Icon Meaning

The source document is associated with itself. This is the default for
most XML documents (and XML documents only).

The source document is associated with default XML document
specified in the Source XML URL field in the XSLT scenario. This
is the case with the first XML document you add to XSLT mapper, but
you can change this association manually if you choose. See How to
change a source document association.

The source document is associated with a separate XML document
instance. XSD and DTD source documents are always associated with
an XML instance.
558 Stylus Studio User Guide

Source Documents
3. Select the document you want to use as the source document to map to the target
document.

4. Click Open.

If you selected an XML document in Step 3, the document appears in the source
document pane of the Mapper tab. Go to Step 5.

If you selected an XSD or DTD document, Stylus Studio displays the Choose Root
Element dialog box.

You use the Associate With field to associate the XSD or DTD with an XML
instance.

a. Select the element from the XSD or DTD document that you want to use as the
root element. The Choose root element drop-down list displays elements defined
in the document you selected in Step 3.

b. Use the Browse () button to specify the XML instance to which you want to
associate the document you have chosen as your structure. The root element of
the XML document you select should be the same as the element you selected as
the root element from the XSD or DTD document.

c. Click OK.
The document appears in the source document pane of the Mapper tab. Go to
Step 5.

5. To add another source document, return to Step 2.

Figure 259. Choose Root Element Dialog Box

Note The Associate With field appears only when you add a second document to the XSLT
mapper source and that document is an XSD or DTD. You use it to specify the XML
instance that you want to associate with the XSD or DTD. This field does not appear
if the XSD or DTD is the first source document you add to the XSLT mapper – Stylus
Studio uses the XML Source document specified in the Scenario Properties dialog
box as the XML instance in this case.
Stylus Studio User Guide 559

Creating XSLT Using the XSLT Mapper
How to Remove a Source Document

◆ To remove a source document from the XSLT mapper:

1. Click the Mapper tab if necessary.

2. Remove any maps from the source document to the target schema. (See Removing
Source-Target Maps if you need help with this step.)

3. Right click on the source document.

The source document shortcut menu appears.

4. Select Remove Schema.

How Source Documents are Displayed
A source document is represented in the mapper using a document icon; its name is
displayed using a different color to help distinguish the document from elements and
attributes. The document icon is modified based on the source document’s association
with other documents. See Source Documents and XML Instances for more information
on this topic.

By default, only the file name itself is displayed; if you want, you can display the
document’s full path by selecting Show Full Path on the document’s shortcut menu.
(Right-click on the document name to display the shortcut menu.)

Source documents are displayed using the tree view; you can use your standard
keyboard’s *, +, and - number pad keys to expand and collapse selected documents.

Note A source document cannot be removed from XSLT mapper if it is mapped to the target
structure. See Removing Source-Target Maps.

Figure 260. Source Document Display
560 Stylus Studio User Guide

Target Structures
Document structure symbols

Stylus Studio uses the following symbols to represent nodes in both source and target
document structures

See Source document icons to learn about the different ways source document icons are
depicted.

Getting source document details

If you want details about the source document that are not available in tree view, you can
open the document by selecting Open from the document’s shortcut menu. When you
open a document this way, Stylus Studio displays it in the XML editor. XSD and DTD
documents are displayed on the XML editor’s Schema tab.

Target Structures
There are two ways to specify an XSLT target structure:

● You can select an existing document from which Stylus Studio infers a structure and,
optionally, modify the structure. Existing nodes in a target structure are displayed in
blue. Nodes that you add are displayed in red.

● You can build a structure from scratch, starting with the root element and defining
other elements and attributes as needed. Nodes for target structures you define are
displayed in red.

This section covers the following topics:

● Using an Existing Document

● Building a Target Structure

● Modifying the Target Structure

Table 64. Document Structure Symbols

Symbol Meaning

Repeating element

Element

Attribute
Stylus Studio User Guide 561

Creating XSLT Using the XSLT Mapper
Using an Existing Document

◆ To use an existing document to provide the XSLT target structure:

1. Click the Mapper tab if necessary.

2. Click the Set Target Document button at the top left of the Mapper tab.

The Open dialog box appears.

3. Select the document you want to use to provide the target structure for defining the
mapping (XML, XSD, or DTD).

4. Click Open.

The structure of the document you select appears in the target document pane of the
Mapper tab.

Building a Target Structure
To build a target structure from scratch, you first create a root element, and then define
child elements and attributes as needed.

How to create a root element

◆ To create a root element:

1. Click the Mapper tab if necessary.

2. Right click the area underneath the Set Target Document button.

The target document shortcut menu appears.

3. Select Create Root Element.

The Name dialog box appears.

4. Type a name for the root element and click OK.

The root element you specified appears in the target document pane of the Mapper
tab.

Figure 261. Name Dialog Box
562 Stylus Studio User Guide

Target Structures
How to create elements and attributes

You can create elements and attributes in a new or existing target structure.

◆ To create elements and attributes:

1. Click the Mapper tab if necessary.

2. Select the attribute or element to which you want to add a child element or attribute.
If you have just created a root element, select the root element.

3. Right click the area underneath the Set Target Document button.

The target document shortcut menu appears.

4. Choose one of the following:
❍ Add Attribute
❍ Add Child Element

❍ Insert Element After (This choice is not applicable to the root element; it creates
the element as a sibling of the selected element.)

The Name dialog box appears.

5. Type a name for the node and click OK.

The node you specified is added to the target structure in the Mapper tab.

Modifying the Target Structure
This section describes the techniques you can use to modify the structure and content of
an XSLT mapper target structure. It covers the following topics:

● Adding a Node

● Removing a Node

Adding a Node

See How to create elements and attributes.

Figure 262. Name Dialog Box
Stylus Studio User Guide 563

Creating XSLT Using the XSLT Mapper
Removing a Node

◆ To remove a node from the target structure:

1. Remove any links to the node you want to remove from the target structure. See
Removing Source-Target Maps if you need help with this step.

2. Select the node and press the Delete key.

Alternative: Right-click the node and select Remove Node from the shortcut menu.

Mapping Source and Target Document Nodes
You map a source document node to a target structure node using drag and drop to create
a link between the two nodes. Stylus Studio composes XSLT based on these maps.

This section covers the following topics:

● Preserving Mapper Layout

● Left and Right Mouse Buttons Explained

● How to Map Nodes

● Removing Source-Target Maps

Preserving Mapper Layout
As you add function blocks to the XSLT mapper, Stylus Studio places them in the center
of the mapper canvas. You can change the default placement of function blocks by
dragging and drag and dropping them where you like. Stylus Studio preserves the
placement you select within and across sessions (as you toggle between the mapper and
the XSLT Source tab, for example).

As you use the splitter in the XSLT mapper to widen the source and target document
panes, the size of the mapper canvas is reduced. The Fit in Mapper Canvas button (),
located at the top of the XSLT mapper, redraws the diagram in whatever space is currently
available to the mapper canvas. This feature is also available from the mapper short-cut
menu (right-click anywhere on the mapper canvas to display the short-cut menu).

Note Before you can remove a node, you must delete any links to that node. See Removing
Source-Target Maps.

Tip You can also map source document nodes to XSLT instruction blocks, XPath and Java
function blocks, and logical operators. See Working with XSLT Instructions in XSLT
Mapper and Processing Source Nodes.
564 Stylus Studio User Guide

Mapping Source and Target Document Nodes
Left and Right Mouse Buttons Explained
You can use either the left or the right mouse button to perform the drag and drop
operation used to create source-target mappings in the XSLT mapper.

If you use the left mouse button to perform the drag operation, the link always maps the
source node to the target node without making any changes to the target structure. If you
use the right mouse button, Stylus Studio displays a shortcut menu that provides you with
alternatives for modifying the target structure.

Using this menu, you can

● Map a source document node to an existing target structure node – this menu choice,
Map to This Node, is the same as creating the link using the left mouse button.

● Add a source document node (element or attribute) as an attribute of the target
structure node you select and map the two nodes.

● Add a source document node as a child element of the target structure node you select
and map the two nodes.

● Add a source document node as a sibling of the target structure node you select and
map the two nodes.

● Copy the entire source document node – its structure and its content – to the target
structure and map it.

Figure 263. Shortcut Menu for Target Document Operations
Stylus Studio User Guide 565

Creating XSLT Using the XSLT Mapper
How to Map Nodes

◆ To map nodes:

1. Using either the left or right mouse button, drag the source document element or
attribute to the appropriate node on the target structure.

2. When the pointer is on the appropriate target element, release the mouse button to
complete the link.

Stylus Studio draws a link between the source and target nodes you chose is Step 1.
If you linked two repeating elements, Stylus Studio displays a symbol representing
the xsl:for-each instruction. See Working with XSLT Instructions in XSLT Mapper
on page 566.

Removing Source-Target Maps

◆ To remove a map from a source document node to a target element node:

1. Select the line that represents the map you want to delete.

2. Press the Delete key.

Alternative: Select Delete from the line shortcut menu (right click on the line to
display the shortcut menu).

Working with XSLT Instructions in XSLT Mapper
As described in Graphical Support for Common XSLT Instructions and Expressions on
page 548, you can create and work with XSLT instructions in the XSLT mapper using
symbols called blocks. Each supported instruction is represented by a different block
(symbols distinguish one block from another), and you complete the instruction’s
definition graphically, using drag and drop.

This section identifies the XSLT instructions supported by the mapper, their features, and
how to use them. It covers the following topics:

● What XSLT Instructions Are Represented Graphically on page 567

● Instruction Block Ports on page 567

Tip If you need help with this step, see Left and Right Mouse Buttons Explained.

Tip Select the portion of the line that is drawn on the XSLT mapper canvas.
566 Stylus Studio User Guide

Working with XSLT Instructions in XSLT Mapper
● Understanding Input Ports on page 568

● The Flow Port on page 570

● Adding an Instruction Block to the XSLT Mapper on page 570

● xsl:if and xsl:choose on page 571

What XSLT Instructions Are Represented Graphically
The XSLT mapper represents the following XSLT instructions:

Instruction Block Ports
All XSLT instruction blocks have at least three connectors, called ports. Look at the
xsl:value-of instruction block shown in Figure 264.

You use these ports to link source and target nodes, to perform processing on source
document nodes, and to provide flow control as the result of a xsl:choose or xsl:if.

Table 65. XSLT Instruction Blocks in XSLT Mapper

XSLT Instruction Representation in the XSLT Mapper

xsl:value-of

xsl:for-each

xsl:if

xsl:choose

xsl:apply-templates

xsl:call-template

Note You can create any XSLT instruction in the XSLT source, but only the instructions in
Table 65 are represented graphically in the XSLT mapper. XSLT instructions that are not
supported by the mapper have no graphical representation.

Figure 264. Example of an XSLT xsl:value-of Instruction Block
Stylus Studio User Guide 567

Creating XSLT Using the XSLT Mapper
Ports are also part of XPath and Java function blocks, logical operator blocks, and text
blocks. (See Processing Source Nodes on page 573 for information on working with these
types of blocks.)

Specifying Values for Ports

After you have added an instruction block to the XSLT mapper, you need to complete its
definition. You do this by linking the instruction block’s input, output, and, optionally,
flow ports to nodes and other blocks in the mapper.

The way you specify values for ports varies slightly between input ports and flow and
output ports, but, generally speaking, you can either

● Dragging a link from the port to a target document node or to the flow port on another
instruction block.

● Double-click the port and typing a value (a string or an XPath expression, for
example) in the Value dialog box.

Understanding Input Ports
Stylus Studio interprets input ports differently for different XSLT instructions, as shown
in Table 66:

Tip To see the XSLT that is being generated based on the XSLT instruction you are creating,
right click the instruction and select Go To Source from the shortcut menu.

Table 66. XSLT Instruction Blocks in XSLT Mapper

XSLT Instruction Meaning of Input Port

xsl:value-of Used to define the value of the select attribute. For example:
<xsl:value-of select=”’Owen’”>

xsl:for-each Used to define the XPath expression for the select attribute. For
example:
<xsl:for-each select=”books/book”>

xsl:if Used to define the value of the test attribute. For example:
<xsl:if test=”authors/author= 'Henry’”>

See xsl:if and xsl:choose on page 571 to learn more about when to
use this instruction.
568 Stylus Studio User Guide

Working with XSLT Instructions in XSLT Mapper
Specifying Values for Input Ports

You can specify values for input ports by:

● Dragging a link from a source document node or from the output port of another block
(like that of an XPath function or If block, for example).

● Double-clicking the port and typing a value (a string or an XPath expression, for
example) in the Value dialog box.

Red Input Ports

If an xsl: instruction’s attribute takes a literal or string value (such as xsl:value-of
select="'Recommended'"/, for example) and a value has been provided for the attribute,
Stylus Studio fills the input port associated with that attribute with a deep red to indicate
that a value has been specified.

xsl:choose Used to define the value of the test attribute of the nested
xsl:when element. For example:

<xsl:when test="contains(authors/author,'Marchese')">

See xsl:if and xsl:choose on page 571 to learn more about when to
use this instruction.

xsl:apply-templates Used to define the value of the select attribute. For example:
<xsl:apply-templates select="subject"/>

xsl:call-template Used to define the value of the name attribute. For example:
<xsl:call-template name="newAuthorsTemplate"/>

Table 66. XSLT Instruction Blocks in XSLT Mapper

XSLT Instruction Meaning of Input Port

Tip When you mouse over an input port, Stylus Studio displays the value associated with
that port.
Stylus Studio User Guide 569

Creating XSLT Using the XSLT Mapper
The Flow Port
Output ports for any of the following xsl: instructions can be linked to the flow port of
an instruction block:

● xsl:if

● The xsl:when element of xsl:choose
● xsl:for-each

You might decide you want a particular xsl:for-each instruction executed only after
performing a certain function, for example.

Adding an Instruction Block to the XSLT Mapper

◆ To add an instruction block to the XSLT mapper

1. Right click on the mapper canvas.

The shortcut menu appears.

2. Select XSLT Instructions from the shortcut menu.

The XSLT Instructions submenu appears.

3. Select the instruction you want to add to your XSLT.

The block for the instruction you selected appears in the mapper canvas.

4. Provide a value for the input port(s). See Specifying Values for Ports on page 568 if
you need help with this step.

5. Link the output port(s).

6. Optionally, link the flow port.

Tip If you enter an XSLT instruction in the XSLT source and that instruction can be
graphically represented in the mapper, the instruction, including appropriate links to
source and target nodes, appears the next time you display the Mapper tab.
570 Stylus Studio User Guide

Working with XSLT Instructions in XSLT Mapper
Notes About Creating Instruction Blocks

Be aware of the following when working with XSLT instruction blocks in the XSLT
mapper:

● To simplify the mapper’s appearance, Stylus Studio sometimes removes blocks from
the mapper canvas and replaces them with a simple link. For example, imagine
creating an xsl:value-of instruction block and linking source and target document
nodes. Stylus Studio displays the instruction block, but if you leave the Mapper and
later return to it, the block symbol for the xsl:value-of instruction is replaced by a
link with a small circle at its center, link the one shown in Figure 265.

If you mouse over the circle, Stylus Studio displays the XSLT represented by the link
(xsl:value-of select=”/books/book/@pubdate”/, for example).

This behavior also exists for text blocks created in the mapper that are not also linked
to other blocks in the mapper. See Setting a Text Value on page 576.

● If you type an XSLT instruction in the XSLT source that is not represented by the
XSLT mapper, no representation of that XSLT instruction is displayed on the Mapper
tab. The code remains as part of the XSLT source, however.

● If you start creating an XSLT instruction in the mapper but do not completely define
it (say you specify only the input port for an xsl:for-each instruction, for example),
it is not represented in the XSLT source, and it is removed from the XSLT mapper if
you leave the Mapper tab and then return to it.

xsl:if and xsl:choose
The xsl:if instruction cannot express an else condition. It has a single input port, and a
single output port, as shown in Figure 266.

Figure 265. xsl:value-of in XSLT Mapper

Figure 266. xsl:if Instruction Block
Stylus Studio User Guide 571

Creating XSLT Using the XSLT Mapper
Once fully defined, the xsl:if block generates code like the following:

If you need to express an else condition, use the xsl:choose instruction block. This
instruction block has two output ports by default, one for the xsl:when test= attribute, and
one for the one xsl:otherwise element.

The xsl:choose instruction block generates code like the following:

If you need to define more than one xsl:when test= attribute, use the xsl:choose shortcut
menu (right click) and select Add When Port.

<Review>
<xsl:if test="authors/author= 'Minollo'">

<xsl:value-of select="'Recommended'"/>
</xsl:if>
<xsl:if test="contains(authors/author,'Pedruzzi')">

<xsl:value-of select="'A best buy'"/>
</xsl:if>

</Review>

Figure 267. xsl:choose Instruction Block

<Review>
<xsl:choose>

<xsl:when test="authors/author= 'Minollo'">
<xsl:value-of select="'Recommended'"/>

</xsl:when>
<xsl:when test="contains(authors/author,'Pedruzzi')">

<xsl:value-of select="'authors best buy'"/>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="'bah...'"/>
</xsl:otherwise>

</xsl:choose>
</Review>

Note Stylus Studio generates the xsl:otherwise element by default for all xsl:choose
instructions.
572 Stylus Studio User Guide

Processing Source Nodes
Processing Source Nodes
You can use any of the following to combine nodes or process nodes in the source
document and map the result to a node in the target document:

● XPath Function Blocks on page 573

● Logical Operators on page 576

● Setting a Text Value on page 576

● Defining Java Functions in the XSLT Mapper on page 579

XPath Function Blocks
Stylus Studio supports standard XPath functions defined by the W3C. This section
describes how to work with function blocks in XSLT mapper and covers the following
topics:

● Parts of a Function Block

● Types of Function Blocks

● Creating a Function Block

● Deleting a Function Block

Parts of a Function Block

Function blocks are drawn as a purple block with an italic “f” at its center, and connectors,
called ports, placed along the block’s border. Input ports (one or more depending on the
function) on the left, the flow port at the top, and the output port on the right:

Input ports

Input ports are on the left side of the function block. The number and definition of input
ports varies from function to function. To specify a value for an input port, you can

● Drag a source document element or attribute to the port and release it

● Double-click the port and enter the function in the Value dialog box

Figure 268. Function Block
Stylus Studio User Guide 573

Creating XSLT Using the XSLT Mapper
Flow port

Flow ports on the top of function blocks are generally used only when a function is used
in a direct link between a source and target node.

Output port

The output port is on the right side of the function block. You use the output port to map
the function result directly to a target structure element or attribute, or to an IF, condition,
or another function block.

Types of Function Blocks

The XPath functions available in XSLT mapper include the following:
● boolean

● ceiling

● concat

● contains

● count

● floor

● format

● last

● local-name

● mod

● name

● normalize-space

● number

● position

● round

● starts-with

● string

● string-length

● substring

● substring-after

● substring-before

● sum

● translate
574 Stylus Studio User Guide

Processing Source Nodes
XPath Mathematical Functions

In order to simplify the graphical presentation in the XSLT mapper, the following XPath
mathematical functions are not graphically represented:
● add

● div

● multiply

● subtract

You can easily express these functions by typing them in the Value dialog box displayed
when you double-click an input port.

Creating a Function Block

◆ To create a function block:

1. In the XSLT editor, in the Mapper tab, right-click mapper canvas.

2. In the shortcut menu that appears, click XPath Functions and slide to the submenu.

3. Click the function you want to use. Stylus Studio displays a function block for the
function you selected.

Deleting a Function Block

◆ To delete a function block:

Select it and press the Delete key.

If the function block is part of a link, deleting the function block also deletes the link.
Stylus Studio User Guide 575

Creating XSLT Using the XSLT Mapper
Logical Operators
The Stylus Studio XSLT mapper allows you to graphically define the following types of
conditions:

● Equal (=)

● Less than (<)

● Greater than (>)

● Less than or equal to (<=)

● Greater than or equal to (>=)

● and (&)

● or (||)

All condition blocks have two input ports and a single output port, as shown in this
example of a greater than block.

You can map the return port to a target structure element or attribute, or to the input port
on an XSLT instruction, XPath function, or another condition block.

Setting a Text Value
You can set text values for target structure elements and attributes. You might want to do
this if you are composing a mapping whose target structure contains an element or
attribute that requires a fixed value, instead of using a value gathered from an input XML
document.

Example

Here is the XSLT code Stylus Studio generates for the Title element when a text value is
specified for it:

Figure 269. Greater Than Block

<Book>
<Title>Confederacy of Dunces</Title>

</Book>
576 Stylus Studio User Guide

Processing Source Nodes
Stylus Studio displays a red letter T for nodes for which you define a text value:

There are two ways to set a text value:

● On the mapper canvas

● On the target node

How to Set a Text Value on the Mapper Canvas

◆ To set a text value on the mapper canvas:

1. Right-click on the mapper canvas.

The shortcut menu appears.

2. Select Text Block from the shortcut menu.

The text block appears on the mapper.

Double-click the text block to display the Value dialog box.

Figure 270. Symbols for Nodes With Text Values

Figure 271. Text Block

Figure 272. Value Dialog Box

Tip You can also display the Value dialog box by selecting Properties from the text block
shortcut menu (right click).
Stylus Studio User Guide 577

Creating XSLT Using the XSLT Mapper
3. Type a value and click OK.

4. Drag a link from the text block’s output port to the target node to which you want to
assign the text value.

How to Set a Text Value on the Target Node

◆ To set a text value on a target node:

1. Right-click the node for which you want to set the text value.

The shortcut menu appears.

2. Select Set Text Value from the shortcut menu.

The Value dialog box appears.

3. Type the string you want to use as the text value and click OK.

Note Unless the text block is linked to another block (such as a logical operator or an XPath
function), Stylus Studio removes it from the mapper canvas if you leave and then return
to the Mapper tab. In this case, a red T is displayed next to the target node’s name.

Figure 273. Value Dialog Box
578 Stylus Studio User Guide

Processing Source Nodes
Defining Java Functions in the XSLT Mapper
You can write your own Java functions and use them when you map nodes.

◆ To define your own functions:

1. Ensure that a Java virtual machine is running locally.

2. Create the class file for your function. See “About Adding Java Class Files” on
page 579 for more help with this step.

3. Display the Mapper tab in the XSLT editor, if necessary.

4. Right-click the mapper canvas.

5. In the pop-up menu that appears, select Java Functions > Register Java Extension
Class.

6. In the Java Class Browser dialog box that appears, navigate to and select the Java
class that provides your function.

7. Click OK in the Java Class Browser dialog box.

Now when you select Java Functions from the mapper short-cut menu, the list of
functions includes the function you registered.

About Adding Java Class Files

The class file must be in your CLASSPATH environment variable or in the Stylus Studio
ClassPath. To add it to the Stylus Studio ClassPath, select Tools > Options from the
Stylus Studio menu bar. In the Options dialog box, expand Application Settings and click
Java Virtual Machine.
Stylus Studio User Guide 579

Creating XSLT Using the XSLT Mapper
Creating and Working with Templates
A stylesheet can contain more than one template. This section describes Stylus Studio’s
features for creating and working with named and matched templates in XSLT mapper.

What Happens When You Create a Template
When you create a template, Stylus Studio switches the XSLT mapper to the new
template. The attributes identifying the template you are currently viewing are displayed
in the template drop-down list at the top of the mapper canvas.

You can change the template view at any time, by selecting the template from the drop-
down list, as shown in Figure 275.

Figure 274. Drop-down List Shows Current Template

Figure 275. Display Different Templates Using the Drop-down List

Tip At any time, the mapper shows only the links that have been defined for the current
template.
580 Stylus Studio User Guide

Creating and Working with Templates
How to Create a Named or Matched Template

◆ To create a named or matched template:

1. Right-click the XSLT mapper canvas.

2. Select Create Template > Named Template or > Matched Template from the shortcut
menu.

Stylus Studio displays the Named Template (or Matched Template) dialog box. (The
Named Template dialog box is shown in Figure 276.)

3. Enter a name and, optionally, a mode.

4. Optionally, create one or more parameters:

a. Click the Add button.
The Name column becomes editable.

b. Type a parameter name and press Enter.
The Default Value field becomes editable.

c. Type a default value.

d. If you want to define another parameter, click ADD; otherwise, go to Step 5.

5. Click OK to finish creating the template.

Figure 276. Named Template Dialog Box

Tip You can use a mode to define the conditions under which a template will be applied
by a stylesheet.
Stylus Studio User Guide 581

Creating XSLT Using the XSLT Mapper
Creating an XSLT Scenario
An XSLT scenario is a group of settings that Stylus Studio uses to process the XSLT when
you click the Preview Result button (). Examples of scenario settings include the
XML document to which the XSLT will be applied, whether you want to perform any
post-processing, and the values of any parameters you might have defined. You can create
multiple scenarios that use the same XSLT, and choose different settings for each. This
flexibility can aid the XSLT development process as it enables you to easily test different
applications of the XSLT before you put it online.

Even if you do not explicitly create a scenario, Stylus Studio uses default scenario settings
in order to preview the XSLT. For example, Stylus Studio uses the first source document
you specify as the document to which the XSLT is applied. (If the first source document
is an XSD or DTD, Stylus Studio prompts you to provide an XML document for the
scenario when you preview the XSLT.)

This section covers the following topics:

● Overview of Scenario Features

● How to Create a Scenario

● How to Run a Scenario

● How to Clone a Scenario

Overview of Scenario Features
This section describes the main features of XSLT scenarios. It covers the following
topics:

● XML Source Documents

● Global Parameters

● XSLT Processors

● Performance Metrics Reporting

● Result Document Validation

● Post-Processing Result Documents

XML Source Documents

The main benefit of the XSLT scenario feature is that it lets you specify the XML
document against which you want to run your XSLT. By default, Stylus Studio uses the
first source document you add using the XSLT mapper as the XML source document for
582 Stylus Studio User Guide

Creating an XSLT Scenario
the scenario. You can specify the XML source document setting on the General tab of the
Scenario Properties dialog box.

See Source Documents to learn more about the process of selecting and working with
source documents in XSLT mapper.

Global Parameters

The Parameter Values tab of the Scenario Properties dialog box displays any global
parameters you have defined in the XSLT source and allows you to

● Specify an alternate value to use when running the scenario

● Indicate whether the value is an XPath expression or a string

For example, imagine the following parameter defined in the XSLT source:

Figure 277. General Tab of XSLT Scenario Properties Dialog Box

<xsl:param name="my_title" select="'Confederacy of Dunces'"/>
Stylus Studio User Guide 583

Creating XSLT Using the XSLT Mapper
This parameter is displayed on the Parameter Values tab as follows:

If you want to specify an alternate parameter value for this scenario, click the Parameter
value to be used when processing entry field. If the alternate value you enter is an XPath
expression, click the associated check box.

By default, values entered in the Paramter value to be used when processing field are
interpreted as strings. However, you can indicate that you want the value to be interpreted
as an XPath expression by selecting the check box in the Parameter value is an XPath
expression (not a string) field. This allows you to enter expressions such as the
following:

Figure 278. Specifying Alternate Values for XSLT Parameters

document("books.xml")/books/book[1]

Tip All global parameters you define for a stylesheet are displayed on the Params/Other tab
of the XSLT Editor. Parameters displayed on the Params/Other tab are read-only.
584 Stylus Studio User Guide

Creating an XSLT Scenario
XSLT Processors

By default, Stylus Studio uses the Saxon processor to process XSLT documents. You can
change the processor on the Processor tab of the Scenario Properties dialog box.

You can choose from a number of third-party processors that are bundled with Stylus
Studio, or you can specify your own custom processor.

See “How to Use a Third-Party Processor” on page 480 for more information.

Performance Metrics Reporting

Stylus Studio can generate an HTML report that contains information about how your
XSLT is being processed. This option is off by default, but you can enable it, and choose
options for the report, on the Profiling Options tab.

See Profiling XSLT Stylesheets to learn more about the different ways in which Stylus
Studio can provide you with XSLT performance metrics.

Figure 279. Changing the Default XSLT Processor

Note Not all third-party processors, including any custom processors you might specify,
support back-mapping and debugging.

Performance metrics reporting is available only in Stylus Studio XML Enterprise
Suite.
Stylus Studio User Guide 585

Creating XSLT Using the XSLT Mapper
Result Document Validation

You can optionally validate the XML document that results from XSLT processing using
the XML validator you specify. You can use

● The Stylus Studio built-in XML validator. If you use the Stylus Studio built-in
validator, you can optionally specify one or more XML Schemas against which you
want the result document to be validated.

● Any of the customizable validation engines supported by Stylus Studio, such as the
.NET XML Parser and XSV.

All validation is done before any post-processing that you might have specified.

See “Validating Result Documents” on page 484.

Post-Processing Result Documents

You can use the Post-process tab to specify any optional processing you want performed
on the XML after it has been transformed by the XSLT. You might want to use FOP to
render XML as PDF, for example.

How to Create a Scenario

◆ To create a scenario:

1. In the XSLT Editor tool bar, click .

Alternative: Select Create Scenario from the scenario drop-down list at the top of the
editor window.

Stylus Studio displays the Scenario Properties dialog box.

2. In the Scenario name: field, type the name of the new scenario.

3. In the Source XML URL (optional): field, type the name of the XML file to which you
want to apply the XSLT, or click Browse to navigate to an XML file and select it.

4. In the Output URL field, optionally type or select the name of the result document you
want the XSLT document to generate. If you specify the name of a file that does not
exist, Stylus Studio creates it when you preview the XSLT.

Note If the first document you added to the XSLT mapper is an XML document, Stylus
Studio uses that document as the XML source for the scenario and displays it in this
field.
586 Stylus Studio User Guide

Creating an XSLT Scenario
5. If you want Stylus Studio to Store paths relative to XSLT document path, ensure that
this option is checked.

6. If you check Preview result in an external application, Stylus Studio displays the
result Internet Explorer. In addition, Stylus Studio always displays XSLT results in the
Preview window

7. Optionally, configure settings for global parameters, the XSLT processor you want to
use, whether or not you want to run a profiling report, and whether or not you want
to perform any post-processing on the XSLT result. See Overview of Scenario
Features on page 582 for more information.

8. To define another scenario, click Add and enter the information for that scenario. You
can also copy scenarios. See How to Clone a Scenario on page 588.

9. Click OK.

If you start to create a scenario and then change your mind, click Delete and then OK.

How to Run a Scenario

◆ To run a scenario:

1. Select a scenario from the scenario drop-down list at the top of the editor window.

Alternative:

a. In the XSLT Editor tool bar, click .
Stylus Studio displays the Scenario Properties dialog box.

b. On the General tab, select the scenario you want to run from the Existing
Scenarios list.

c. Click OK.

2. Click the Preview Result button ().
Stylus Studio User Guide 587

Creating XSLT Using the XSLT Mapper
How to Clone a Scenario
When you clone a scenario, Stylus Studio creates a copy of the scenario except for the
scenario name. This allows you to make changes to one scenario and then run both to
compare the results.

◆ To clone a scenario:

1. Display the XSLT in the scenario you want to clone.

2. In the XSLT editor tool bar, click to display the Scenario Properties dialog box.

3. In the Scenario Properties dialog box, in the Existing preview scenarios field, click
the name of the scenario you want to clone.

4. Click Clone.

5. In the Scenario name field, type the name of the new scenario.

6. Change any other scenario properties you want to change. See How to Create a
Scenario on page 586.

7. Click OK.

If you change your mind and do not want to create the clone, click Delete and then OK.
588 Stylus Studio User Guide

Chapter 7 Debugging Stylesheets
Stylus Studio provides several tools that allow you to follow XSLT processing and detect
errors in your stylesheets. To use these tools, you must use the processors displayed in the
Debug and back-mapping enabled section of the Processors page on the Scenario
Properties dialog box. These processors include Stylus Studio’s XSLT processor,
MSXML .Net, and Saxon 6 and 8. If you use the MSXML XSLT processor or some other
XSLT processor, you cannot use the Stylus Studio debugging and backmapping tools.

You can also use the Stylus Studio debugger to analyze Java files, or applications that
include both stylesheets and Java files. In addition, you can use Stylus Studio to debug
JavaScript and VBScript extension functions. See the Microsoft documentation for
information about these extension functions.

This section discusses the following topics:

● “Steps for Debugging Stylesheets” on page 590

● “Using Breakpoints” on page 590

● “Viewing Processing Information” on page 591

● “Using Bookmarks” on page 594

● “Determining Which Template Generated Particular Output” on page 595

● “Determining the Output Generated by a Particular Template” on page 595

● “Profiling XSLT Stylesheets” on page 596

● “Handling Parser and Processor Errors” on page 599

● “Debugging Java Files” on page 599
Stylus Studio User Guide 589

Debugging Stylesheets
Steps for Debugging Stylesheets
Stylus Studio provides tools for debugging transformations.

◆ To debug a stylesheet:

1. Open a stylesheet.

2. Set up a scenario or select the scenario you want to use. See “Applying Stylesheets”
on page 458.

3. Set one or more breakpoints. See “Using Breakpoints” on page 590.

4. Apply the stylesheet by pressing F5, not clicking Preview Result. If you click
Preview Result, Stylus Studio applies the stylesheet without invoking the debugger.

5. Examine the information in the debugging tools and in the Preview window.

6. Run and examine the information XSLT Profiler report.

7. Iteratively step through the stylesheet or program and examine the information in the
debugging tools.

You can include msxml:script elements in XML documents in Stylus Studio. The msxml
prefix must indicate the Microsoft urn:schemas-microsoft-com:xslt namespace.

The following sections provide the details for performing each of these steps.

Using Breakpoints
The Stylus Studio debugger allows you to interrupt XSLT or Java processing to gather
information about variables and processor execution at particular points.

Inserting Breakpoints

◆ To insert a breakpoint:

1. In the XSLT stylesheet or Java file in which you want to set a breakpoint, place your
cursor where you want the breakpoint to be.

2. Click Toggle Breakpoint or press F9. Stylus Studio inserts a blank stop sign
to the left of the line with the breakpoint.
590 Stylus Studio User Guide

Viewing Processing Information
Removing Breakpoints

◆ To remove a breakpoint:

1. Click in the line that has the breakpoint.

2. Press F9 or click Toggle Breakpoint.

Alternative: In the Stylus Studio tool bar, click Breakpoints to display a list of
breakpoints in all open files. You can selectively remove one or more, remove them
all, or jump to one of them.

Start Debugging
When your stylesheet or Java file has one or more breakpoints set, start processing by
clicking Start Debugging or pressing F5. When Stylus Studio reaches the first
breakpoint, it suspends processing and activates the debugging tools. After you examine
the information associated with that breakpoint (see “Viewing Processing Information”
on page 591) you can choose to

● Step into. Click or press F11.

● Step over. Click or press F10.

● Step out. Click or press Shift+F11.

● Run to cursor. Click .

● Continue processing. Press F5.

● Stop processing. Click Stop Debugging in the Stylus Studio tool bar, or click
Cancel in the lower right corner of the stylesheet editor, or press Shift+F5.

Viewing Processing Information
Stylus Studio provides several tools for viewing processing information when you
suspend processing. The tools become active when processing reaches a breakpoint. This
section discusses the following topics:

● Watching Particular Variables on page 592

● Evaluating XPath Expressions in the Current Processor Context on page 592

● Obtaining Information About Local Variables on page 592

Note You can also click Pause to suspend XSLT processing. Stylus Studio flags the line
it was processing when you clicked Pause.
Stylus Studio User Guide 591

Debugging Stylesheets
● Determining the Current Context in the Source Document on page 593

● Displaying a List of Process Suspension Points on page 593

● Displaying XSLT Instructions for Particular Output on page 594

Watching Particular Variables
Use the Watch window to monitor particular variables. To display the Watch window,
click Watch in the Stylus Studio tool bar. This button is active when Stylus Studio
suspends processing because it reached a breakpoint. Stylus Studio displays the Watch
window only when processing is suspended.

Enter the names of the variables you want to watch. You can enter as many as you like.
In a Java program, you can double-click a symbol and drag it to the Watch window to
enter it as a variable you want to watch. When Stylus Studio suspends processing, it
displays the current values for any variables listed in the Watch window. You can expand
and collapse complex structures as needed.

Another way to obtain the value for a variable is to hover over the symbol in your
stylesheet or Java program. Stylus Studio displays a pop-up box that contains the current
value.

During XSLT debugging, you can enter XPath expressions in the Watch window fields.
Stylus Studio uses the current context to evaluate these expressions, and displays the
results with the same kind of interface Stylus Studio uses for nodeList and node variables.

Evaluating XPath Expressions in the Current Processor Context
When you suspend processing, you can evaluate an XPath expression in the context of the
suspended process. You do this in the Watch window. Click in the Stylus Studio tool
bar to display the Watch window. Click in an empty name field and enter an XPath
expression. As soon as you press Enter, Stylus Studio displays the results of the evaluation
in the Value field of the Watch window.

Obtaining Information About Local Variables
Display the Variables window to obtain information about local variables. To display the
Variables window, click Variables in the Stylus Studio tool bar.This button is active
when Stylus Studio suspends processing because it reached a breakpoint. Stylus Studio
displays the Variables window only when processing is suspended.
592 Stylus Studio User Guide

Viewing Processing Information
For stylesheets, Stylus Studio displays

● A path that shows which node in the stylesheet was being processed when processing
was suspended

● Local and global XSLT parameter values

● Local and global XSLT variable values

Also, you can navigate the structure associated with a variable, a parameter, or the current
context if it is a node list or a node.

For Java classes, Stylus Studio displays

● Local variables that are defined at that point in the processing and their values.

● Function parameters and their values.

● A special variable named this. The this variable represents the object being
processed. It allows you to drill down and obtain additional information.

You can expand and collapse complex structures as needed.

Determining the Current Context in the Source Document
When you are debugging a stylesheet, the Variables window displays a path for the
current context. This is the set of nodes that the XSLT processor is currently working
through. This allows you to examine the nodes that lead to the context node.

Displaying a List of Process Suspension Points
Display the Call Stack window to view a list of the locations at which processing was
suspended. To display the Call Stack window, click Call Stack in the Stylus Studio
tool bar. This button is active when Stylus Studio suspends processing because it reached
a breakpoint. Stylus Studio displays the Call Stack window only when processing is
suspended.

For stylesheets, Stylus Studio displays the template name and line number. For Java
classes, Stylus Studio displays the class name, function name, parameters, and line
number.

When processing is complete, the call stack is empty.

When execution is suspended you can use the Call Stack window to jump directly to the
XSLT or Java source. Double-click on a stack line to go to that location. A green triangle
appears to indicate this location in the source file.
Stylus Studio User Guide 593

Debugging Stylesheets
The Call Stack window and the Backmap Stack window provide the same kind of
information. However, the Backmap Stack window never shows Java entries, and the
contents of the Backmap Stack window can be different from the Call Stack window
according to where you click in the output to enable backmapping.

Displaying XSLT Instructions for Particular Output
After you apply a stylesheet, or during debugging of a stylesheet, Stylus Studio can
display the XSLT instruction or the sequence of XSLT instructions that generate a
particular part of a result document. This can be particularly helpful when the result is not
quite what you want.

◆ To view XSLT instructions:

1. Open a stylesheet.

2. Apply the stylesheet.

3. In the Preview window, in either the text view or the browser view, click on the output
for which you want to display the XSLT calls.

Stylus Studio displays the Backmap Stack window, which lists one or more XSLT
instructions. Also, Stylus Studio flags the line in the stylesheet that contains the first
instruction in the list. To find the location of another listed instruction, click that
instruction in the Backmap Stack window.

The Call Stack window and the Backmap Stack window provide the same kind of
information. However, the Backmap Stack window never shows Java entries, and the
contents of the Backmap Stack window can be different from the Call Stack window
according to where you click in the output to enable backmapping.

Using Bookmarks
When you are editing or debugging a long file, you might want to repeatedly check certain
lines in the file. To quickly focus on a particular line, insert a bookmark for that line. You
can insert any number of bookmarks. You can insert bookmarks in any document that you
can open in Stylus Studio.
594 Stylus Studio User Guide

Determining Which Template Generated Particular Output
◆ To insert a bookmark:

1. Click in the line that you want to have a bookmark.

2. Click Toggle Bookmark in the Stylus Studio tool bar. Stylus Studio inserts a
turquoise box with rounded corners to the left of the line that has the bookmark.

◆ To remove a bookmark:

1. Click in the line that has the bookmark you want to remove.

2. Click Toggle Bookmark in the Stylus Studio tool bar. Stylus Studio removes the
turquoise box.

◆ To remove all bookmarks in a file, click Clear All Bookmarks .

◆ To move from bookmark to bookmark, click Next Bookmark or Previous
Bookmark .

Determining Which Template Generated Particular
Output

In Stylus Studio, you can easily determine which template is responsible for generating
any particular portion of the HTML output.

Click anywhere in the Preview in tree, Preview in Browser, or Preview Text view of the
Preview window. In the XSLT Source tab, Stylus Studio points to the line that generated
that portion of the HTML output. This is the Stylus Studio backmapping feature.

Determining the Output Generated by a Particular
Template

In the XSLT Source pane, if the cursor is in a template, the output from that template has
a gray background in the Preview Text view of the Preview window. In the Preview in
tree view of the Preview window, the contents generated by the template are highlighted.

In the Preview in Browser view of the Preview window, there is no gray shading to
indicate the output from the currently displayed template.

Note It is possible for backmapping to point to the wrong line if you made changes in the XSLT
source and did not preview the results.
Stylus Studio User Guide 595

Debugging Stylesheets
Profiling XSLT Stylesheets

In addition to debugging tools for XSLT, Stylus Studio provides the XSLT Profiler, a tool
that helps you evaluate the efficiency of your XSLT. By default, the performance metrics
gathered by the XSLT Profiler are displayed in a preformatted report, like the one shown
Figure 280:

The report format is controlled by the default XSLT stylesheet, profile.xsl, in the \Stylus
Studio\bin directory. You can customize this stylesheet as required. You can save XSLT
Profiler reports as HTML.

The XSLT Profiler is available only in Stylus Studio XML Enterprise Suite.

Figure 280. XSLT Profiler Report

Note XSLT and XQuery Profiler reports use the same XSLT stylesheet.
596 Stylus Studio User Guide

Profiling XSLT Stylesheets
In addition to generating the standard XSLT Profiler report, you can save the raw data
generated by the Profiler and use this data to create your own reports. See “Enabling the
Profiler” on page 597 for more information about this procedure.

A complete list of all the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

About Metrics
The XSLT Profiler can record three different levels of performance metrics:

● A call tree of execution times

● Execution times by XSLT element, and

● A detailed log of step-by-step element execution

Enabling the Profiler
The XQuery Profiler is off by default. You enable the Profiler on the Profiling Options
tab of the XSLT Scenario Properties dialog box.

◆ To enable the XSLT Profiler:

1. Open the Scenario Properties dialog box for the XSLT stylesheet. (Click Browse
at the top of the XSLT editor window.)

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the XSLT Profiling video.

Note Displaying the report for a step-by-step log can take significantly longer than evaluating
the XSLT itself. Consider using the Profiler with the first two performance metric
options. You can also use the Limit Trace To fields to further restrict the Profiler’s scope.
If you find you need still more detail (while troubleshooting a performance bottleneck,
for example), use the step-by-step setting.
Stylus Studio User Guide 597

http://www.stylusstudio.com/videos/profiler/profiler.html
http://www.stylusstudio.com/videos/profiler/profiler.html
http://www.stylusstudio.com/xml_videos.html

Debugging Stylesheets
2. Click the Profiling Options tab.

3. Select the settings for the performance metrics you want the Profiler to capture.

4. Optionally, save the raw Profiler data to a separate file.

5. Click OK.

The next time you preview the XSLT results, the performance metrics you selected
are available to you in the XSLT Profiler report (and as raw data if you selected that
setting and specified a file).

Displaying the XSLT Profiler Report

◆ To display the XSLT Profiler report:

1. Ensure that the Profiler is enabled. (See “Enabling the Profiler” on page 597 if you
need help with this step.)

2. Click the Preview Result button ().

3. Click the Show Profiling Report button ().

The XSLT Profiler report appears in the Preview window.

Figure 281. Profiling Options

Note This option is available only after you select one or more performance metrics
settings.
598 Stylus Studio User Guide

Handling Parser and Processor Errors
Handling Parser and Processor Errors
When you refresh stylesheet output, Stylus Studio parses and processes your XML
document and XSLT stylesheet. If the processor encounters a parser or processing error,
Stylus Studio displays a message that indicates the nature and location of the error. Stylus
Studio prompts you to indicate if you want to jump to the error location in your stylesheet.

Debugging Java Files

The Stylus Studio debugger allows you to follow Java processing as well as XSLT
processing. With the Stylus Studio debugger, you can observe the interaction between
your Java code and XML data.

When you debug a transformation, the transformation can include the processing of Java
files. Such Java files might be servlets, server extensions, extension functions, or other
kinds of Java programs that involve stylesheets. If you need to make a change to your Java
file, you can compile it right in Stylus Studio. Click Compile in the upper left corner
of the Java file window. Stylus Studio automatically saves the file before it compiles it.

This section discusses the following topics:

● Requirements for Java Debugging on page 599

● Setting Options for Debugging Java on page 600

● Using the Java Editor on page 601

● Stylus Studio and the JVM on page 602

● Example of Debugging Java Files on page 602

Requirements for Java Debugging
If you want to use Stylus Studio to debug Java code, you must have the Sun Java Runtime
Environment (JRE) 1.4.x installed. If you want to use Stylus Studio to assist you in editing
and compiling Java code, you must have the Sun JDK 1.4.x installed.

You can download the Sun Java products from http://www.javasoft.com/j2se/.

After you install the JRE, you must run the Stylus Studio auto-detect feature. For more
information, see Configuring Java Components.

Support for debugging Java extensions is available only in Stylus Studio XML
Enterprise Suite and Stylus Studio XML Professional Suite.
Stylus Studio User Guide 599

http://www.javasoft.com/j2se/

Debugging Stylesheets
◆ To run the auto-detect feature:

1. Select Tools > Options from the Stylus Studio menu bar.

2. In the Options dialog box, click Java Virtual Machine.

3. In the Java Virtual Machine page, click Auto detect.

Also, in the Parameters field of the Java Virtual Machine page, there should be something
like the following:

To confirm that your set up is correct, select Help > About Stylus Studio from the Stylus
Studio menu bar. The Java Virtual Machine field in the About Stylus Studio dialog box
should indicate that the JVM is running in debug mode.

Setting Options for Debugging Java
You can specify the following options when you use Stylus Studio to debug Java code:

● Source Path is the path that Stylus Studio uses to locate the source files during
debugging.

● Prompt user for source file path confirmation indicates that if Stylus Studio cannot
find the source files you are debugging, it prompts you to specify the source file path.
If you do not set this option, and Stylus Studio cannot find a source file, the behavior
varies according to what the debugger is trying to do. For example, if the debugger is
stepping into an instruction that calls a function that is defined in a Java file that
Stylus Studio cannot find, the debugger steps over the instruction.

● Never step into classes starting with one of the following strings of characters:
contains a list of classes, one on each line, that you do not want to step into. For
example, these might be classes that are part of the core language, or classes that you
do not have source files for. If you specify java.lang, the debugger skips all classes
whose names start with java.lang, for example, java.lang.String and
java.lang.Object.

-Xdebug -Xnoagent -Xrunjdwp:transport=dt_socket,
server=y,suspend=n,address=8000 -Djava.compiler=NONE
600 Stylus Studio User Guide

Debugging Java Files
● JVM communication time out indicates the amount of time that Stylus Studio waits
for a response from the JVM. If Stylus Studio does not receive a response in the
specified amount of time, it stops trying to communicate with the JVM. The default
is 5 seconds.

● Show JDWP Events in the Output Window indicates whether you want Stylus Studio
to log all communication events in the Stylus Studio Output Window during a
debugging session.

Stylus Studio also allows you to set options that specify the Java virtual machine (JVM)
you use. You can specify the run-time library, the home directory, and parameters for
starting the JVM. Select Tools > Options from the Stylus Studio menu bar.

See “Specifying Stylus Studio Options” on page 158 for instructions for setting these
options.

Using the Java Editor
To use the Stylus Studio Java editor, open a Java file in Stylus Studio.

To specify arguments that Stylus Studio uses to run the active Java class, select Java >
Class Properties from the Stylus Studio menu bar. Stylus Studio displays the Class
Properties dialog box. Enter the arguments required to run your code. (You must have a
Java file open in Stylus Studio for Java to appear in the menu bar.)

The same debugging capabilities that are available when you are debugging XSLT
stylesheets are available when you are debugging stand-alone Java applications.

When you use the Java editor, the Sense:X auto-completion feature is available. The Java
editor browses your import directives to gather information about the packages you are
using and provides auto-completion when using methods or data members defined in
imported classes. The auto-completion mechanism also provides you with tips about the
signature of the class method and its required arguments. The same applies to the classes
that you are editing. Also, the CLASSPATH is used to help you auto-complete import
directives. Type Ctrl+Space if you want Stylus Studio to auto-complete keywords and
class names that are defined in java.lang.package.

The Stylus Studio Java editor also does background error checking. As you type Java
code, Stylus Studio displays red lines that indicate syntax errors. Move the cursor over the
red line to display a pop-up error message.

When you use the Java editor, you can configure the character encoding that Stylus Studio
uses to save and load files. To do this, ensure that a Java file is the active file. Then select
Edit > Change Encoding from the Stylus Studio menu bar.
Stylus Studio User Guide 601

Debugging Stylesheets
Context-sensitive help for your Java classes is available in the Java editor. The directory
that contains the javadoc-generated documentation must be in the Stylus Studio class path
(in the Stylus Studio menu bar select Tools > Options > Java Virtual Machine) or in your
CLASSPATH environment variable. You can then press F1 when your cursor is on a class
name in the Java editor. Stylus Studio opens the related javadoc-generated
documentation.

Stylus Studio and the JVM
Stylus Studio allows you to debug a running application. You can attach Stylus Studio to
a local or remote Java Virtual Machine (JVM), and run your application in debug mode.
In the Stylus Studio tool bar, click Attach to debug a standalone Java program that is
running an external JVM. (Attach is not for debugging Java extensions.)

To execute a class, open the Java source in Stylus Studio and press F5. Of course, the class
must be in your CLASSPATH environment variable or in the Stylus Studio ClassPath (select
Tools > Options > Java Virtual Machine).

◆ To verify the JVM that Stylus Studio is trying to load:

1. Select Tools > Options from the Stylus Studio menu bar.

2. In the Options dialog box that appears, click General > Java Virtual Machine.

The Home Directory field indicates the version of the JVM.

When you suspend processing, display the Output Window to view any output from the
Java virtual machine. To display the Output Window, click Output Window in the
Stylus Studio tool bar.

Example of Debugging Java Files
Stylus Studio includes sample files that you can experiment with to learn how to use the
debugger with an application that includes stylesheets and Java files. To get you started,
this section provides step-by-step instructions for using the debugger with these sample
files. You should perform the steps in each topic in the order of the topics.

For complete information about how to use the debugger, see “Debugging Stylesheets”
on page 589.
602 Stylus Studio User Guide

Debugging Java Files
This section includes the following topics:

● Setting Up to Debug Sample Java/XSLT Application on page 603

● Inserting a Breakpoint in the Sample Java/XSLT Application on page 604

● Gathering Debug Information About the Sample Java/XSLT Application on
page 604

Setting Up to Debug Sample Java/XSLT Application

◆ To set up Stylus Studio to debug the sample Java/XSLT application:

1. From the Stylus Studio menu bar, select Tools > Options.

2. In the Options dialog box that appears, click Java Virtual Machine.

3. If the examples\javaExtension directory is already in the ClassPath field, click OK.

If the examples\javaExtension directory is not in the ClassPath field, click Browse
 next to the ClassPath field. In the Browse for Folder dialog box that appears,

navigate to and select the javaExtension directory, which is in the examples directory
of your Stylus Studio installation directory. Click OK. Restart Stylus Studio. For
ClassPath changes to take effect, you must restart Stylus Studio whenever you
modify the ClassPath field.

4. In the File Explorer, navigate to the examples\javaExtension directory in your Stylus
Studio installation directory.

5. Double-click IntDate.xsl.

Stylus Studio opens the IntDate.xsl stylesheet in the XSLT editor. The tree for the
XML source document, IntDate.xml, also appears.

6. In the XSLT editor tool bar, click Preview Result .

The IntDate scenario has already been defined. Stylus Studio applies the stylesheet
and displays the results (a list of dates) in the Preview window.
Stylus Studio User Guide 603

Debugging Stylesheets
Inserting a Breakpoint in the Sample Java/XSLT Application

This topic is part of a sequence that starts with “Setting Up to Debug Sample Java/XSLT
Application” on page 603.

To insert a breakpoint in the sample stylesheet:

1. In the XSLT editor, examine the template that matches the date element.

As you can see, the select attribute in the xsl:value-of instruction invokes the
IntDate Java extension function.

2. In the body of the template, click just before the xsl:value-of instruction.

3. In the Stylus Studio tool bar, click Toggle Breakpoint .

4. Press F5 to apply the stylesheet.

Alternative: In the Stylus Studio tool bar, click Start Debugging .

The XSLT processor suspends processing at the breakpoint, displays a yellow
triangle to indicate where processing has been suspended, and displays a message in
the Preview window.

Gathering Debug Information About the Sample Java/XSLT Application

This topic is part of a sequence that starts with “Setting Up to Debug Sample Java/XSLT
Application” on page 603.

◆ To obtain debug information:

1. In the Stylus Studio tool bar, click Step into or press F11.

Stylus Studio opens and displays the Java source file that contains the IntDate
extension function. Now the Variables window displays a list of the variables in the
extension function. There is still no output in the Preview window.

Stylus Studio might display the Browse For Folder dialog box. It is prompting you to
specify where it can find the Java source file that contains the extension function
invoked in the line that has the breakpoint. Stylus Studio does not display the Browse
for Folder dialog box when the .java file is in the same directory as the .class file.
Click the javaExtension directory and click OK.

2. In the Stylus Studio tool bar, click Output Window .

Stylus Studio displays the Output Window, which displays output from the Java
virtual machine.
604 Stylus Studio User Guide

Debugging Java Files
3. In the Stylus Studio tool bar, click Step Over or F10 to move to the next line of
Java code.

The yellow triangle moves to show the new location. If the values of the variables
change, the Variables window reflects this.

4. Press Step Out to return to the stylesheet.

The Variables window now displays only the context node. Processing was
suspended when the second date child element of the doc document element was the
context node.

The Preview window now displays a few lines of HTML.

5. In the Preview window, click in the first line of text.

Stylus Studio displays the Backmap Stack window, which contains a list of the XSLT
instructions that have been executed. Also, in the XSLT Source tab, Stylus Studio
displays a blue triangle that indicates the line in the stylesheet that generated the
output line you clicked in.
Stylus Studio User Guide 605

Debugging Stylesheets
606 Stylus Studio User Guide

Chapter 8 Defining XML Schemas
This section provides information about how to use Stylus Studio to define an XML
Schema. Although some information about XML Schema tags is provided, familiarity
with the W3C XML Schema Recommendation is assumed.

Many of the examples in this chapter are based on the purchaseOrder.xsd document,
which is installed with other sample files in the examples\simpleMappings directory of
your Stylus Studio installation directory. Consider having this file open as you read
through the examples in this chapter.

This section covers the following topics:

● “What Is an XML Schema?” on page 608

● “Creating an XML Schema in Stylus Studio” on page 608

● “Working with XML Schema in Stylus Studio” on page 621

● “Getting Started with XML Schema in the Tree View” on page 631

● “Defining simpleTypes in XML Schemas” on page 637

● “Defining complexTypes in XML Schemas” on page 647

● “Defining Elements and Attributes in XML Schemas” on page 657

● “Defining Groups of Elements and Attributes in XML Schemas” on page 666

● “Adding Comments, Annotation, and Documentation Nodes to XML Schemas” on
page 670

● “Defining Notations” on page 673

● “Referencing External XML Schemas” on page 674

● “Generating Documentation for XML Schema” on page 681

● “About XML Schema Properties” on page 686
Stylus Studio User Guide 607

http://www.w3.org/TR/xmlschema-0/

Defining XML Schemas
What Is an XML Schema?
An XML Schema conforms with the W3C XML Schema Recommendation. The XML
Schema Recommendation defines an XML markup vocabulary for specifying the structure
of an XML document. An XML Schema serves the same purpose as a DTD. The most
visible difference is that an XML Schema is in XML, while a DTD is not.

Like a DTD, an XML Schema describes the structure of a document. However, an XML
Schema contains more specialized types of nodes than a DTD schema. For example, in
an XML Schema, you can define nodes of type group and attributeGroup. These nodes
contain groups of elements and attributes, respectively.

In an XML Schema, elements that contain subelements or attributes are called
complexTypes. Elements that contain data but do not contain subelements or attributes are
simpleTypes. Attributes are always simpleTypes. In your XML Schema, along with
elements and attributes, you define complexTypes and some simpleTypes. In addition,
many simpleTypes are part of the XML Schema grammar.

Reference Information
The World Wide Web Consortium (W3C) provides information about XML Schema,
including the following:

● XML Schema Part 0: Primer at http://www.w3.org/TR/xmlschema-0/

● Glossary of XML Schema terms at http://www.w3.org/TR/2001/REC-xmlschema-1-
20010502/#normative-glossary

● Reference information for simpleTypes and their facets at
http://www.w3.org/TR/xmlschema-0/#SimpleTypeFacets

● Reference information for XML Schema elements and attributes at
http://www.w3.org/TR/xmlschema-0/#index

Creating an XML Schema in Stylus Studio
There are several ways to create an XML Schema in Stylus Studio, including building
your own XML Schema from scratch, and creating an XML Schema based on an existing
DTD or from an XML document.

This section covers the following topics:

● “Creating Your Own XML Schema” on page 609

● “Creating XML Schema from a DTD” on page 609
608 Stylus Studio User Guide

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

Creating an XML Schema in Stylus Studio
● “Creating XML Schema from an XML Document” on page 614

You can also create XML Schema from EDI message types and transactions, like those in
EDIFACT, X12, and IATA dialects. See “Creating XML Schema from EDI” on
page 617.

Creating Your Own XML Schema

◆ To create an XML Schema, select File > New > XML Schema from the menu bar.

Stylus Studio displays a new XML document in the XML Schema Editor Diagram tab;
the text pane displays the following contents:

When you create an XML Schema in Stylus Studio, the default namespace is specified as
http://www.w3.org/2001/XMLSchema. If you choose to you specify the XML Schema
namespace, be sure to specify one of the following:

● http://www.w3.org/2001/XMLSchema
● http://www.w3.org/2001/XMLSchema-instance

Creating XML Schema from a DTD
Stylus Studio has two document wizards you can use to create an XML Schema from a
DTD. One uses a built-in processor; the other uses the Trang schema converter from Thai
Open Source Software Center (www.thaiopensource.com). Using the Trang converter
gives you more control over both the input file and output characteristics (such as whether
or not you want to indent the XML Schema).

Using the DTD to XML Schema Document Wizard

◆ To use the DTD to XML Schema wizard:

1. From the Stylus Studio menu bar, select File > Document Wizards.

The Document Wizards dialog box appears.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
</xsd:schema>
Stylus Studio User Guide 609

http://www.thaiopensource.com

Defining XML Schemas
2. In the XML Editor tab, click DTD to XML Schema, and click OK.

The Convert DTD to XML Schema dialog box appears.

3. In the DTD URL field, type or select the absolute path for the DTD from which you
want to create an XML Schema.

4. If you want to specify a target namespace for the resulting XML Schema, select the
Use a Target Namespace check box and type a target namespace URL.

5. Click OK.

Stylus Studio displays the new XML Schema in the XML Schema Editor.

Using the DTD to XML (Trang) Document Wizard

The following table describes the fields in the DTD to XML (Trang) dialog box, which is
displayed when you run the DTD to XML (Trang) document wizard. This document
wizard was created using Stylus Studio Custom Document Wizard (see “Custom
Document Wizards” on page 1214 for more information).

Figure 282. Convert DTD to XML Schema Dialog Box

Note The DTD must be encoded in UTF-8.

Table 67. DTD to XML (Trang) Document Wizard Fields

FIeld Description

Input file (required) The name and location of the DTD file you want to
convert to XSD. You can type the file name or use the
Browse button to browse a file system for the source
DTD file.

[input] xmlns=<uri> The default namespace; used for unqualified element
names.
610 Stylus Studio User Guide

Creating an XML Schema in Stylus Studio
[input] xmlns:<prefix=uri> The namespace for the element and autoboot names
using prefix.

[input] colon-
replacement=<chars>

The character that is used to replace colons in element
names. Used when constructing the names of
definitions used to represent the element and attribute
list declarations in the DTD. Trang generates a
definition for each element declaration and attlist
declaration in the DTD. The definition name is based on
the element name. In RELAX NG, the definition names
cannot contain colons; colons are allowed in element
names in DTDs. Trang first tries to use the element
names without prefixes. If this results in a conflict,
Trang replaces the colon with the chars specified. If no
chars is specified, a period is used.

[input] element-define=<name-
pattern>

Specifies how to construct the name of the definition
representing an element declaration from the name of
the element. The name-pattern must contain exactly
one percent character (%). This character is replaced by
the name of the element, after colon replacement, and
the result is used as the name of the definition.

[input] inline-attlist / no-
inline-attlist

inline-attlist specifies not to generate definitions for
attribute list declarations. Instead, attributes in attribute
list declarations are moved into the definitions
generated for element list declarations.

no-inline-attlist generates a distinct definition (with
combine=”interleave”) for each attribute list
declaration in the DTD; each element declaration
definition references the definition for the
corresponding attribute list declaration.

Table 67. DTD to XML (Trang) Document Wizard Fields

FIeld Description
Stylus Studio User Guide 611

Defining XML Schemas
[input] attlist-define=<name-
pattern>

Specifies how to construct the name of the definition
representing an attribute list declaration from the name
of the element. The name-pattern must contain exactly
one percent character (%). This character is replaced by
the element name, after colon replacement, and the
result is used as the name of the definition.

[input] any-name=<name> Specifies the name of the definition generated for the
content of elements declared in the DTD as having a
content model of ANY.

[input] strict-any Preserves the exact semantics of ANY content models
by using an explicit choice of references to all declared
elements. By default, Trang uses a wildcard that allows
any element.

[input] annotation-
prefix=<prefix>

Default values are represented using an annotation
attribute prefix:defaultValue where prefix is bound
to http://relaxng.org/ns/compatibility/annotations/1.0
as defined by the RELAX NG DTD Compatibility
Committee Specification. By default, Trang uses a for
prefix unless that conflicts with a prefix used in the
DTD.

[input] generate-start / no-
generate-start

Specifies whether or not Trang should generate a start
element. DTDs do not indicate what elements are
allowed as document elements. Trang assumes that all
elements that are defined but never referenced are
allowed as document elements.

[output] encoding=<name> Uses name as the encoding for output files.

[output] indent=<n> Indents each indent level in the output file by n spaces.

[output] disable-abstract-
elements

Disables the use of abstract elements and substitution
groups in the generated XML schema.

Table 67. DTD to XML (Trang) Document Wizard Fields

FIeld Description
612 Stylus Studio User Guide

Creating an XML Schema in Stylus Studio
◆ To use the DTD to XML Schema (Trang) wizard:

1. From the Stylus Studio menu bar, select File > Document Wizards.

The Document Wizards dialog box appears.

2. In the XML Editor tab, click DTD to XML Schema (Trang) and click OK.

The DTD to XML Schema (Trang) dialog box appears.

[output] any-process-
contents=strict|lax|skip

Specifies the value for the processContents attribute of
any elements. The default is strict, which corresponds to
DTD semantics.

[output] any-attribute-process-
contents=strict|lax|skip

Specifies the value for the processContents attribute of
anyAttribute elements. The default is skip, which
corresponds to RELAX NG semantics.

Table 67. DTD to XML (Trang) Document Wizard Fields

FIeld Description

Figure 283. DTD to XML Schema (Trang) Dialog Box
Stylus Studio User Guide 613

Defining XML Schemas
3. Enter the absolute path of the DTD from which you want to create an XML Schema.
The DTD must be encoded in UTF-8. You can type the file path, or use the browse
button (which appears when you place the cursor in the Input file (required) field.
This is the only required field.

4. Optionally, complete any of the remaining fields.

5. Click OK.

Stylus Studio displays the new XML Schema in the XML Schema Editor.

Creating XML Schema from an XML Document
There are two ways to create XML Schema from an XML document:

● The XML to XML Schema document wizard allows you to create XML Schema from
any XML document. The XML document you use to create the XML Schema is not
modified with attribute information about the new XML Schema when you use this
method.

● The Create Schema from XML Content feature in the XML Editor. This method
allows you to create an XML Schema (or DTD) based on the current XML document
in the XML Editor. The XML document is always modified with namespace and
schema location attributes when you use this method. If you choose to create DTD,
you have the option of creating internal or external DTD.

Both methods allow you to specify the URI for the generated files (if an XML document
has multiple namespaces defined for it, Stylus Studio creates a separate XML Schema
associated with each namespace).

Using the XML to XML Schema Document Wizard

Use this procedure when you want to create an XML Schema based on the content of an
existing XML document.

◆ To use the XML to XML Schema document wizard:

1. Select File > Document Wizards from the menu.

The Document Wizards dialog box appears.
614 Stylus Studio User Guide

Creating an XML Schema in Stylus Studio
2. Double-click XML to XML Schema.

The Convert XML to XML Schema dialog box appears.

3. Specify the XML document you want to use to create an XML Schema in the XML
Document field.

4. Specify the URI for the generated file(s) in the Generated XSD field.

5. Click the OK button.

Stylus Studio creates the XML Schema file and opens it in the XML Schema Editor.

Using the Create Schema from XML Content Feature

Use this procedure when you want to create an XML Schema based on the content of an
existing XML document.

◆ To use the Create Schema XML Content feature:

1. Open the XML document from which you wish to create an XML Schema.

Figure 284. Convert XML to XML Schema Dialog Box
Stylus Studio User Guide 615

Defining XML Schemas
2. Select XML > Create Schema from XML Content from the Stylus Studio menu.

The Create Schema or DTD dialog box appears.

3. Click Generate XML Schema.

The Output File field becomes active.

4. Type a name for the XML Schema you want to create, or use the browse button ()
to search for an existing file.

5. Click the Yes button.

The XML Schema is created. If you do not specify a complete URL, the schema is
written to the same location as the XML document from which it was created.

Displaying the New XML Schema

Use this procedure to open the new XML Schema created using the Create Schema from
XML Content feature (or to open the XML Schema associated with any active XML
document).

◆ To display the new XML Schema:

1. Click XML > Open Associated Schema.

2. Select the XML Schema from the drop-down menu.

The XML Schema appears in the XML Schema Editor.

Figure 285. Create Schema or DTD Dialog Box
616 Stylus Studio User Guide

Creating XML Schema from EDI
Creating XML Schema from EDI

The EDI to XSD document wizard allows you to create XML Schema based on supported
EDI dialects like EANCOM, EDIFACT, Edig@s, HIPAA, HL7, IATA, NCPDP,
TRADACOMS, and X12.

This section covers the following topics:

● “Wizard Options” on page 617

● “Running the EDI to XSD Document Wizard” on page 619

Wizard Options
Though specifics vary across EDI dialects (IATA and EANCOM refer to versions, while
X12 refers to Release, for example), the options for most EDI document wizards are
similar, if not the same. Document wizard options are summarized in the following table.
Once specifying the dialect and version, you use the fields of the XML Structure group
box to specify the structure of the XML; you use the fields of the XML Schema Options
group box to specify the settings that are used to generate the XML Schema for the
selected EDI message.

The EDI to XSD document wizard is available only in Stylus Studio XML
Enterprise Suite.

Table 68. EDI Document Wizard Options

Option Name Description

Dialect The EDI dialect from which you want to create an XML Schema.

Version The version of the EDI dialect from which you want to create an
XML Schema.

Mode Certain EDI messages have alternate batch and interactive forms,
depending upon whether they are used between systems that have
real-time connections. The Interactive setting causes the interactive
form to be used, if available. For example, in EDIFACT, this would
cause the normal envelope of UNB/UNH/UNT/UNZ to be replaced
by UIB/UIH/UIT/UIZ. Valid for EANCOM, EDIFACT, and IATA
only.

Message The specific message type from which you want to create an XML
Schema.
Stylus Studio User Guide 617

Defining XML Schemas
Use long element names Whether or not you want to use the long element name as part of the
XML tag – UNB01-SyntaxIdentifier versus UNB01, for example

Wrap “GROUP”
element around message
groups

Whether you want to wrap a <GROUP> element around transaction
messages. This can make message groupings easier to handle with
XPath for EDI document with multiple message groups.

Prefix GROUP_N tags
with the message name

Adds the message name to the GROUP_n prefix in the XML
element tag. For example, <TS_831_GROUP_1>.

Put the data value in
value= attributes

Places code list data values in an value= string in the element tag.
For example, <BGN01 value="00"><!--353: Transaction Set
Purpose Code--></BGN01>. By default, the data value is output to
XML as text (<BGN01><!--353: Transaction Set Purpose Code--
>00</BGN01>).

Put decoded data values
in decode= attributes

Places decoded code list data values in a decode= string in the
element tag. For example, <ISA15 decode=”Production Data”>. By
default, the decoded value is not output to XML.

Write annotations
describing each element

Whether or not you want the generated XML Schema to include
annotations that are part of the EDI message.

Enumerations for
elements that have
codelists

Whether or not you want the generated XML Schema to include
enumerations for fields that have lists of values.

Use “unbounded” for
maxOccurs when loop
value is 99 or higher)

Replaces maxOccurs values of 100 or greater with “unbounded”.
This option ensures that the generated XML Schema can be
successfully validated by most processors

SEF File The URI of the Standard Exchange Format (SEF) file, if any, you
want to use when generating XML Schema. The SEF file can
augment information that Stylus Studio uses to generate XML
Schema – customized EDI definitions are stored in the SEF file, for
example. If the same setting is specified by both the document
wizard and the SEF file, the SEF file value is used.

Table 68. EDI Document Wizard Options

Option Name Description
618 Stylus Studio User Guide

Creating XML Schema from EDI
Running the EDI to XSD Document Wizard

◆ To run an EDI to XML Schema document wizard:

1. Select File > Document Wizards from the Stylus Studio menu.

The Document Wizards dialog box appears.

2. Select the XML Editor tab:

Figure 286. Document Wizards Dialog Box
Stylus Studio User Guide 619

Defining XML Schemas
3. Double-click the icon for the EDI to XSD document wizard.

A dialog box for the document wizard you selct appears. The Generate XML Schema
from EDI Standards dialog box is shown here.

4. If necessary, change the version ID or release number. Values are listed
chronologically in ascending order.

5. Select the message or transaction set on which you wish to base the XML Schema
you are creating.

6. Change the XML Schema creation options as required. See Wizard Options on
page 617 if you need help with this step.

7. Click OK.

Stylus Studio converts the EDI you selected in Step 5 to XML Schema and opens a
new, untitled document in the XML Schema Editor.

Figure 287. Generate XML Schema from EDI Standards
620 Stylus Studio User Guide

Working with XML Schema in Stylus Studio
Working with XML Schema in Stylus Studio
You use the XML Schema Editor to view, define, and validate XML Schema using one or
more of three tabs, or views. This section describes these and other tools for working with
XML Schema in Stylus Studio.

This section covers the following topics:

● Views in the XML Schema Editor on page 622

● Validating XML Schema on page 625

● Updating XML Schema Associated with a Document on page 625

● Viewing Sample XML on page 625

● Using XML Schema in XQuery and XSLT Mapper on page 627

● Printing on page 627

● Node Properties on page 628

● Searching for Referencing Nodes on page 629
Stylus Studio User Guide 621

Defining XML Schemas
Views in the XML Schema Editor
The XML Schema Editor has Diagram, Tree, and Documentation tabs. The Diagram tab,
which is the default for the XML Schema Editor, is shown in Figure 288.

You can see other Stylus Studio video demonstrations here:
http://www.stylusstudio.com/xml_videos.html.

Each tab displays the schema from a unique perspective, as summarized here:

● Diagram – Displays the XML Schema using graphical elements for the nodes
(elements, attributes, simpleTypes, complexTypes, and so on) defined in the XML
Schema in a diagram pane. Container elements can be expanded to show child

Figure 288. XML Schema Editor Diagram Tab

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the XML Schema Diagram Editor
video.
622 Stylus Studio User Guide

http://www.stylusstudio.com/videos/xmlschema1/xmlschema1.html
http://www.stylusstudio.com/videos/xmlschema1/xmlschema1.html
http://www.stylusstudio.com/videos/xmlschema1/xmlschema1.html
http://www.stylusstudio.com/xml_videos.html

Working with XML Schema in Stylus Studio
elements, and values such as element and attribute names and types can be edited in
place by double-clicking the node you want to modify.

In addition to the diagram pane, the Diagram tab includes a text pane. The text pane
displays the raw XML text used to define the XML Schema, and lets you see how the
changes you make in the diagram affect the XML Schema text. You can make
changes in either pane – to a node in the diagram, or directly to the text – Stylus Studio
keeps both views synchronized.

The Diagram tab has a full complement of editing tools, including checkers for well-
formedness and validation, as well as a query functionality that lets you evaluate your
query using either XPath 1.0 or XPath 2.0. XML Schema query is also supported in
the Tree tab. See “Printing” on page 627 to learn how to print information in the
Diagram tab.

For more information on the Diagram tab, including a description of the graphical
symbols used to represent XML Schema elements, see Introduction to the XML
Schema Editor Diagram Tab on page 105.

● Tree – Displays a DOM tree representation of the XML Schema. You can edit the
XML Schema graphically, in the tree itself, or by modifying the properties of the
nodes you select.

Figure 289. XML Schema Editor Tree Tab
Stylus Studio User Guide 623

Defining XML Schemas
● Documentation – Displays read-only summary and detailed reference information
about the XML Schema, including sections for schema document properties, global
declarations, and global definitions.

In Stylus Studio, the information in all tabs synchronized automatically.

Generally speaking, if you are just getting started with XML Schema you should consider
using the Diagram tab to work with XML Schema in Stylus Studio. Its graphical user
interface makes defining XML Schema easy and error-free, and the built-in text pane,
which lets you see how new nodes are rendered in XML, can be a useful learning tool.

To get started using the Diagram view to define an XML Schema, see “Defining an XML
Schema Using the Diagram Tab – Getting Started” on page 104. Procedures for working
with the Diagram tab are also covered throughout this chapter.

Figure 290. XML Schema Editor Documentation Tab (XS3P Format)
624 Stylus Studio User Guide

Working with XML Schema in Stylus Studio
Validating XML Schema
Stylus Studio can analyze your XML Schema document to determine if it is valid. At any
time, click Validate Document in the Stylus Studio tool bar to ensure that your schema
is valid. If it is not, Stylus Studio displays a message that indicates the cause and location
of the error.

Choosing a validation engine

When you click the Validate Document button, Stylus Studio uses the built-in
validation engine. If you want to use a different validation engine, like XML Schema
Validator (XSV), for example:

1. Click the down arrow next to the Validate Document button.

A list of supported validation engines appears.

2. Select the validation engine you want to use.

3. Click the Validate Document button again to validate your XML Schema.

Updating XML Schema Associated with a Document
Stylus Studio can associate an XML Schema with an XML document, and it can validate
an XML document against its associated XML Schema. If you update an XML Schema
in Stylus Studio and that schema is associated with an XML document that is open in
Stylus Studio, Stylus Studio refreshes the XML Schema information for the XML
document.

Viewing Sample XML
You can view a sample of the XML represented by a node in the XML Schema Diagram
tab. You can also optionally create an XML document based on that instance. For
Stylus Studio User Guide 625

Defining XML Schemas
example, here is an instance of the XML represented by the purchaseOrder element in
purchaseOrder.xsd.

If you want, you can create a new XML document based on this instance by clicking the
Open as New Document button.

◆ To view sample XML:

1. In the Diagram tab, select the node for which you want to see sample XML.

2. Select Diagram > View XML Sample from the Stylus Studio menu.

Alternative: Select View XML Sample from the node’s shortcut menu (right-click to
display).

The View Sample XML dialog box appears. (See Figure 291.)

3. If you want to open this instance as a new XML document in Stylus Studio, click the
Open as a New Document button. Otherwise, click Close Preview.

Figure 291. Sample of XML Based on XML Schema

Note If the XML Schema contains an element defined using a built-in type, the instance of that
element in the XML document is created using the minimum value of the range specified
for that type. For example, if the XML Schema contains a <part> element defined as
type=”xs:integer”, the <part> element in the resulting XML document appears as
<part>-9223372036854775808</part>.
626 Stylus Studio User Guide

Working with XML Schema in Stylus Studio
Using XML Schema in XQuery and XSLT Mapper
You can use an XML Schema as the source document or target document for Stylus
Studio’s XQuery and XSLT Mappers. See “Building an XQuery Using the Mapper” on
page 851 and “Creating XSLT Using the XSLT Mapper” on page 545 for more
information on these topics.

Printing
You can print XML Schema from the Diagram tab, and you can print XML Schema
documentation from the Documentation tab.

Printing XML Schema

Stylus Studio allows you to print either the graphics in the diagram pane, or the raw XML
in the text pane. If one pane is collapsed, Stylus Studio prints the visible pane. If both
panes are visible, Stylus Studio prints the pane that currently has focus.

◆ To print XML Schema from the Diagram tab:

1. Select the pane of the Diagram tab you want to print.

2. Click Print .

Alternative: Select File > Print from the Stylus Studio menu.

Printing XML Schema Documentation

To print XML Schema documentation, click the Print tool (or Ctrl + P) on the
Documentation tab. Stylus Studio prints the XML Schema documentation using the
XS3P format. See “Generating Documentation for XML Schema” on page 681 for more
information.

Saving theXML Schema Diagram as an Image
You can save a graphical image of your XML Schema diagram as a JPEG (.jpg) file or
as an Extended Meta File (.emf). When you save an XML Schema as an image, Stylus
Studio includes the entire XML Schema diagram, not just what is currently visible.

Stylus Studio uses a standard zoom level when saving the image; application zoom level
settings are ignored.

Tip Select File > Print Preview to verify the output before you print.
Stylus Studio User Guide 627

Defining XML Schemas
◆ To save an XML Schema diagram as an image:

Select Diagram > Export Image from the menu, or select Export Image from the
shortcut menu on the diagram pane (right-click).

Stylus Studio displays the Save As dialog box.

3. Select the file format (.jpg or .emf) from the Files of type drop-down list.

4. Specify a name and location for the file and click the Save button. The default name
is the name of the XML Schema document; the default location is the folder in which
the XML Schema document has been saved.

Node Properties
The Properties window is available when you are using the Diagram or Tree tab of the
XML Schema Editor. When the Properties window is open, it displays the properties of
the node you click. If you have selected a restricted node from a redefined XML Schema,
Stylus Studio displays a separate section in the lower half of the Properties window for
you to specify the facets, as shown in Figure 292.

If the Properties window is not visible, select View > Properties from the Stylus Studio
menu.

To change the value of a property, click the property field and enter the new value. If only
certain values are allowed, Stylus Studio displays a drop-down list of the valid choices.
Each type of node has its own set of properties. For a description of each property, see
“About XML Schema Properties” on page 686.

Figure 292. Properties Window with Restricted Type Facets

Tip The Properties window is a dockable window – you can drag it out of Stylus Studio and
place it anywhere on your desktop, as shown in Figure 292.
628 Stylus Studio User Guide

Working with XML Schema in Stylus Studio
Working with Properties in the Diagram

You can also display and edit properties within the nodes in the diagram. See “Displaying
Properties” on page 108 for more information on this feature.

Searching for Referencing Nodes
You can use the Find References feature to find all the constructs that reference a
definition you select in the XML Schema diagram. You can search for references to

● Global elements

● Simple global types

● Complex global types

In addition to the current XML Schema, Stylus Studio searches any included or imported
XML Schemas for references.

Search Results

Search results are displayed in the Output window, as shown in Figure 293. Information
in the result includes

● The name of the node whose references you are looking for

● Searched files (that is, the current XML Schema and any included or imported XML
Schemas)
Stylus Studio User Guide 629

Defining XML Schemas
● The location (file URL, and line:column) of the reference

Pressing F4:

● Highlights the first search result

● Scrolls the text pane to the referencing node (note the blue marker in the text pane
margin)

● Scrolls the diagram pane and highlights the referencing node

Pressing F4 again repeats this action for the next search result.

◆ To search for referencing nodes in an XML Schema:

1. Select the XML Schema node for which you want to find referencing nodes.

2. Right-click, and select Find References from the shortcut menu.

Alternative: Select Diagram > Find References from the Stylus Studio menu.

Figure 293. Results of a Search for Referencing Nodes
630 Stylus Studio User Guide

Getting Started with XML Schema in the Tree View
Getting Started with XML Schema in the Tree View
This section provides a quick tour of the main features of the Tree view in the XML
Schema Editor. It provides instructions that you can follow to define a simple XML
Schema.

This section provides step-by-step instructions for defining the bookstoreTree.xsd XML
Schema document. You should perform the steps in each topic in the order of the topics.
This section covers the following topics:

● Description of Sample XML Schema on page 631

● Defining a complexType in a Sample XML Schema in the Tree View on page 632

● Defining Elements of the Sample complexType in the Tree View on page 637

For instructions for using the Diagram view to define the same XML Schema, see
“Defining an XML Schema Using the Diagram Tab – Getting Started” on page 104.

Description of Sample XML Schema
Suppose you want to define an XML Schema that defines book, magazine, and newsletter
elements. The type of each of these elements is PublicationType. The XML Schema
defines the PublicationType complexType. An element that is a PublicationType contains
the following:

● The genre attribute specifies the style of the publication.

● There is always exactly one title element.

● The subtitle element is optional.

● There must be at least one author element and there can be more. Each author
element contains one first-name element and one last-name element.

● Of the following three elements, exactly one must always be present:
❍ ISBNnumber

❍ PUBnumber

❍ LOCnumber

● The elements must be in the order specified in this list.
Stylus Studio User Guide 631

Defining XML Schemas
Tips for Adding Nodes
To add a node to an XML Schema in the Tree view, click a node that is already in the
schema. Stylus Studio activates the buttons for only those nodes that can be children of
the node you selected. If you hold down the Shift key, Stylus Studio activates only those
buttons that allow you to add nodes that can be siblings of the selected node.

Defining a complexType in a Sample XML Schema in the Tree
View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 631.

The steps for defining the PublicationType complexType are described in the following
sections:

● Defining the Name of the Sample complexType in the Tree View on page 632

● Adding an Attribute to a Sample complexType in the Tree View on page 633

● Adding Elements to a Sample complexType in the Tree View on page 633

● Adding Optional Elements to a Sample complexType in the Tree View on page 634

● Adding an Element That Contains Subelements to a complexType in the Tree View
on page 634

● Choosing the Element to Include in the Sample complexType in the Tree View on
page 636

Defining the Name of the Sample complexType in the Tree View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 631.

◆ To define a complexType in the sample XML Schema:

1. From the Stylus Studio menu bar, select File > New > XML Schema.

Stylus Studio displays the XML Schema Editor.

2. At the bottom of the XML Schema Editor, click the Tree tab.

Stylus Studio displays the Tree view of the schema, and the Properties window,
which lists the properties for the selected node in the tree.

3. Click the Schema node .
632 Stylus Studio User Guide

Getting Started with XML Schema in the Tree View
4. In the left tool bar, click New complexType .

Stylus Studio displays a field for the new complexType.

5. Type PublicationType as the name for this new complexType and press Enter.

6. Click Save .

7. In the Save dialog box that appears, in the URL field, type bookstoreTree.xsd, and
click Save.

Adding an Attribute to a Sample complexType in the Tree View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 631.

◆ To add the genre attribute to the PublicationType complexType:

1. In the Tree view, click the PublicationType node.

2. In the left tool bar, click New Attribute Definition .

In the Tree view, Stylus Studio displays a field for the new attribute.

3. Type genre as the name of the new attribute and press Enter.

Stylus Studio displays a drop-down list of built-in simpleTypes.

4. Double-click xsd:string.

Adding Elements to a Sample complexType in the Tree View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 631.

◆ To add the title element, which must appear exactly once, to the PublicationType
complexType:

1. In the Tree view, click the PublicationType node.

2. In the left tool bar, click New Model Group .

Stylus Studio displays a drop-down list of group modifiers.

3. Double-click the sequence modifier.

The sequence modifier indicates that an instance document contains zero, one, or
more of each child element in the order in which they are defined.
Stylus Studio User Guide 633

Defining XML Schemas
4. In the left tool bar, click New Element Definition .

In the Tree view, Stylus Studio displays a field for the new element definition.

5. Type title as the name of the new element and press Enter.

Stylus Studio displays a drop-down list of built-in simpleTypes.

6. Double-click xsd:string.

Adding Optional Elements to a Sample complexType in the Tree View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 631.

◆ To add the optional subtitle element to the PublicationType complexType:

1. In the Tree view, click the sequence node.

2. In the left tool bar, click New Element Definition .

In the Tree view, Stylus Studio displays a field for the new element definition.

3. Type subtitle as the name of the new element and press Enter.

Stylus Studio displays a drop-down list of built-in simpleTypes.

4. Double-click xsd:string.

5. In the Properties window, double-click the Min Occur. field.

6. Type 0 and press Enter

7. In the Properties window, double-click the Max Occur. field.

8. Type 1 and press Enter.

Adding an Element That Contains Subelements to a complexType in the
Tree View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 631.

The PublicationType complexType must include at least one author element. An author
element must include a first-name element and a last-name element.

Each element that can contain subelements is a complexType. Consequently, to add the
author element to the PublicationType complexType, you must first define the
634 Stylus Studio User Guide

Getting Started with XML Schema in the Tree View
authorType complexType. You can then add an element that is of authorType to the
PublicationType complexType.

◆ To define the authorType complexType:

1. In the XML Schema Editor, click the Schema node.

2. In the left tool bar, click New complexType .

Stylus Studio displays a field for the new complexType.

3. Type authorType as the name for this new complexType and press Enter.

4. In the left tool bar, click New Model Group .

5. In the drop-down list that appears, double-click the sequence modifier.

6. In the left tool bar, click New Element Definition .

7. In the field that Stylus Studio displays, type first-name as the name of the new
element and press Enter.

8. In the drop-down list that appears, double-click xsd:string.

9. In the Tree view, click the sequence modifier for authorType.

10. Repeat Step 6 through Step 8, but type last-name as the name of the new element.

◆ Now you can add the author element to the PublicationType complexType:

1. In the Tree view, click the sequence node under the PublicationType node.

2. In the left tool bar, click New Element Definition .

3. In the field that Stylus Studio displays, type author as the name of the new element
and press Enter.

4. In the drop-down list that appears, double-click authorType.

5. In the Properties window, double-click in the Min Occur. field.

6. Type 1 and press Enter.

7. In the Properties window, double-click in the Max Occur. field.

8. Type unbounded in the Max Occur. field and press Enter.
Stylus Studio User Guide 635

Defining XML Schemas
Choosing the Element to Include in the Sample complexType in the Tree
View

This topic is part of a sequence that begins with “Description of Sample XML Schema”
on page 631.

In the sample XML Schema, you want PublicationType elements to contain an
ISBNnumber, PUBnumber, or LOCnumber element.

◆ To specify this:

1. In the Tree view, under the PublicationType node, click the sequence node.

2. In the left tool bar, click New Model Group .

3. In the drop-down list that appears, double-click the choice modifier.

4. In the left tool bar, click New Element Definition .

5. In the field that Stylus Studio displays, type ISBNnumber as the name of the new
element and press Enter.

6. In the drop-down list that appears, scroll until you can double-click xsd:integer, or
type xsd:integer and press Enter.

7. In the Tree view, click the choice modifier for PublicationType.

8. Repeat Step 4 through Step 7 two more times. Once for the PUBnumber element and
once for the LOCnumber element.

9. Click Save .

Stylus Studio displays a message that indicates that the schema is not valid. Click OK
in the error box. In the Output Window, you can see the following message:

The problem is that there is a sequence element after an attribute element. The
sequence element must come first.

10. Right-click the genre node.

11. In the pop-up menu that appears, click Move Down.

12. Click Validate Document and Save .

Validating bookstoreTree.xsd...
file://c:\yourDirectory\bookstoreTree.xsd:6,45:
Invalid child 'sequence' in the complexType
The XML document bookstoreTree.xsd is NOT valid (1 errors)
636 Stylus Studio User Guide

Defining simpleTypes in XML Schemas
The definition of the PublicationType complexType is now complete and the schema is
now valid.

Defining Elements of the Sample complexType in the Tree View

◆ To define the book, magazine, and newsletter elements in the sample XML Schema:

1. In the Tree tab, click the Schema node.

2. In the left tool bar, click New Element Definition .

3. In the field that Stylus Studio displays, type book as the name of the new element and
press Enter.

4. In the drop-down list that appears, double-click PublicationType.

5. Repeat Step 1 through Step 4 two more times. Once for the magazine element and
once for the newsletter element.

6. Click Save .

This is the end of the section that provides instructions for getting started with defining
XML Schemas in the Tree view. The topics that follow this topic provide complete
information for defining the elements that can be in an XML Schema and for working in
the Diagram, Tree, and Text views.

Defining simpleTypes in XML Schemas
Many simpleTypes, such as string and integer, are built in to an XML Schema. You can
define your own simpleType by restricting the range of values provided by a built-in
simpleType. You can also define simpleTypes that are derived from the simpleTypes you
define.

This section covers the following topics:

● About simpleTypes in XML Schemas on page 638

● Examples of simpleTypes in an XML Schema on page 638

● Defining a simpleType in the Diagram View on page 639

● Defining a simpleType in the Tree View on page 644

● About Facet Types for simpleTypes on page 645

● Defining List and Union simpleTypes in the Tree View on page 647
Stylus Studio User Guide 637

Defining XML Schemas
About simpleTypes in XML Schemas
XML Schema defines several kinds of simpleTypes:

● Atomic is the term for most of the simpleTypes built in to XML Schema, such as
integer, string, and decimal. They are called “atomic” because in the context of
XML Schema, no part of an element or attribute of an atomic type has meaning on its
own. It is only the whole instance that has meaning.

Descriptions of the XML Schema built-in types are in the W3C XML Schema Part 2:
Datatypes at http://www.w3.org/TR/xmlschema-2/.

● List simpleTypes are sequences of atomic types. All elements of a particular list
simpleType are instances of the same atomic type.

● Union simpleTypes are sequences of atomic and list types. However, the elements of
a particular union simpleType can be instances of more than one atomic or list type.

● Anonymous simpleTypes are simpleType definitions that are not explicitly named. An
anonymous simpleType can be an atomic, list, or union simpleType. You define an
anonymous simpleType in the element or attribute definition that uses it.

Anonymous simpleTypes are useful when you want to define a type that is used in
only one element or attribute. By specifying an anonymous simpleType, you save the
overhead of explicitly defining the type and specifying a reference to it.

Examples of simpleTypes in an XML Schema
The W3C XML Schema Part 0: Primer specifies the following simpleType in its sample
purchase order schema:

This specifies that SKU is a simpleType. It is restricted to the values of the base type, which
is xsd:string. This means that for a node that is of type SKU, the possible values are a
subset of the values allowed for the xsd:string type.

The xsd:pattern element specifies that the pattern facet is being applied to the set of
values allowed by the xsd:string type. The value of the xsd:pattern element is an XML
Schema regular expression that specifies the allowable values for nodes of type SKU. In
this example, the regular expression specifies that the value must be three digits, followed

<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>
638 Stylus Studio User Guide

http://www.w3.org/TR/xmlschema-2/

Defining simpleTypes in XML Schemas
by a hyphen, followed by two uppercase ASCII letters – <xsd:pattern value="\d{3}-
[A-Z]{2}"/>. For information about XML Schema expressions, see the W3C XML Schema
Part 0: Primer at http://www.w3.org/TR/xmlschema-0/.

Elsewhere in the purchase order schema, an attribute definition specifies that SKU is the
type of its value:

An XML document that uses a schema that contains this simpleType definition can
specify the partNum attribute. The parser ensures that the value of the partNum attribute is
in the range specified by the xsd:pattern element. The SKU type itself is not mentioned in
the instance document.

Following is another example of a simpleType definition from the W3C XML Schema
Part 0: Primer. This simpleType, myInteger, is based on the xsd:integer type. It specifies
two facets (minInclusive and maxInclusive), which specify the lower and upper inclusive
bounds of the range of valid values.

Defining a simpleType in the Diagram View
This section describes the procedures for defining simpleTypes in the Diagram view. It
covers the following topics:

● “Before You Begin” on page 639

● “Defining an Atomic simpleType” on page 640

● “Specifying a Restriction for a simpleType – QuickEdit” on page 640

● “Specifying a Restriction for a simpleType – Manually” on page 642

● “Defining List and Union simpleTypes” on page 643

Before You Begin

Many of the editing features used in this section are described in “Defining an XML
Schema Using the Diagram Tab – Getting Started” on page 104. You should familiarize
yourself with that material if you have not done so already.

<xsd:attribute name="partNum" type="SKU" use="required"/>

<xsd:simpleType name="myInteger">
 <xsd:restriction base="xsd:integer">

 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>

 </xsd:restriction>
</xsd:simpleType>
Stylus Studio User Guide 639

http://www.w3.org/TR/xmlschema-0/

Defining XML Schemas
Defining an Atomic simpleType

This topic provides the steps for defining an atomic simpleType in the Diagram view.

◆ In the Diagram view, to define an atomic simpleType:

1. Right-click the schema node to display the shortcut menu.

2. Select Add > simpleType.

The new simpleType appears in the diagram; its properties are displayed in the
Properties window.

3. Change the default name to the name of the new simpleType and press Enter.

Specifying a Restriction for a simpleType – QuickEdit

QuickEdit is a feature that combines commonly-performed editing operations, such as
specifying a restriction for a simpleType. You can also perform this operation in a
different way. See “Specifying a Restriction for a simpleType – Manually” on page 642.

◆ To specify a restriction for a simpleType using QuickEdit:

1. Right-click the simpleType node to display the shortcut menu.

2. Select QuickEdit > Derive by restriction from the shortcut menu.

The Type Derivation dialog box appears.

The Type Derivation dialog box displays the W3C XML Schema, as well as any
referenced XML Schemas.

3. Expand the schema (click the plus sign) to display the base types associated with that
XML Schema.

Figure 294. Type Derivation Dialog Box
640 Stylus Studio User Guide

Defining simpleTypes in XML Schemas
4. Select the type on which you wish to base the simpleType you are defining and click
OK.

The simpleType is updated with an element that identifies the restricted type:

In the lower half of the Properties window, Stylus Studio displays a section that
allows you to specify facets – values that define the constraint on the range of values
allowed by the base type.

5. Click the Name field and select a facet type.

Stylus Studio displays only those facets that are allowed for the base type you
selected. For a description of each facet, see “About Facet Types for simpleTypes”
on page 645.

6. Click the Value field for a facet you want to specify.

7. Enter a value for the new facet.

8. To specify another facet, repeat Step 5 through Step 7.

Figure 295. Restricted Type

Figure 296. Specifying Facets for a Restricted Type
Stylus Studio User Guide 641

Defining XML Schemas
Specifying a Restriction for a simpleType – Manually

This procedure describes how to specify a restriction for a simpleType manually. It is an
alternative to the procedure described in “Specifying a Restriction for a simpleType –
QuickEdit” on page 640.

◆ To specify a restriction for a simpleType manually:

1. Right-click the simpleType node to display the shortcut menu.

2. Select Add > Restriction from the shortcut menu.

The simpleType is updated with a restriction icon:

3. Select the restriction icon if it is not already selected.

4. In the Properties window, select the type on which you want to base the simpleType
you are defining from the Base Type field.

At the bottom of the Properties window, Stylus Studio displays a section that allows
you to specify facets – values that define the constraint on the range of values
provided by the base type.

5. Click the Name field and select a facet type.

Figure 297. Restriction Icon

Figure 298. Specifying Facets for a Restricted Type
642 Stylus Studio User Guide

Defining simpleTypes in XML Schemas
Stylus Studio displays only those facets that are allowed for the base type you
selected. For a description of each facet, see “About Facet Types for simpleTypes”
on page 645.

6. Click the Value field for a facet you want to specify.

7. Enter a value for the new facet.

8. To specify another facet, repeat Step 5 through Step 7.

Defining List and Union simpleTypes

The procedure for defining list and union simple types is similar:

1. Create the simpleType as described in “Defining a simpleType in the Diagram View”
on page 639.

2. Select the type (list or union) from the shortcut menu (right-click the new simpleType
and select Add > List or Add > Union).

3. Specify the nodes that comprise the simpleType’s list or union. These types are
restricted to annotations and other simpleTypes.

How you perform this last step depends on whether you are adding new or existing
annotation or simpleType nodes to the list or union.

● To add a new, undefined annotation or simpleType to the list or union, right click the
list or union and select Add > Annotation or Add > SimpleType from the shortcut
menu.

● To add an existing annotation or simpleType to the list or union, drag the annotation
or simpleType to the list or union, and drop it there, as shown in Figure 299, which
shows SimpleType-6 being added to the union SimpleType-3.

Notice that the pointer changes shape when you place it over an appropriate target
node.

Figure 299. Dragging Nodes to Define Other Nodes
Stylus Studio User Guide 643

Defining XML Schemas
Defining a simpleType in the Tree View
This topic provides the steps for defining an atomic simpleType in the Tree view. When
you are familiar with this procedure, you can adapt it to define list, union, and anonymous
simpleTypes.

◆ In the Tree view, to define an atomic simpleType:

1. Click the node you want to define a simpleType for. This can be one of the following
types of nodes:

❍ schema

❍ element

❍ attribute

❍ list

❍ union

To define a simpleType as the sibling of another node, click the node and hold down
the Shift key when you click the button in Step 2. You cannot, of course, define a
simpleType as a sibling of the Schema node.

2. In the left tool bar, click New simpleType . Stylus Studio displays an empty
simpleType field as the last child of the node you selected. If you held down the Shift
key, the field is the last sibling of the selected node.

3. Type a name for the new simpleType and press Enter.

4. In the left tool bar, click New Restriction . A restriction specifies the type that the
new simpleType is derived from. This is the base type.

Stylus Studio displays a scrollable list of XML Schema built-in types, and any
simpleTypes you already defined in this schema. Descriptions of the XML Schema
built-in types are in the W3C XML Schema Part 0: Primer at
http://www.w3.org/TR/xmlschema-0/.

5. Double-click the simpleType that you want to base your new simpleType on.

6. In the left tool bar, click New Facet . A facet specifies a constraint on the range
of values provided by the base type. Stylus Studio displays a scrollable list of XML
Schema facet types. For a description of each facet, see “About Facet Types for
simpleTypes” on page 645.

You must ensure that you specify a facet that is valid for the specified base type.
Stylus Studio does not prevent you from specifying an invalid facet. The W3C XML
644 Stylus Studio User Guide

http://www.w3.org/TR/xmlschema-0/

Defining simpleTypes in XML Schemas
Schema Part: 0 Primer includes a table at http://www.w3.org/TR/xmlschema-0/ that
provides this information.

7. Double-click the type of facet you want to specify.

8. In the Properties window, double-click the Value field.

9. Enter a value for the new facet.

10. To add another facet, click the restriction node for your simpleType, and repeat
Step 6 through Step 9.

About Facet Types for simpleTypes
Table 69 provides a brief description of what you should specify as the value of a facet
for a new simpleType. You should consult the XML Schema Recommendation for a
complete definition of each facet and its allowable values.

Table 69. Facet Values for simpleTypes

Facet Value

enumeration One allowable value. Add an enumeration facet for each
allowable value. For example:
<xsd:simpleType name="USState">

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AK"/>
 <xsd:enumeration value="AL"/>
 <xsd:enumeration value="AR"/>
 <!-- and so on ... -->

 </xsd:restriction>
</xsd:simpleType>

fractionDigits The maximum number of digits that are allowed in the fractional
portion of values of simpleTypes that are derived from
xsd:decimal.

length The number of units of length. Units vary according to the base
type. The simpleType must be this number of units of length. For
example, if xsd:string is the base type, you might specify 5 as
the length if you know that each value will be a code that always
has five characters.
Stylus Studio User Guide 645

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

Defining XML Schemas
maxExclusive The exclusive upper bound of the range of values allowed for this
simpleType. The value of the simpleType must be less than the
value of maxExclusive.

maxInclusive The inclusive upper bound of the range of values allowed for this
simpleType. The value of the simpleType must be less than or
equal to the value of maxInclusive.

maxLength The maximum number of units of length. Units vary according
to the base type. The length of the instances of this simpleType
must be less than or equal to this number of lengths.

minExclusive The exclusive lower bound of the range of values allowed for this
simpleType. The value of the simpleType must be more than the
value of minExclusive.

minInclusive The inclusive lower bound of the range of values allowed for this
simpleType. The value of the simpleType must be equal to or
more than the value of minInclusive.

minLength The minimum number of units of length. Units vary according to
the base type. The length of the instances of this simpleType
must be equal to or more than this number of lengths.

pattern A regular expression. The values of the simpleType must be
literals that match this regular expression.

totalDigits The maximum number of digits that are allowed in values of
simpleTypes that are derived from xsd:decimal.

whiteSpace Specify one of the following values:

● preserve indicates that no normalization is done. The
value is not changed.

● replace indicates that each tab, line feed, and return is
replaced with a space.

● collapse indicates that the processing specified by
replace is done, and then contiguous sequences of
spaces are collapsed into one space.

Table 69. Facet Values for simpleTypes

Facet Value
646 Stylus Studio User Guide

Defining complexTypes in XML Schemas
Defining List and Union simpleTypes in the Tree View
Sometimes you need to define a simpleType for a sequence of atomic types. In a list
simpleType, all instances in the sequence must be of the same type. In a union
simpleType, the instances in the sequence can be of different types. The procedure for
defining list and union simpleTypes is the same.

◆ In the Tree view, to define a list or union simpleType:

1. Click the node you want to define the list or union type for.

2. In the left tool bar, click New simpleType . Stylus Studio displays an empty
simpleType field as the last child of the node you selected.

3. Type a name for the new simpleType and press Enter.

4. In the left tool bar, click New Aggregator . Stylus Studio displays a pop-up menu
with two choices.

5. Double-click list or union.

6. Define the atomic simpleType of the elements or attributes that are instances of the
list or union type. See “Defining simpleTypes in XML Schemas” on page 637.

7. If you are defining a list type you are done. If you are defining a union type, click
the union node and define another atomic simpleType that can be in the union.
Perform this step for each type in the union.

Defining complexTypes in XML Schemas
In an XML Schema, an element that contains only data is a simpleType. Elements with
any other contents are complexTypes. (Attributes are always simpleTypes.) The XML
Schema Recommendation does not include any built-in complexTypes. You must define
each complexType you need.

In the Diagram view, when you define a complexType as a top-level definition, it is a
global declaration. You can specify that any element in the schema is of this
complexType. Similarly, in the Tree view, it is a global declaration when you define a
complexType as a child of the Schema node.

Tip Define the complexType first. Then when you define an element, Stylus Studio includes
your complexType’s name in the menu that lists the available types for your new element.
You can select the name of the complexType from the menu.
Stylus Studio User Guide 647

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

Defining XML Schemas
You can also define a complexType in the definition of an element. See “Defining
Elements That Contain Subelements in XML Schemas” on page 661.

Stylus Studio takes care of most of the details for you. But as you define a complexType,
it is helpful to keep in mind that a complexType node can have only one child node that is
a model group modifier. However, this modifier node can have any number of child nodes
that are modifiers. In this way, you can specify any number of modifiers in a
complexType. Each modifier controls the occurrence of its child nodes. You can specify
the same modifier more than once. For example, you might want to specify the sequence
modifier, with some child nodes, then the choice modifier with some child nodes, and
then the sequence modifier again with other child nodes.

This section discusses the following topics:

● Defining complexTypes That Contain Elements and Attributes – Diagram View on
page 648

● Defining complexTypes That Contain Elements and Attributes – Tree View on
page 652

● Defining complexTypes That Mix Data and Elements on page 654

● Defining complexTypes That Contain Only Attributes on page 656

Defining complexTypes That Contain Elements and Attributes –
Diagram View

◆ To define a complexType in the Diagram view:

1. Right-click the schema node .

2. In the shortcut menu, select Add > ComplexType.

Alternatives: This operation is also available from the XMLSchema > Diagram > Add
> ComplexType menu and from the Add button .

The new complexType is added to the XML Schema. It is displayed in the diagram
and in the text pane (if you have it open). The properties for the new complexType are
displayed in the Properties window.
648 Stylus Studio User Guide

Defining complexTypes in XML Schemas
Adding Nodes to a complexType

Once you have created a complexType, you can further define it by adding sequences,
elements, and other nodes. The basic procedure for adding nodes to a complexType is to:

1. Select the node.

2. Use the menus or tool bar to add the node.

3. Fully describe the complexType and its nodes by editing values in the Properties
window.

You can use this procedure to add the following nodes to a complexType:

● all

● annotation

● anyAttribute

● attribute

● attributeGroup

● choice

● group

● sequence

Next steps vary according to the constraints on the elements in the complexType. The
following instructions show how to achieve some typical constraints.

Choosing an Element

Suppose you want to define a complexType that contains exactly one element, and that
element can be one of several different elements. In XML Schema, you do this by
defining xsd:choice.

◆ To define xsd:choice in the Diagram tab:

1. Right-click the icon that represents your new complexType.

2. In the shortcut menu that appears, select Add > Choice.

Alternatives: This operation is also available from the XMLSchema > Diagram > Add
> Choice menu and from the Add button .

Stylus Studio displays the choice icon alongside the complexType icon.

3. Right-click the choice icon and select Add > Element, or use the Add button .
Stylus Studio User Guide 649

Defining XML Schemas
An element is added to the choice icon.

4. Make sure the new element is selected. In the Properties window, click the Type field.

5. Enter or select the type of the element.

6. Repeat Step 3 through Step 5 for each element that might be in the complexType.

Including All Elements

Suppose you want to define a complexType that contains a number of elements, the
elements can be in any order, and there must be zero or one of each element. In XML
Schema, you do this by defining xsd:all.

◆ To define xsd:all in the Diagram tab:

1. Right-click the icon that represents your new complexType.

2. In the shortcut menu that appears, select Add > All.

Alternatives: This operation is also available from the XMLSchema > Diagram > Add
> All menu and from the Add button .

Stylus Studio displays the all icon alongside the complexType icon.

3. Right-click the choice icon and select Add > Element, or use the Add button .

A element is added to the all icon.

4. Make sure the new element is selected. In the Properties window, click the Type field.

5. Enter or select the type of the element.

6. If the element is required, go to Step 7. If the element is optional, click the Min Occur.
field in the Properties window, and type a zero (0).

7. If there must always be exactly one of this element, go to Step 8. If there can be more
than one of this element, click the Max Occur. field in the Properties window, and
enter the maximum number allowed or click unbounded in the drop-down list.

8. Repeat Step 3 through Step 7 for each element that can be in the complexType.

Figure 300. Defining Choice for a complexType
650 Stylus Studio User Guide

Defining complexTypes in XML Schemas
Specifying the Sequence of Elements

Suppose you want to define a complexType that contains a number of elements in a
particular order. The default is that each element must appear exactly once. However,
some elements are optional, and some elements can appear more than once. In XML
Schema, you do this by defining xsd:sequence.

◆ To define xsd:sequence in the Diagram tab:

1. Right-click the icon that represents your new complexType.

2. In the shortcut menu that appears, select Add > Sequence.

Alternatives: This operation is also available from the XMLSchema > Diagram > Add
> Sequence menu and from the Add button .

Stylus Studio displays the sequence icon alongside the complexType icon.

3. Right-click the sequence icon and select Add > Element, or use the Add button .

A element is added to the sequence icon.

4. Make sure the new element is selected. In the Properties window, click the Type field.

5. Enter or select the type of the element.

6. If the element is required, go to Step 7. If the element is optional, click the Min Occur.
field in the Properties window, and type a zero (0).

7. If there must always be exactly one of this element, go to Step 8. If there can be more
than one of this element, click the Max Occur. field in the Properties window, and
enter the maximum number allowed or click unbounded in the drop-down list.

8. Repeat Step 3 through Step 7 for each element that can be in the complexType.

Reordering Nodes

If you make a mistake in the order in which you specify nodes in your XML Schema
(when specifying elements in a sequence, for example), you can rearrange them.

◆ To reorder nodes in the diagram view:

1. Click the node you want to move.

2. Click the Move Up or Move Down from the Stylus Studio tool bar until the
node is positioned where you want it.

Alternative: This operation is also available from the XMLSchema menu and from the
node’s shortcut menu.
Stylus Studio User Guide 651

Defining XML Schemas
Combining the Sequence and Choice Modifiers

Suppose you want to define a complexType that contains a number of elements in a
particular order, but some of them are optional, and you want to ensure that only one
element from a particular group of elements is present. In other words, you need to
combine the use of the sequence and choice modifiers. To define this, you must define a
sequence modifier first. You can then define sequence and choice modifiers that are
children of the initial sequence modifier.

Defining complexTypes That Contain Elements and Attributes –
Tree View

The purchaseOrder.xsd sample document contains the following complexType
definition. This complexType defines three elements, refers to a fourth element, and
defines an attribute.

◆ In the Tree view, to define a complexType with a similar structure:

1. Click the Schema node.

2. In the left tool bar, click New complexType . In the Tree view, Stylus Studio
displays a field for the new complexType.

3. Type a name for this new complexType and press Enter.

4. In the left tool bar, click New Model Group . Stylus Studio displays a pop-up
menu that lists the group modifiers.

5. Double-click the modifier you want. For a description of each modifier, see “Model
Group Properties in XML Schemas” on page 693.

You can specify any number of modifiers in a complexType. Each modifier controls
the occurrence of its child nodes. You can specify the same modifier more than once.
For example, you might want to specify the sequence modifier, with some child

<xsd:complexType name="PurchaseOrderType">
<xsd:sequence>

<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>

</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>
652 Stylus Studio User Guide

Defining complexTypes in XML Schemas
nodes, then the choice modifier with some child nodes, and then the sequence
modifier again with other child nodes.

6. For each element that you want to define in this complexType with the selected
modifier, perform the following steps:

a. Click the modifier name in the Tree view.

b. In the left tool bar, click New Element Definition . In the Tree view, Stylus
Studio displays a field for the new element definition.

c. Type a name for the new element and press Enter. Stylus Studio displays a pop-
up menu that lists the built-in simpleTypes and simpleTypes you defined.

d. Double-click the type for the new element.

e. In the Properties window, you can double-click the field for any property to set
the value for that property.
For example, you can specify 0 for the Min Occur. property and 1 for the Max
property. The effect is that the element is optional.

7. For each element or group that you want to refer to in this complexType with the
selected modifier, perform the following steps:

a. Click the modifier name in the Tree view.

b. In the left tool bar, click New Reference to Element or New Reference to
Group . Stylus Studio displays a pop-up menu that lists the elements or
groups defined in the schema.

c. Double-click the element or group you want to reference.

8. To define an attribute in this complexType:

a. Click the name of the complexType in the Tree view.

b. In the left tool bar, click New Attribute . In the Tree view, Stylus Studio
displays a field for the new attribute.

c. Type a name for the new attribute and press Enter. Stylus Studio displays a pop-
up menu that lists the built-in simpleTypes and the simpleTypes you defined in
this schema.

d. Double-click the type of the new attribute.
Stylus Studio User Guide 653

Defining XML Schemas
9. To reference an attribute or attributeGroup in this complexType:

a. Click the name of the complexType in the Tree view.

b. In the left tool bar, click New Reference to Attribute or New Reference to
Attribute Group . Stylus Studio displays a pop-up menu that lists the attributes
or attributeGroups defined in the schema.

c. Double-click the attribute or attributeGroup you want to reference.

Defining complexTypes That Mix Data and Elements
Suppose you want to define a complexType that mixes elements and data. For example,
you have an XML document with contents such as the following:

The letter element and salutation element have element and data children. You must
define complexTypes for both the letter and the salutation elements. Their Mixed
property value must be set to true. The Mixed property is the one that allows an element
to contain both elements (<shipDate>, for example) and raw data (Dear Mr. for example)
as children.

This section describes how to achieve this using both the Diagram and Tree views.

<letter>
<salutation>

Dear Mr.
<name>Robert Smith</name>
,

</salutation>
Your order of

<quantity>1 </quantity>
<productName>Baby Monitor </productName>

shipped from our warehouse on
<shipDate>2001-04-21</shipDate>

.
</letter>
654 Stylus Studio User Guide

Defining complexTypes in XML Schemas
Diagram View

◆ To define a complexType that mixes data and elements:

1. Create a complexType as described in “Defining complexTypes That Contain
Elements and Attributes – Diagram View” on page 648.

2. In the Properties window, click the Mixed field.

3. In the drop-down menu that appears, click true.

Tree View

◆ In the Tree view, to define a complexType that mixes data and elements:

1. Click the Schema node.

2. In the left tool bar, click New complexType . In the Tree view, Stylus Studio
displays a field for the new complexType.

3. Type a name for this new complexType and press Enter.

4. In the Properties window, double-click the Mixed field.

5. Double-click true.

6. In the left tool bar, click New Model Group . Stylus Studio displays a pop-up
menu that lists the group modifiers.

7. Double-click the modifier you want. For a description of the modifiers, see “Model
Group Properties in XML Schemas” on page 693. For the rest of this procedure,
assume that you double-click the sequence modifier. By default, the elements that
are children of this node each appear exactly once. If you want an element to be
optional, or if you want an element to appear more than once, specify appropriate
values for the properties for minimum occurrence and maximum occurrence.

8. For each element that you want this complexType to contain:

a. In the left tool bar, click New Element Definition . In the Tree view, Stylus
Studio displays a field for the new element definition.

b. Type a name for the new element and press Enter. Stylus Studio displays a pop-
up menu that lists the built-in simpleTypes and any types already defined in the
schema.

c. Double-click the type for the new element.
Stylus Studio User Guide 655

Defining XML Schemas
Defining complexTypes That Contain Only Attributes
An XML Schema allows you to create groups of attributes. This makes it easy to create a
complexType that contains only attributes. The first step is to create an attributeGroup.
You can then create a complexType and add a reference to the attributeGroup to the
complexType.

Diagram View

◆ To define a complexType that contains only attributes:

1. Right-click the schema node .

2. In the shortcut menu, select Add > AttributeGroup.

Alternatives: This operation is also available from the XMLSchema > Diagram > Add
> AttributeGroup menu and from the Add button .

The new attributeGroup is added to the XML Schema. It is displayed in the diagram
and in the text pane (if you have it open). The properties for the new attributeGroup
are displayed in the Properties window.

3. Right-click the new attributeGroup.

4. In the shortcut menu that appears, select Add > Attribute.

The new attribute is added to the attributeGroup.

5. Make sure the new attribute is selected. In the Properties window, click the Data
Type field.

6. Enter or select the type of the attribute.

7. Repeat Step 3 through Step 6 for each attribute that you want to be in the group.

8. Create a complexType as described in “Defining complexTypes That Contain
Elements and Attributes – Diagram View” on page 648.

9. Drag the attributeGroup to the complexType.

Figure 301. attributeGroup with New Attribute
656 Stylus Studio User Guide

Defining Elements and Attributes in XML Schemas
Tree View

◆ To define a complexType that contains only attributes:

1. Click the Schema node.

2. In the left tool bar, click New Attribute Group . In the Tree view, Stylus Studio
displays a field for new attributeGroup.

3. Enter a name for the attributeGroup.

4. In the left tool bar, click New Attribute Definition . In the Tree view, Stylus Studio
displays a field for the new attribute definition.

5. Enter a name for the new attribute. Stylus Studio displays a scrollable, pop-up menu
that lists the built-in simpleTypes and any previously defined simpleTypes.

6. Double-click the type of the new attribute.

7. For each additional attribute you want to add to the group, click the name of the
attributeGroup in the Tree view, and repeat Step 4 through Step 6.

8. Click the Schema node.

9. In the left tool bar, click New complexType . In the Tree view, Stylus Studio
displays a field for the new complexType.

10. Type a name for the new complexType and press Enter.

11. In the left tool bar, click New Reference to Attribute Group . Stylus Studio
displays a pop-up menu that contains a list of attributeGroups.

12. Double-click the attributeGroup that you want this complexType to contain.

Defining Elements and Attributes in XML Schemas
You can define an element or attribute as part of a complexType. You can also define an
element or an attribute as a top-level item. In other words, in the XML document that
defines the XML Schema, the element or attribute is a child of the xsd:schema element.
An element or attribute that is an immediate child of the xsd:schema element is a global
element or attribute.

A global element or attribute cannot

● Contain a reference to another element or attribute

● Specify values for the minOccurs, maxOccurs, or use properties
Stylus Studio User Guide 657

Defining XML Schemas
This section covers the following topics:

● Defining Elements That Carry Attributes and Contain Data in XML Schemas on
page 658

● Defining Elements That Contain Subelements in XML Schemas on page 661

● Adding an Identity Constraint to an Element on page 662

Defining Elements That Carry Attributes and Contain Data in XML
Schemas

You might want to define an element that carries attributes and contains data, but does not
contain subelements. In the purchaseOrder.xsd document, an example of this is the
internationalPrice element, shown here in the Diagram tab.

This element has a currency attribute, and it contains data based on the xsd:decimal
simpleType.

Diagram View

◆ To define a complexType that contains only attributes:

1. Right-click the schema node .

2. In the shortcut menu, select Add > Element.

Alternatives: This operation is also available from the XMLSchema > Diagram > Add
> Element menu and from the Add button .

Figure 302. internationalPrice Element in purchaseOrder.xsd
658 Stylus Studio User Guide

Defining Elements and Attributes in XML Schemas
The new element is added to the XML Schema. It is displayed in the diagram and in
the text pane (if you have it open). The properties for the new element are displayed
in the Properties window.

3. Create a complexType of the element – right-click the element and select Add >
ComplexType.

4. Make sure the new complexType is selected.

5. Click the QuickEdit button and select Derive by extension. This choice lets you
extend a base simpleType.

The Type Derivation dialog box appears.

6. Expand the W3C XML Schema and select the simpleType on which you want to base
the data allowed by the complexType.

7. Click OK.

The XML Schema is updated with the element’s new definition. Figure 304 shows an
extension of the decimal simpleType.

The simpleContent node () specifies that the complexType can contain only data
and attributes. It cannot contain subelements.

8. To add an attribute, right-click the element and select Add > Attribute.

Figure 303. Type Derivation Dialog Box

Figure 304. complexType with simpleContent Defined
Stylus Studio User Guide 659

Defining XML Schemas
Tree View

◆ To define an element that contains raw data and carries attributes:

1. Click the Schema node.

2. In the left tool bar, click New Element Definition . In the Tree view, Stylus Studio
displays a field for the new element definition.

3. Type the name of the element and press Enter twice. If you press Enter once, Stylus
Studio displays a pop-up menu that lists the possible types for the new element. You
need to define a new type, so you cannot select from this list. If the pop-up menu does
appear, press Enter or click outside the menu. You should now have a named element
with no type specified.

4. In the left tool bar, click New complexType . In the Tree view, Stylus Studio
displays a field for the new complexType.

5. In the left tool bar, click New Content . Stylus Studio displays a drop-down list.

6. In the drop-down list that appears, double-click simpleContent. This is the Content
Type property. When the content type is simpleContent, the complexType you are
defining can contain data and attributes. It cannot contain subelements.

7. If you want the contained data to be one of the simpleTypes already defined with no
restrictions, click New Extension in the left tool bar.

Stylus Studio displays a scrollable, drop-down list of the simpleTypes built in to
XML Schema and previously defined in the current schema.

8. If you clicked New Extension, double-click the type of the data you want this element
to contain. Go to Step 9.

If you clicked New Restriction, follow these steps:

a. Double-click the simpleType whose values you want to restrict.

b. In the left tool bar, click New Facet . Stylus Studio displays a pop-up menu.

c. Double-click the type of facet you want to specify.

d. In the Properties window, double-click the Value field.

e. Enter a value for the new facet.

f. To add another facet, click the restriction node for the simpleType, and repeat
Step b.

9. In the left tool bar, click the complexType node that you created in Step 4.
660 Stylus Studio User Guide

Defining Elements and Attributes in XML Schemas
10. In the left tool bar, click New Attribute Definition . In the Tree view, Stylus Studio
displays a field for the new attribute definition.

11. Type a name for the new attribute and press Enter. Stylus Studio displays a scrollable,
drop-down list of the possible types for the new attribute.

12. Double-click the attribute type. If you want to, specify a value for the attribute’s
Default or Fixed Value property in the Properties window.

13. To add additional attributes, repeat Step 9 through Step 12.

Defining Elements That Contain Subelements in XML Schemas
An element that contains subelements is a complexType. Consequently, you can define
an element that contains subelements in either of the following ways:

● Define a top-level complexType. That is, it is a child of the xsd:schema node. In the
complexType definition, define the subelements. Elsewhere in the schema, define an
element that uses the complexType you defined.

● Define an element that is a child of the xsd:schema node or a Model Group node. In
the element definition, define a complexType that contains your subelements.

To define a complexType that contains elements, see “Defining complexTypes That
Contain Elements and Attributes – Diagram View” on page 648 or “Defining
complexTypes That Contain Elements and Attributes – Tree View” on page 652.

Diagram View

◆ To define an element and define subelements in the element definition:

1. Right-click the schema node .

2. In the shortcut menu, select Add > Element.

Alternatives: This operation is also available from the XMLSchema > Diagram > Add
> Element menu and from the Add button .

The new element is added to the XML Schema. It is displayed in the diagram and in
the text pane (if you have it open). The properties for the new element are displayed
in the Properties window.
Stylus Studio User Guide 661

Defining XML Schemas
3. Right-click the new element and click QuickEdit. Select one of the following from the
QuickEdit menu:

❍ Add Elements Sequence

❍ Add Elements Choice

❍ Add Elements All

❍ Add Elements Any

Stylus Studio updates the element definition to include a complexType with the
sequence, choice, all, or any element you selected in the previous step.

4. Add subelements to the element you created in Step 3.

Tree View

◆ In the Tree view, to define an element and define subelements in the element
definition:

1. Click the Schema node or a Model Group (all, any, choice, sequence) node.

2. In the left tool bar, click New Element Definition .

3. Enter the name for your new element. Stylus Studio displays a pop-up menu that lists
the built-in simpleTypes and any simple or complexTypes already defined in your
schema.

4. Press Enter again. Rather that using a type that is already defined, you want to define
a new complexType in the definition of your element. You do not want to assign a
type to your new element.

5. In the left tool bar, click New complexType .

6. Enter a name for the new type.

At this point, the procedure for defining a complexType in the definition of an element is
the same as defining a complexType as a child of the Schema node. See “Defining
complexTypes That Contain Elements and Attributes – Tree View” on page 652.

Adding an Identity Constraint to an Element
XML Schemas provide a feature that is similar to the DTD ID identity constraint. In a
DTD, the value of an ID attribute must be unique within an XML document. In XML
Schemas, the type of an identity constraint can be unique, key, or keyref. You use XPath
expressions to define the scope of the constraint.
662 Stylus Studio User Guide

Defining Elements and Attributes in XML Schemas
You associate an identity constraint with an element.

● A unique identity constraint forces the result of evaluation of an XPath expression to
be unique. Stylus Studio evaluates the XPath expression against the element for
which you define the identity constraint. If the element is present, the result must be
unique among the children of that element.

● A key identity constraint specifies that the fields that form the expression must be
present in all instance documents. For example, if a key is based on date and number
attributes, the date and number attributes must always be specified.

● A keyref identity constraint is equivalent to the IDREF attribute in DTDs. It specifies
that the contents of a field in the instance document is the value of a key that is defined
in another document. For example, a Quote document would have a reference to the
RFQ that originated it.

This section covers the following topics:

● Example of an Identity Constraint on page 663

● Diagram View on page 665

● Tree View on page 665

Example of an Identity Constraint

This topic provides an example of an element with an identity constraint. Introductory
information about identity constraints is in “Adding an Identity Constraint to an Element”
on page 662. See also “Tree View” on page 665.
Stylus Studio User Guide 663

Defining XML Schemas
Suppose you define the following element in an XML Schema:

In an XML document that uses this schema, you could define the following elements:

If you want to enforce that there is just one part element for each product that has been
purchased, you add the following to the previous XML Schema example:

The schema validator starts with an initial context set that contains purchaseReport
elements. It runs the XPath expression parts/part to obtain the data set to be checked. In
this example, this is the two part elements. The schema validator then gathers the values

<element name="purchaseReport">
<complexType>

<sequence>
<element name="parts">

<complexType>
<sequence>

<element name="part" maxOccurs="unbounded">
<attribute name="number" type="SKU"/>
<attribute name="vendor" type="xs:string"/>
<attribute name="quantity" type="integer"/>
</element>

</sequence>
</complexType>

</element>

</sequence>
</complexType>

</element>

<purchaseReport>
<parts>

<part number="00-01-02" vendor="IBM" quantity="10"/>
<part number="01-01-02" vendor="BEAS" quantity="1"/>
...

</parts>
</purchaseReport>

... [previous definition]
</sequence>

</complexType>
<unique name="pNumKey">

<selector xpath="parts/part"/>
<field xpath="@number"/>
<field xpath="@vendor"/>

</unique>
</element>
664 Stylus Studio User Guide

Defining Elements and Attributes in XML Schemas
from the number and vendor attributes, and builds a key from these values. It then uses the
key to check that there are no part elements that have the same tuple.

Diagram View

◆ To specify an identity constraint:

1. Right-click the element for which you want to specify the identity constraint.

2. Select Add > and then Key, KeyRef, or Unique from the menu.

3. Right-click the new identity constraint, and select Selector.

4. In the Properties window, specify the XPath expression that identifies the set of
elements to which the identity constraint applies.

5. Return to Step 3 and select Field.

6. In the Properties window, specify the XPath expression that identifies the element or
attribute for each element identified by the selector element that has to be unique.

Tree View

This topic provides the procedure for specifying an element with an identity constraint.
Introductory information about identity constraints is in “Adding an Identity Constraint
to an Element” on page 662. See also “Example of an Identity Constraint” on page 663.

◆ To specify an identity constraint:

1. Click the element for which you want to specify the identity constraint.

2. In the XML Schema left-side tool bar, click .

3. In the drop-down list that Stylus Studio displays, double-click unique, key, or keyref.

4. In the Properties window, double-click the Name field and enter a name for the
identity constraint.

5. If you selected keyref, then in the Properties window, double-click the Refer field
and enter the name of the key definition.

6. In the tree representation, click the identity constraint you just defined.

7. In the left tool bar, click New Selector/Key .

8. In the drop-down list that Stylus Studio displays, double-click selector. You must
define exactly one selector for each identity constraint.
Stylus Studio User Guide 665

Defining XML Schemas
9. In the Properties window, double-click the XPath Expression field and enter an
XPath expression that returns the element for which you are specifying a constraint.

10. Click the unique, key, or keyref identity constraint you defined in Step 3.

11. In the left tool bar, click New Selector/Key .

12. In the drop-down list that Stylus Studio displays, double-click field. You must define
one or more fields for each identity constraint. A field can be whatever the XPath
expression (defined in the next step) retrieves.

13. In the Properties window, double-click the XPath Expression field and enter an
XPath expression that returns the element or attribute that is the key or one of the keys
for the constraint. XPath expressions associated with fields return the data that define
the key for each element returned by the selector XPath expression.

14. Repeat Step 10 through Step 13 for each additional key field.

Defining Groups of Elements and Attributes in XML
Schemas

The XML Schema Recommendation allows you to specify groups of elements and groups of
attributes. Here is an example of an element group, purchaseType:

Specification of a group makes it easier to update the schema. You only need to update
the group definition. There is no need to change the references to the group.

Here is an example of an attributeGroup, deliveryDetail.

 <xsd:group name="purchaseType">
 <xsd:choice>
 <xsd:element name="retail"/>
 <xsd:element name="internet"/>
 <xsd:element name="mailOrder"/>
 </xsd:choice>
 </xsd:group>

 <xsd:attributeGroup name="deliveryDetail">
 <xsd:attribute name="method"/>
 <xsd:attribute name="vendor"/>
 <xsd:attribute name="dateShipped"/>
 <xsd:attribute name="dateArrived"/>
 </xsd:attributeGroup>
666 Stylus Studio User Guide

http://www.w3.org/TR/xmlschema-0/

Defining Groups of Elements and Attributes in XML Schemas
This section discusses the following topics:

● Defining Groups of Elements in XML Schemas – Diagram View on page 667

● Defining Groups of Elements in XML Schemas – Tree View on page 668

● Defining attributeGroups in XML Schemas – Diagram View on page 668

● Defining attributeGroups in XML Schemas – Tree View on page 669

Defining Groups of Elements in XML Schemas – Diagram View

◆ To define a group of elements:

1. Define the elements that you want to be in the group. See “Defining Elements and
Attributes in XML Schemas” on page 657.

2. Right-click the schema node .

3. In the shortcut menu, select Add > Group.

Alternatives: This operation is also available from the XMLSchema > Diagram > Add
> Group menu and from the Add button .

The new group is added to the XML Schema. It is displayed in the diagram and in the
text pane (if you have it open). The properties for the new group are displayed in the
Properties window.

4. Specify the group name in the Name property in the Properties window.

5. Right-click the new group.

6. In the shortcut menu, select Add > and then select the modifier for the group of
elements – All, Choice, or Sequence. In the Properties window, click the fields for
the Min Occur. and Max Occur. properties to specify their values. These properties
determine how often the group of the elements with the selected modifier can appear.

7. Drag the elements defined in Step 1 and drop them on the all, choice, or sequence
modifier created in Step 6.

Alternative

If you prefer, you can create the element group first, define the modifier for the group
elements, and then add new elements to the group by right-clicking on the modifier and
selecting Add > Element. If you do this, you must then define each of the elements you
added to the group.
Stylus Studio User Guide 667

Defining XML Schemas
Defining Groups of Elements in XML Schemas – Tree View

◆ To define a group of elements:

1. Define the elements that you want to be in the group. See “Defining Elements and
Attributes in XML Schemas” on page 657.

2. Click the Schema node.

3. In the left tool bar, click New Group . In the Tree view, Stylus Studio displays a
field for the new group.

4. Type a name for the group of elements and press Enter.

5. In the left tool bar, click New Model Group . Stylus Studio displays a pop-up
menu that lists the model group modifiers. See “Model Group Properties in XML
Schemas” on page 693.

6. Double-click a modifier that applies to at least one element that will be in the group.

7. In the Properties window, double-click the fields for the Min Occur. and Max Occur.
properties to specify their values. These properties determine how often the subgroup
of the elements with the selected modifier can appear.

8. For each element that you want to apply the selected modifier to, perform these steps:

a. Click New Reference to Element . Stylus Studio displays a pop-up menu that
lists the elements defined in the schema.

b. Double-click the element you want to add to the group.

c. Click the modifier to add another element reference.

9. To add more elements to the group and specify a different modifier for them, click
the name of the group in the Tree view, and repeat Step 5 through Step 8.

In any location where you can add a model group, you can also add a reference to a model
group definition.

Defining attributeGroups in XML Schemas – Diagram View
You define attributeGroups in much the same way that you define element groups – by
creating the attributes you want to add to the attributeGroup, creating the attributeGroup,
and then dragging-and-dropping the attributes in the attributeGroup. As with element
groups, you can define the attributeGroup first and then add new attributes to it, if you
668 Stylus Studio User Guide

Defining Groups of Elements and Attributes in XML Schemas
prefer. The following procedure describes how to create an attributeGroup by creating the
attributes at the same time you create the attributeGroup.

◆ To define an attributeGroup:

1. Right-click the schema node .

2. In the shortcut menu, select Add > AttributeGroup.

Alternatives: This operation is also available from the XMLSchema > Diagram > Add
> AttributeGroup menu and from the Add button .

The new attributeGroup is added to the XML Schema. It is displayed in the diagram
and in the text pane (if you have it open). The properties for the new attributeGroup
are displayed in the Properties window.

3. Right-click the new attributeGroup.

4. In the shortcut menu that appears, select Add > Attribute.

The new attribute is added to the attributeGroup.

5. Make sure the new attribute is selected. In the Properties window, click the Data
Type field.

6. Enter or select the type of the attribute.

7. Repeat Step 3 through Step 6 for each attribute that you want to be in the group.

Defining attributeGroups in XML Schemas – Tree View

◆ To define an attributeGroup:

1. Click the Schema node.

2. In the left tool bar, click New Attribute Group . In the Tree view, Stylus Studio
displays a field for the new attributeGroup.

3. Type a name for the attributeGroup and press Enter.

4. In the left tool bar, click New Attribute Definition . In the Tree view, Stylus Studio
displays a field for the new attribute definition.

Figure 305. attributeGroup with New Attribute
Stylus Studio User Guide 669

Defining XML Schemas
5. Type a name for the new attribute and press Enter. Stylus Studio displays a scrollable,
pop-up menu that lists the built-in simpleTypes and any previously defined
simpleTypes.

6. Double-click the type of the new attribute.

7. For each additional attribute you want to add to the group, click the name of the
attributeGroup in the Tree view, and repeat Step 4 through Step 6.

Adding Comments, Annotation, and Documentation
Nodes to XML Schemas

The XML Schema Recommendation provides comment and annotation nodes for you to
provide information that documents an XML Schema. You can add these nodes to any
node in an XML Schema.

The difference between comments and annotations is that a human being must read a
comment node for it to have meaning. An annotation element allows you to specify nodes
that a stylesheet can operate on.

Comments
You cannot add comments in the Diagram tab.

◆ To add comments in the Tree tab:

1. Click any node in your schema.

2. In the left tool bar, click New Comment . In the Tree view, Stylus Studio displays
a field for the comment.

3. Type your comment and press Enter.

Annotations
You use an annotation element to provide information about the XML Schema. You can
annotate any node in your XML Schema. The annotation element always contains at least
one appInfo or documentation node. Any text you want to enter must be entered in one of
these nodes.
670 Stylus Studio User Guide

http://www.w3.org/TR/xmlschema-0/

Adding Comments, Annotation, and Documentation Nodes to XML Schemas
Diagram View

When you create an annotation in the Diagram tab, you create the element and specify its
subelement (appInfo or documentation) in the Diagram tab. You can further describe the
node

● In the Diagram tab, by editing the node properties directly

● In the Properties window

● In the Text pane

◆ To add an annotation:

1. Right-click the node you want to annotate.

2. Select Add > Annotation from the shortcut menu.

The annotation icon appears in the Diagram tab .

3. Right-click the annotation icon and select the type of annotation you want to define –
appInfo ()or documentation ().

4. In the text pane, type the text for the appInfo or documentation node.

Tree View

◆ To add an annotation:

1. Click the node you want to annotate.

2. In the left tool bar, click New Annotation . Stylus Studio creates and selects an
Annotation node.

3. In the left tool bar, click New Documentation or New Application Info .

4. If you added documentation, in the Properties window, double-click the Source field
and type the URL or file path for the documentation you want to include in the
schema, and press Enter.

Double-click the Language field and enter the language of the contents of the source
file.

5. In the left tool bar, click New Text . In the Tree view, Stylus Studio displays a
field for the new text.

Tip Stylus Studio’s backmapper identifies the line representing the element you created
in Step 3 in the text pane on the Diagram.
Stylus Studio User Guide 671

Defining XML Schemas
Moving a Comment or Annotation

If the parent of the new comment or annotation node has more than one child, you can
move the comment or annotation with the up or down arrow. However, you cannot move
the comment or annotation out of the scope of its parent.

Example
In an XML Schema, you might have a comment node such as the following:

The contents of a comment node have meaning only when a person reads them. However,
the contents of annotation nodes can be operated on. For example:

You can apply an XSLT stylesheet to this XML Schema document. The stylesheet could
generate an HTML manual by extracting the Documentation nodes in the desired
language:

<xsd:schema ...>
<!-- The following element is -->
<xsd:element name="..."/>

<xsd:schema ... >
<xsd:element name="foo">

<xsd:annotation>
<xsd:documentation language="en">

This is a foo element. Use it for ...
</xsd:documentation>

<xsd:documentation language="jp">
xksnjgfyre fvhfdbvhjds

</xsd:documentation>

</xsd:annotation>
</xsd:element>
...

<xsl:stylesheet ... >
<xsl:template match="xsd:element">

<xsl:apply-templates select=
"xsd:annotation/xsd:documentation[@language='en']"/>

</xsl:template>
...
672 Stylus Studio User Guide

Defining Notations
Defining Notations
A notation is an unparsed entity. It is a name for something that you cannot express in
terms of XML. For example, suppose you have an XML file that represents a press
release. You can define a notation named logo that points to a JPEG image. You can place
the notation in the XML file in the location where you want the logo. See
http://www.w3.org/TR/REC-xml#Notations for more information on the notation element.

Diagram View

◆ To define a notation:

1. Right-click the schema node .

2. In the shortcut menu, select Add > Notation.

Alternatives: This operation is also available from the XMLSchema > Diagram > Add
> AttributeGroup menu and from the Add button .

The new notation is added to the XML Schema. It is displayed in the diagram and in
the text pane (if you have it open). The properties for the new notation are displayed
in the Properties window.

3. Specify the details of the notation node in the Properties window.

Tree View

◆ To define a notation:

1. Click the schema node.

2. In the left tool bar, click New Notation .

3. In the field that Stylus Studio displays, enter the name of the notation.

4. In the Properties window, double-click the Public ID field and enter the public ID.
The public ID is a unique string that refers to the location of the external data, but it
leaves the resolution of the location to some interpretations, for example,
MyCompany//LOGO//JPEG.

5. In the Properties window, double-click the System ID field and enter the system ID.
The system ID is the URL that Stylus Studio uses to physically locate the external
data, for example, http://www.mycompany.com/mylogo.jpg.

Note A notation element is always described as a child of the schema element.
Stylus Studio User Guide 673

http://www.w3.org/TR/REC-xml#Notations

Defining XML Schemas
Referencing External XML Schemas

If you want, you can reference definitions from other XML Schemas in your XML
Schema document. You might want to do this if you want to simply reuse existing
definitions as-is, or if you wan to use an existing definition as the base for a type that you
want to modify in your XML Schema.

This section covers the following topics:

● “Ways to Reference XML Schemas” on page 674

● “Where You Can Reference XML Schemas” on page 675

● “Referencing XML Schemas in the Tree View” on page 678

● “Referencing XML Schemas in the Tree View” on page 678

● “Redefining Nodes” on page 679

Ways to Reference XML Schemas
There are three ways to reference XML Schema:

● Including

● Importing

● Redefining

This section describes each of these techniques and how they can be used. In these
descriptions, we use the term referenced XML Schema to indicate the XML Schema that
is being included, imported, or redefined; and base XML Schema to indicate the XML
Schema in which the referenced schema is being included, imported, or redefined.

Including an XML Schema

When reference an XML Schema by including it, the included XML Schema augments
the base XML Schema. Both documents are effectively combined, and they both define
the same XML Schema. complexTypes defined in the included XML Schema can be used
as the base for new types – you might use a periodicals complexType from the included
XML Schema to define weekly and quarterly types for example. Both the included XML
Schema and the base XML Schema must have the same target namespace. You can
include multiple XML Schemas in a base XML Schema.

Support for referencing external XML Schemas is available only in Stylus Studio
XML Enterprise Suite and Stylus Studio XML Professional Suite.
674 Stylus Studio User Guide

Referencing External XML Schemas
Importing an XML Schema

When you reference an XML Schema by importing it, the base XML Schema and the
imported XML Schema must have difference namespaces. The base XML Schema can
the reference parts of the imported XML schema using a prefix whose namespace is
defined in the imported XML Schema, for example. You can import multiple XML
Schemas in a base XML Schema.

Redefining an XML Schema

Referencing an XML Schema by redefining it is similar to including it, with one
important difference: when you redefine an XML Schema in the base XML Schema, you
can redefine the definitions of the referenced XML Schema’s complexTypes,
simpleTypes, groups, and attributeGroups. For example, suppose you release version 1 of
an XML Schema. When you need to release version 2 of the XML Schema, you can
reference version 1 by redefining it in version 2, which allows you to change the
definition of a given node to include a new attribute.

The original complexTypes, simpleTypes, groups, and attributeGroups in the redefined
XML Schema are completely masked. They are redefined using extensions and
restrictions. An extension extends the base type – declaring a new element, for example.
A restriction constrains the base type.

Where You Can Reference XML Schemas
You can reference external XML Schemas in the Tree or Diagram tabs. In the text pane
of the Diagram tab and the Tree tab, Stylus Studio displays the referenced XML Schema,
but they do not display its contents. For example, in the Tree view, you cannot expand the
node for an included XML Schema.
Stylus Studio User Guide 675

Defining XML Schemas
In the Diagram tab, Stylus Studio displays complete information for any definitions in
referenced XML Schema. You can toggle between diagram views of the base and
referenced XML Schemas using the definition browser.

If you select a referenced schema from the definition browser, as shown in Figure 306,
Stylus Studio changes the diagram view to display the referenced schema’s structure. If
you selected a redefined XML Schema, for example, you could modify its complexType
definitions there.

What to Do Next

If you redefine an XML Schema (as opposed to including or importing one), you can
redefine nodes after referencing the XML Schema. See “Redefining Nodes” on page 679
for more information.

Referencing XML Schemas in the Diagram View

◆ To reference an XML Schema in the Diagram view:

1. Right-click the schema node .

2. Click Referenced Schemas on the shortcut menu.

Figure 306. You Can View Referenced Schemas
676 Stylus Studio User Guide

Referencing External XML Schemas
The Referenced Schemas dialog box appears.

3. Click the Add button.

The Add References to Schema dialog box appears.

4. Specify the type of reference you want to make. If you are redefining an XML
Schema, specify the namespace in the Namespace field.

Figure 307. Referenced Schemas Dialog Box

Figure 308. Add References to Schema Dialog Box
Stylus Studio User Guide 677

Defining XML Schemas
5. Specify the URL of the XML Schema you want to reference. For example:

❍ myfile.xsd

❍ http://www.mycompany.com/schemas/myfile.xsd

❍ \\fileserver\schemas\myfile.xsd

6. Click OK.

You are returned to the Referenced Schemas dialog box.

7. Click OK to add the referenced XML Schema to your XML Schema.

Referencing XML Schemas in the Tree View

◆ To reference an XML Schema in the Tree view:

1. Click the Schema node.

2. In the XML Schema left-side tool bar, click one of the following:

❍ New Include

❍ New Import

❍ New Redefine

3. In the field that Stylus Studio displays, enter the location. This is a URL that identifies
the location of the file that contains the XML Schema. For example, it can be like any
one of the following:

❍ myfile.xsd

❍ http://www.mycompany.com/schemas/myfile.xsd

❍ \\fileserver\schemas\myfile.xsd

4. If you defined an Import node, in the Properties window, double-click the Target
Namespace field and enter the target namespace. The target namespace must be
different from the target namespace of the importing file.
678 Stylus Studio User Guide

Referencing External XML Schemas
Redefining Nodes
Once you reference an XML Schema by redefining it, you are able to redefine that XML
Schema’s complexTypes, simpleTypes, groups, and attributeGroups. This section
describes how to redefine nodes using the Diagram tab.

Extensions and Restrictions

There are two ways to redefine a node: by extension and restriction. An extension extends
the base type – adding an element or an attribute definition, for example. A restriction
constrains the base type – limiting a type to a certain range of values, for example.

Specifying Restriction Facets

If you define a restriction using a simpleType, the Properties window displays a section
that allows you to define the facets that restrict that type, as shown in Figure 309.

Restriction facets include length, minLength, maxLength, and totalDigits. For each facet
you specify, you provide the facet name, a value, and, for some facets, whether or not the
value is fixed. Note that not all facets apply to all types.

See “About Facet Types for simpleTypes” on page 645 for more information on facets.

Figure 309. Facets for Describing Restrictions
Stylus Studio User Guide 679

Defining XML Schemas
How to Redefine a Node

◆ To redefine a node in the Diagram view:

1. Right-click the schema node .

2. Select Redefine from the shortcut menu.

The Redefine Schema Symbols dialog box appears.

3. Select the node from the redefined XML Schema you want to redefine and click OK.

The redefined node is added to the diagram, and the text for the redefined node
appears in the text pane. For example, <xsd:complexType name="PublicationType"/>.

4. Right-click the redefined node.

5. From the shortcut menu, select Quick Edit > and then either Derive by extension or
Derive by restriction.

The Type Derivation dialog box appears.

Figure 310. Redefine Schema Symbols Dialog Box

Figure 311. Type Derivation Dialog Box
680 Stylus Studio User Guide

Generating Documentation for XML Schema
6. Select the base type from which you want to derive the definition of the node you are
redefining. and click OK.

The node you added in Figure 3 is modified in the diagram to display the restriction
or extension you are using to redefine it, as shown in Figure 312.

The code displayed in the text pane is also modified. For example:

7. If you specified a restriction of a simpleType, specify the restriction facets in the
Properties window. See “Specifying Restriction Facets” on page 679 if you need
help with this step.

Generating Documentation for XML Schema

The Documentation tab of the XML Schema Editor displays HTML documentation that
describes the currently active XML Schema. The HTML is presented using the XS3P
stylesheet.

◆ To display XML Schema documentation, open an XML Schema document and click
the Documentation tab.

Figure 312. Redefined Node as a Restricted simpleType

<xsd:complexType name="PublicationType">
 <xsd:simpleContent>
 <xsd:restriction base="SKU"/>
 </xsd:simpleContent>
</xsd:complexType>

The Documentation tab is available only in Stylus Studio XML Enterprise Suite and
Stylus Studio XML Professional Suite.
Stylus Studio User Guide 681

Defining XML Schemas
This section covers the following topics:

● XS3P Stylesheet Overview on page 682

● Saving XML Schema Documentation on page 685

● Printing XML Schema Documentation on page 685

XS3P Stylesheet Overview
By default, Stylus Studio displays XML Schema on the Documentation tab using the
XS3P stylesheet from the DSTC Project Titanium (http://titanium.dstc.edu.au/).
Figure 313 shows how the purchaseOrder.xsd looks when displayed using this stylesheet.

Figure 313. XML Schema Documentation Displayed Using XS3P Stylesheet
682 Stylus Studio User Guide

http://titanium.dstc.edu.au/xml/xs3p/

Generating Documentation for XML Schema
The XS3P stylesheet contains

● A customizable title (the default title is XML Schema Documentation)

● A table of contents with hypertext links to sections in the documentation

● Information about the XML Schema’s properties, such as its target namespace and
any declared namespaces

● Global declarations and global definitions, if any

● A legend that describes the graphical conventions used in the XML Schema
documentation. The legend uses a fictitious type declaration for example purposes.

● A glossary that defines terminology used in the XML Schema documentation.

This section covers the following topics:

● XS3P Stylesheet Features on page 683

● XS3P Stylesheet Settings on page 684

● Modifying the XS3P Stylesheet on page 685

XS3P Stylesheet Features

The XS3P stylesheet has several features that affect content and layout of XML Schema
displayed on the Documentation tab. You can

● Create a printer-friendly version of the documentation by clicking the Printer-friendly
Version check box.

When you click this check box, Stylus Studio

■ Hides the Legend and Glossary sections

■ Automatically expands all XML instance and schema component representations

■ Removes the expand/collapse controls from the page

Tip You can hide the legend and the glossary by clicking the Printer-friendly Version check
box at the top of the page.

Figure 314. Features of XML Schema Documentation
Stylus Studio User Guide 683

Defining XML Schemas
● Expand and collapse XML instance and schema component representations. You can
do this for every XML instance or schema component by clicking the Expand All and
Collapse All buttons associated with these representations. You can also set this
option for individual instances by clicking the +/- button, as shown in Figure 315.

● Customize and modify the XML Schema documentation. For example, you can
choose to include all super-types, you can change the default name, and you can
specify the sort order. Settings for these and other properties that affect the content
and appearance of the XML Schema documentation are displayed in the Options
dialog box. See XS3P Stylesheet Settings on page 684 for more information.

XS3P Stylesheet Settings

The XS3P stylesheet allows you to modify the following:

● Title – The default title is XML Schema Documentation, but you can change it to
whatever you want by editing the Title field.

● Sort order – By default, Stylus Studio sorts information in the XML Schema in
alphabetical order by type name. If you want to display information in document
order, set the Sort by Component field to False.

● Whether or not you want Stylus Studio to search included and imported XML
Schemas.

● If you want to incorporate instructions in the HTML, the Use JavaScript option
makes it easy for you to add instructions such to display pop-up windows and hide
information in the generated HTML document.

● Inclusion in the XML Schema documentation of

❍ Supertypes

❍ Subtypes

❍ Glossary

❍ Legend

❍ xsd namespace prefix

❍ Schema diagrams

Figure 315. Representations Can be Collapsed/Expanded Individually
684 Stylus Studio User Guide

Generating Documentation for XML Schema
You control these settings on the Documentation page of the Options dialog box.

Modifying the XS3P Stylesheet

You can customize the XS3P stylesheet that Stylus Studio uses to display XML Schema
documentation. The XS3P stylesheet is in the \schema-documentation directory where
you installed Stylus Studio: bin\Plugins\schema-documentation. The name of the
stylesheet file is xs3p.xsl.

Should you choose to modify the default XS3P stylesheet, the new stylesheet must have
the same name as the original. After you modify and save this file, click the refresh button
on the Stylus Studio tool bar to see your changes.

Saving XML Schema Documentation
To save the XML Schema documentation, click the Save Documentation button () in
the XML Schema window. The XML Schema documentation is saved as an HTML file
that you can edit and add to as you would any other HTML file.

Printing XML Schema Documentation

◆ To print XML Schema documentation:

1. If you are using the XS3P stylesheet, optionally click the Printer-friendly Version
check box at the top of the XML Schema documentation.

2. Review the settings on the Documentation page of the Options dialog box (Tools >
Options > Module Settings > XML Schema Editor > Documentation).

3. Optionally, preview the XML Schema documentation (File > Print Preview).

4. Click the Print button (), or type Ctrl + P.

Tip You can also modify the stylesheet directly. See Modifying the XS3P Stylesheet on
page 685.

Tip Make a copy of the xs3p.xsl file before you modify it.
Stylus Studio User Guide 685

Defining XML Schemas
About XML Schema Properties

When the Diagram or Tree tab of an XML Schema is active, you can see the properties
for the selected node. Click the node whose properties you want to view, and the
properties appear in the Properties window. If the Properties window is not visible, select
View > Properties from the menu bar.

To change the value of a property, click the property field and enter the new value. If only
certain values are allowed, Stylus Studio displays a drop-down list of the valid choices.
In the Diagram view, some properties are read-only. To modify these properties, switch
to the Tree view and change the property there. When you switch back to the Diagram
view, your change is visible.

Each type of node has its own set of properties. The following topics describe the
properties for various node types:

● About xsd:schema Properties on page 687

● Element and Element Reference Properties in XML Schemas on page 689

● Attribute and Attribute Reference Properties in XML Schemas on page 691

● Group Properties in XML Schemas on page 693

● Model Group Properties in XML Schemas on page 693

● Complex and simpleType Properties in XML Schemas on page 695

● Restriction and Extension Type Properties in XML Schemas on page 696

● Content Type Properties in XML Schemas on page 696

● Aggregator Type Properties in XML Schemas on page 697

● Facet Type Properties in XML Schemas on page 698

● Notation Type Properties in XML Schemas on page 699

● Include Type Properties in XML Schemas on page 699

● Import Type Properties in XML Schemas on page 700

● Redefine Type Properties in XML Schemas on page 700

● Identity Constraint Type Properties in XML Schemas on page 700

● Constraint Element Type Properties in XML Schemas on page 701

● Documentation Type Properties in XML Schemas on page 701

The Documentation tab is available only in Stylus Studio XML Enterprise Suite and
Stylus Studio XML Professional Suite.
686 Stylus Studio User Guide

About XML Schema Properties
About xsd:schema Properties
The root element of every XML Schema document is the xsd:schema element. The
xsd:schema element has the properties described in Table 70. Click the Tree tab, and then
click the Schema node to view the properties for the xsd:schema element.

Table 70. xsd:schema Properties

Property Description

Type The type is always Schema.

Namespace The namespace for the Schema node is usually xsd, but you can
change it.

Target Namespace This is the namespace that elements and attributes defined in an
instance document belong to. For example, suppose you define the
following:
<xsd:schema ... targetNamespace="http://myNS">

<xsd:element name="myelement"/>
In an instance document, the following declarations conform
with the target namespace:
<myelement xmlns="http://myNS”/>
<myns:myelement xmlns:myns="http://myNS"/>
However, the following declaration does not conform:
<myns:myelement xmlns:myns="http://anotherNS"/>

Version Use this property as a convenient way to track the revisions of your
XML Schema document.
Stylus Studio User Guide 687

Defining XML Schemas
Default Element Form An element or attribute’s form is either qualified or unqualified.
A form of qualified means that each time an element or attribute
is referenced in the schema document, you must specify the prefix
of its namespace. Every element and attribute has a form attribute.
If it is not explicitly defined, the schema processor checks the
default attribute form specified for the Schema node. For example:
<xs:schema elementFormDefault="qualified"

targetNamespace="http://myNs"
xmlns:myns="http://myNS">

 <xs:element name="topElem">
....

</xs:element>
<xs:element name="anElem">

 <xs:complexType>
<xs:sequence>

<xs:element ref="myns:topElem">
...

If the form for the element topElem (or, the default form for
elements) was defined to be unqualified, the reference could
have used ref="topElem".

Default Attribute
Form

Default Blocked
Definitions

If an element does not have its own blocked or final definition, the
schema processor uses the default blocked or final definition you
specify here.Default Final

Definitions

Table 70. xsd:schema Properties

Property Description
688 Stylus Studio User Guide

About XML Schema Properties
Element and Element Reference Properties in XML Schemas
Both global and local elements have the properties described in Table 71. References to
elements have the same properties except where noted.

Table 71. Element and Element Reference Properties

Property Description

Type For elements, the type is always Element. For references to
elements, the type is always Ref. to Element.

Name The tag name you use in an instance document. Specify the name
you want the element to have.

Min Occur. Specifies the minimum number of instances of this element that can
be present. If an element is not required to be present, specify 0. You
cannot specify this property for a global element. If you do, Stylus
Studio ignores it.

Max Occur. Specifies the maximum number of instances of this element that can
be present. If there is no limit to the number of instances, specify
unbounded. You cannot specify this property for a global element. If
you do, Stylus Studio ignores it.

Data Type The type of the data that the element contains. Select from all
simpleTypes defined in an XML Schema, and all types (simple or
complex) that you define in the same schema. Nodes that are
references to elements do not have this property.

Default Specifies the default value for this element. Specification of this
property makes sense only for optional elements. If you specified 0
for the Min Occur. property, you can specify a default value.

When this element is in an instance document, the element has
whatever value you specify. If you do not specify this element, the
schema processor behaves as though you had specified it with the
default value. When you specify a default value for an element, that
element must be optional in an instance document. An element can
have a value for the Default property or a value for the Fixed
Value property. The two properties are mutually exclusive.
Stylus Studio User Guide 689

Defining XML Schemas
Fixed Value When you specify a value for Fixed Value, it is optional for the
element to appear in an instance document. However, if the element
does appear, it must have the value specified by Fixed Value.
Whether or not you specify this element in an instance document,
the schema processor behaves as though you had specified this
element with the fixed value. An element can have a value for the
Fixed Value property or a value for the Default property. The two
properties are mutually exclusive.

Abstract A Boolean value that indicates whether substitution for this element
is required. When Abstract is true, the element cannot be used in
an instance document. Instead, a member of the element’s
substitution group must appear in the instance document.

Nillable A Boolean value that indicates whether the contents of the element
can be set to nil. A value of true indicates that the element can be
empty; that is, it is permissible for the element to not contain any
subelements, attributes, or data.

Form An element’s form is either qualified or unqualified. A form of
qualified means that each time the element is referenced in the
schema document, you must specify the prefix of its namespace.
Every element has a form attribute. If it is not explicitly defined, the
schema processor checks the default attribute form specified for the
Schema node.

Blocked
Substitutions

Defines that this element cannot be derived in some forms. That is,
it specifies that one or more extensions, restrictions or substitutions
cannot be permitted. For example, an enumeration for all the states
in the United States can block extensions and substitutions, thus
allowing derived data types only so as to restrict the number of valid
states.

Table 71. Element and Element Reference Properties

Property Description
690 Stylus Studio User Guide

About XML Schema Properties
Attribute and Attribute Reference Properties in XML Schemas
Both global and local attributes have the properties described in the Table 72. References
to attributes have the same properties, except where noted.

Final Substitutions Specifies that this element is not allowed to be substituted in a
substitution group if these are extensions or restrictions of the same
base type. For example, suppose an Invoice contains a reference to
a PO document. The PO document is derived from
AccountingDocument. If PO document has the
final="extensions" attribute, and PartialPO is defined as an
extension from AccountingDocument, the Invoice cannot
substitute PO with PartialPO.

Substitution Groups If an element defines an element name definition in a substitution
group, it means that it can be used in all the places where there is a
reference to that element. For example, suppose the PO document
definition indicates that it can refer to an RFQ element. You can
specify that a foo element is in the substitution group for an RFQ
element. If you do, a PO document is valid if it refers to a foo
element.

Table 71. Element and Element Reference Properties

Property Description

Table 72. Attribute and Attribute Reference Properties

Property Description

Type For attributes, the type is always Attribute. For attribute
references, the type is always Ref. to Attribute.

Name The attribute name you use in an instance document. Specify the
name you want the attribute to have.

Data Type The type of the data that is the value of the attribute. Select from all
simpleTypes defined in an XML Schema, and all simpleTypes that
you already defined in the same schema. References to attributes do
not have this property.
Stylus Studio User Guide 691

Defining XML Schemas
Default Specifies the default value for this attribute. Specification of this
property makes sense only for optional attributes. If you specified
optional for the Restrictions property, you can specify a default
value.

If this attribute is in an instance document, the attribute has whatever
value you specify. If you do not specify this attribute, the schema
processor behaves as though you had specified it with the default
value. When you specify a default value for an attribute, that
attribute must be optional in an instance document. An attribute can
have a value for the Default property or a value for the Fixed Value
property. The two properties are mutually exclusive.

Fixed Value When you specify a value for Fixed Value, it is optional for the
attribute to appear in an instance document. However, if the attribute
does appear, it must have the value specified by Fixed Value.
Whether or not you specify this attribute in an instance document,
the schema processor behaves as though you had specified this
attribute with the fixed value. An attribute can have a value for the
Fixed Value property or a value for the Default property. The two
properties are mutually exclusive.

Restrictions Specify prohibited, optional, or required.

Form An attribute’s form is either qualified or unqualified. A form of
qualified means that each time the attribute is referenced in a
schema document, you must specify the prefix of its namespace.
Every attribute has a form attribute. If it is not explicitly defined, the
schema processor checks the default attribute form specified for the
Schema node.

Table 72. Attribute and Attribute Reference Properties

Property Description
692 Stylus Studio User Guide

About XML Schema Properties
Group Properties in XML Schemas
A group contains references to elements. Groups have the properties described in
Table 73:

Model Group Properties in XML Schemas
After you create a group node or a complexType node, you can add a model group node
as a child. A model group specifies rules for the occurrence of elements. These are the
elements that are the children of the group or complexType in an instance document. A

Table 73. Group Properties

Property Description

Type The type is always Group.

Name The name you specified for the group.

Min Occur. Specifies the minimum number of instances of this group that can
appear in a complexType that references this group. If a group is not
required to be present, specify 0.

Max Occur. Specifies the maximum number of instances of this group that can
appear in a complexType that references this group. If there is no
limit to the number of instances, specify unbounded.
Stylus Studio User Guide 693

Defining XML Schemas
model group references and defines elements. Model groups have the properties
described in Table 74:

Table 74. Model Group Properties

Property Description

Type The type is always Model Group.

Modifier Specifies the occurrence rules for the elements that you add as
children of the model group node. Specify one of the following
values:

● all specifies that each element must appear exactly zero or one
time. The elements can appear in any order. In an instance
document, the children of the group or complexType can
include 0 or 1 instance of each element.

● choice specifies that exactly one element can be present, and
there must be only one instance of that element. In an instance
document, exactly one element can be a child of the group or
complexType.

● sequence specifies that the elements must appear in the order in
which they are specified in the schema. For each element, you
can specify whether it is optional and whether it can appear
more than once. The default is that exactly one must be present
in an instance document. In an instance document, each element
that appears must be in the same order as in the schema.

Another value you can specify is any. When you specify any,
you do not add any element definitions or references to
elements. As the name implies, any element can appear any
number of times.

Min Occur. Specifies the minimum number of instances of this model group that
can appear in this group or complexType. If a model group is not
required to be present, specify 0.

Max Occur. Specifies the maximum number of instances of this model group that
can appear in this group or complexType. If there is no limit to the
number of instances, specify unbounded.
694 Stylus Studio User Guide

About XML Schema Properties
Complex and simpleType Properties in XML Schemas
complexTypes have the properties described in Table 75. simpleTypes have only the Type
and Name properties.

Table 75. Complex and simpleType Properties

Property Description

Type The type is always complexType or simpleType.

Name The type name you use elsewhere in the XML Schema. Specify the
name you want the type to have.

Abstract A Boolean value that indicates whether substitution for this
complexType is required. When Abstract is true, the complexType
cannot be used in an instance document. Instead, a member of the
complexType’s substitution group must appear in the instance
document. simpleTypes do not have this property.

Mixed A Boolean value that indicates whether or not this complexType can
contain raw data as well as elements and attributes. A value of true
indicates that it can contain raw data. simpleTypes do not have this
property.

Blocked
Substitutions

Defines that this type cannot be derived in some forms. That is, it
specifies that one or more extensions, restrictions or substitutions
cannot be permitted. For example, an enumeration for all the states
in the United States can block extensions and substitutions, thus
allowing derived data types only so as to restrict the number of valid
states.

Final Substitutions Specifies that the type is not allowed to be substituted in a
substitution group if these are extensions or restrictions of the same
base type. For example, suppose an Invoice contains a reference to
a PO document. The PO document is derived from
AccountingDocument. If PO document has the final="extensions"
attribute, and PartialPO is defined as an extension from
AccountingDocument, the Invoice cannot substitute PO with
PartialPO.
Stylus Studio User Guide 695

Defining XML Schemas
Restriction and Extension Type Properties in XML Schemas
When you define a simpleType, you always derive it from a built-in XML Schema
simpleType, or a simpleType you previously defined. To specify the simpleType that
your simpleType is based on, add a restriction node or an extension node to your
simpleType node.

A restriction node indicates that your simpleType is a subset of some other simpleType.
An extension node indicates that your simpleType extends the range of values provided
by an existing simpleType.

Restriction type nodes and extension type nodes have the properties described in
Table 76:

Content Type Properties in XML Schemas
Content types have the properties described in Table 77:

Table 76. Restriction and Extension Type Properties

Property Description

Type The type is always Restriction or Extension.

Base Type Indicates the data type that this simpleType is based on.

Table 77. Content Type Properties

Property Description

Type The type is always Content.

Mixed A Boolean value that indicates whether this node can contain text as
well as elements.

Content Type When the value is simpleContent, the node can contain only
character data and no elements or attributes. When the value is
complexContent, the node can contain character data, elements, and
attributes.
696 Stylus Studio User Guide

About XML Schema Properties
Aggregator Type Properties in XML Schemas
After you create a simpleType node, you can add an aggregator node as its child. An
aggregator node indicates that a single instance of an element of your new simpleType
contains a sequence of atomic types. Aggregator types have the properties described in
Table 78:

Table 78. Aggregator Type Properties

Property Description

Type Must be list or union.

● list indicates that all instances in the sequence must be of
the same type.

● union indicates that the instances in the sequence can be
of different types.

Aggregator Type The type of the instances included in your new simpleType. If the
value of Type is union, you can specify a space-separated list.
Stylus Studio User Guide 697

Defining XML Schemas
Facet Type Properties in XML Schemas
Facet types have the properties described in Table 79:

Table 79. Facet Type Properties

Property Description

Facet Type Must be one of the following: enumeration, fractionDigits,
length, maxExclusive, maxInclusive, maxLength, minExclusive,
minInclusive, minLength, pattern, totalDigits, or whiteSpace.

Fixed A Boolean value that indicates whether you can further restrict the
simpleType with this same facet and a different value. The default is
false. That is, the default is that you can apply the same facet more
than once. For example, suppose you specify the following
definition:
<xsd:simpleType name="zip">

<xsd:restriction base="xsd:string">
<xsd:length value="5" fixed="true"/>

</xsd:restriction>
</xsd:simpleType>

This defines a postal code whose length is 5 characters. You can
further restrict this simpleType with, for example, the pattern facet
so that the first three characters must always be "100", but you
cannot further restrict the length facet when the Fixed property is
set to true.

Facet types of pattern and enumeration do not have the Fixed
property.

Value Varies according to the facet type. See “About Facet Types for
simpleTypes” on page 645.
698 Stylus Studio User Guide

About XML Schema Properties
Notation Type Properties in XML Schemas
Notation types have the properties described in Table 80. See “Defining Notations” on
page 673 for more information.

Include Type Properties in XML Schemas
Include types have the properties described in Table 81. See “Referencing External XML
Schemas” on page 674 for more information.

Table 80. Notation Type Properties

Property Description

Type The type is always Notation.

Name The name you specify for the notation.

Public ID Unique string that refers to the physical location of the external data,
for example, MyCompany//LOGO//JPEG.

System ID URL used to physically locate the external data, for example,
http://www.mycompany.com/mylogo.jpg.

Table 81. Include Type Properties

Property Description

Type The type is always Include.

Location URL that identifies the location of the file that contains the XML
Schema.
Stylus Studio User Guide 699

Defining XML Schemas
Import Type Properties in XML Schemas
Import types have the properties described in Table 82. See “Referencing External XML
Schemas” on page 674 for more information.

Redefine Type Properties in XML Schemas
Redefine types have the properties described in Table 83. See “Referencing External
XML Schemas” on page 674 for more information.

Identity Constraint Type Properties in XML Schemas
Identity Constraint types have the properties described in Table 84. See “Adding an
Identity Constraint to an Element” on page 662 for more information.

Table 82. Import Type Properties

Property Description

Type The type is always Import.

Location URL that identifies the location of the file that contains the XML
Schema.

Target Namespace This is the namespace that elements and attributes defined in an
instance document belong to.

Table 83. Redefine Type Properties

Property Description

Type The type is always Redefine.

Location URL that identifies the location of the file that contains the XML
Schema.

Table 84. Identity Constraint Type Properties

Property Description

Type The type is always Identity Constraint.

Name The name you specify for the identity constraint.
700 Stylus Studio User Guide

About XML Schema Properties
Constraint Element Type Properties in XML Schemas
Constraint Element types have the properties described in Table 85. See “Adding an
Identity Constraint to an Element” on page 662 for more information.

Documentation Type Properties in XML Schemas
Documentation types have the properties described in the following table:

Table 85. Constraint Element Type Properties

Property Description

Type The type is always Constraint Element.

XPath Expression An XPath expression that returns the element for which you are
defining a constraint.

Table 86. Documentation Type Properties

Property Description

Type The type is always Documentation.

Source A path or URL for an external file that contains the documentation.

Language The language of the contents of the documentation.
Stylus Studio User Guide 701

Defining XML Schemas
702 Stylus Studio User Guide

Chapter 9 Defining Document Type Definitions
This section provides information about how to use the Stylus Studio Document Type
Definition (DTD) editor to define a DTD. Familiarity with DTDs is assumed.

This section discusses the following topics:

● “What Is a DTD?” on page 704

● “Creating DTDs” on page 704

● “About Editing DTDs” on page 705

● “About Modifiers in Element Definitions in DTDs” on page 706

● “Defining Elements in DTDs” on page 709

● “Defining General Entities and Parameter Entities in DTDs” on page 718

● “Inserting White Space in DTDs” on page 721

● “Adding Comments to DTDs” on page 721

● “About Node Properties in DTDs” on page 722

● “Associating an XML Document with an External DTD” on page 726

● “Moving an Internal DTD to an External File” on page 726
Stylus Studio User Guide 703

Defining Document Type Definitions
What Is a DTD?
A document type definition (DTD) describes the structure of a document. It specifies
which elements can contain which other elements, which elements are optional and which
are required, and which elements contain data. For example, a DTD might specify that a
book element

● Must contain exactly one title element

● Can contain any number of author elements

● Might contain a subtitle element

To use a DTD, you must associate it with an XML document. A DTD can be internal or
external. An internal DTD is inside the XML document that uses it. It appears in the
DOCTYPE element, which immediately follows the XML declaration at the beginning of the
document. An external DTD is in a separate file. An XML document that uses an external
DTD specifies the path for the DTD in its DOCTYPE element. For example, the following
DOCTYPE element specifies that bookstore is the root element in this XML document, and
that the DTD that this document uses is stored in the file system at
C:\mydir\bookstore.dtd:

A document instance is an XML document that uses a particular DTD. In other words, the
contents of a document instance have been tagged according to the structure defined in
the DTD it is associated with. For example, if the contents of the bookstore.xml file
follow the structure defined in the bookstore.dtd file, bookstore.xml is a document
instance of the bookstore DTD.

Creating DTDs
To create a DTD, select File > New > DTD Schema from the Stylus Studio menu bar.
Stylus Studio displays the DTD schema editor.

The Stylus Studio DTD editor provides two views of a DTD. In the Tree view, Stylus
Studio uses branches and leaves to represent the DTD. When you define a DTD in the
Tree view, you do not need to know the details about DTD syntax. In the Text view, Stylus
Studio displays the lines of text that make up the DTD. To define a DTD in the Text view,
you must be familiar with DTD syntax.

If you are editing an XML document and you want to create a DTD for that document,
click the Schema tab. Stylus Studio displays the Schema Not Found dialog box. Indicate

<!DOCTYPE bookstore SYSTEM "file://C:\mydir\bookstore.dtd">
704 Stylus Studio User Guide

About Editing DTDs
that you want Stylus Studio to generate a DTD and indicate whether you want the new
DTD to be internal or external. After you respond to the prompts and click Yes, Stylus
Studio automatically creates the DTD for you and displays it in the Schema tab.

If you instruct Stylus Studio to create an internal DTD, you can update the DTD in the
XML editor. If you instruct Stylus Studio to create an external DTD, you must explicitly
open it to update it. An external DTD that Stylus Studio displays in the Schema tab is
read-only.

To use Stylus Studio to validate an XML document against a DTD, see “Validating XML
Documents” on page 247. If you update a DTD in Stylus Studio and that DTD is
associated with an XML document that is open in Stylus Studio, Stylus Studio refreshes
the schema information for the XML document.

About Editing DTDs
Stylus Studio displays a DTD with two views. Click the Text tab or the Tree tab to display
the view you want. The Tree tab displays a DOM-like tree that represents the DTD.

You can specify and edit the DTD in either view. However, the recommended method is
to edit the DTD in the Tree view. The Tree view provides tools tailored for creating a
DTD. The tool bar on the left provides a button for defining each node in a DTD. After
you select a node in the tree, the DTD editor allows you to add only those nodes that are
valid at that point.

Also, in the Tree view of the DTD, you can see the properties for each node. When you
click the node whose properties you want to view, the properties appear in the Properties
window. If the Properties window is not visible, select View > Properties from the menu
bar.

After you add a node, you can make changes in the Properties window, the Tree tab, or
the Text tab. Any changes you make in one place are immediately reflected in the other
places.

See “Defining Elements in DTDs” on page 709.

Restrictions
A DTD can include other, external DTDs. In a future release, it is expected that you will
be able to click Open Schema to display an included DTD. However, in this release,
this is not supported.
Stylus Studio User Guide 705

Defining Document Type Definitions
DTDs are not XML documents. Consequently, as you would expect, Indent XML Tags
does not work on DTDs.

About Modifiers in Element Definitions in DTDs
When you define an element, you specify one or more modifiers. A modifier specifies a
rule about the structure or occurrence of the element being defined. An element can have
only one top-level modifier. However, you can add one or more modifiers to the top-level
modifier. A modifier can aggregate elements or other modifiers.

This section discusses the following topics:

● Description of Element Modifiers in DTDs on page 706

● Simple Example of Aggregating Modifiers in DTDs on page 707

● More Complex Example of Aggregating Modifiers in DTDs on page 708

● Aggregating Modifiers to Allow Any Order and Any Number in DTDs on page 708

Description of Element Modifiers in DTDs
Table 87 describes the available modifiers:

Table 87. Element Modifiers

Modifier Description Indicator in DTD

Optional This element can appear once or not at all. (0 or
1)

Question mark (?)

Zero or more This element is optional and repeatable. (0, 1,
or more)

Asterisk (*)

One or more This element is required and repeatable. (1 or
more)

Plus sign (+)
706 Stylus Studio User Guide

About Modifiers in Element Definitions in DTDs
Simple Example of Aggregating Modifiers in DTDs
Suppose you want a book element to always contain exactly one title element and any
number of author elements. The title and author elements contain only raw data. To
accomplish this, you would perform steps that generate the following tree representation:

In the book element definition, Sequence modifies book and One or More modifies Sequence.
Because the title element immediately follows the Sequence modifier, the default
occurrence rule is assumed. That is, the title element must appear exactly once. In the
Text view of the DTD, the definition for the book element is as follows:
<!ELEMENT book (title, (author)+)>

Choice Exactly one of the specified subelements must
appear.

Vertical bar (|)

Sequence If no other modifiers are defined on the
Sequence modifier, each subelement in this
element must appear exactly once. In other
words, it is required. Also, the subelements
must appear in the order in which they are
specified in the referencing element. You can
define other modifiers on the Sequence
modifier. In this way, you can specify that some
subelements are optional, some appear zero or
more times, and some appear one or more
times.

Comma (,)

Table 87. Element Modifiers

Modifier Description Indicator in DTD

book
 Sequence
 title
 One or More
 author
title
 Zero or More
 #PCDATA
author
 Zero or More
 #PCDATA
Stylus Studio User Guide 707

Defining Document Type Definitions
More Complex Example of Aggregating Modifiers in DTDs
Following is a more complicated example. Suppose you want book elements to include

● Exactly one title

● Either an author or an editor, but it is okay if neither appear

● Zero or more paragraphs

To accomplish this, you would perform steps that generate the following tree
representation:

In the Text view of the DTD, the definition for the book element is as follows:

Aggregating Modifiers to Allow Any Order and Any Number in
DTDs

The Choice modifier specifies that only one of the specified elements can appear in an
instance document. However, if you specify the Zero or More modifier and then the
Choice modifier, the result is that the specified elements can appear in any order and each
element can appear any number of times.

The text for such an element definition is as follows:

The tree representation is as follows:

book
 Sequence
 title
 Optional
 Choice
 author
 editor
 Zero or More
 paragraph

<!ELEMENT book (title, (author|editor)?, paragraph*)>

<!ELEMENT A (B|C|D)*>

A
 Zero or More
 Choice
 B
 C
 D
708 Stylus Studio User Guide

Defining Elements in DTDs
This allows an A element to contain

● Zero, one, or more B elements

● Zero, one, or more C elements

● Zero, one, or more D elements

Furthermore, the contained elements can be in any order.

Defining Elements in DTDs
You can define an element in the Text or Tree tab.

In the Text tab, you enter the text that defines your element and describes its structure. For
example, to define a Catalog element that can contain one or more Publisher elements,
followed by zero or more Thread elements, followed by one or more Book elements, you
would enter the following:

When you define elements in the Text tab, you must know the syntax and keywords for
what you want to define. This information is publicly available on the World Wide Web.
Stylus Studio documentation does not include instructions for defining a DTD in the Text
tab. For DTD information, see, http://www.w3.org/TR/REC-xml.

When you use Stylus Studio, it is easier to define an element in the Tree tab. In the Tree
tab, you click New Element Definition , and Stylus Studio takes care of the syntax and
keywords. In the Tree tab, definition of an element requires that you

1. Create the element by specifying its name. To do this, see “Defining Elements in the
DTD Tree Tab” on page 710, which is the first topic in this section.

2. Define the structure of the element by specifying modifiers, defining where raw data
is allowed, and adding references to other elements. To help you do this, this section
discusses the following topics:

❍ Specifying That an Element Can Have an Attribute in DTDs on page 711

❍ Specifying That an Element is Required in DTDs on page 711

❍ Specifying That an Element is Optional in DTDs on page 712

❍ Specifying That Multiple Instances of An Element Are Allowed in DTDs on
page 713

❍ Specifying That An Element Can Contain One of a Group of Elements in DTDs
on page 715

<!ELEMENT Catalog ((Publisher)+,((Thread)*,(Book)+))>
Stylus Studio User Guide 709

http://www.w3.org/TR/REC-xml

Defining Document Type Definitions
❍ Specifying That an Element Can Contain One or More Elements in DTDs on
page 716

❍ Specifying That an Element Can Contain Data in DTDs on page 718

❍ Moving, Renaming, and Deleting Elements in DTDs on page 718

Defining Elements in the DTD Tree Tab
In the DTD editor, if the Tree view is not visible, click the Tree tab at the bottom of the
window.

◆ To create an element in the Tree tab:

1. Click the DTD node at the top of the tree.

2. In the tool bar on the left, click New Element Definition . Stylus Studio displays
a field for the new element at the end of the current contents of the DTD.

3. Type the name of the new element and press Enter. Stylus Studio displays the
properties for the new element in the Properties window. If the Properties window is
not visible, select View > Properties from the Stylus Studio menu bar. For example,
suppose you specified title as the name of the new element. Your new element has
the following properties:

4. To change the value of a property, double-click the current value. For information
about the properties that each element can have, see “About Node Properties in
DTDs” on page 722.

After you create an element, you must define the structure of the contents of the element.
The rest of the topics in this section provide information on how to define structure.

Table 88. Element Properties

Property Value

Type Element

Name title

Content Model Empty
710 Stylus Studio User Guide

Defining Elements in DTDs
Specifying That an Element Can Have an Attribute in DTDs

◆ In the DTD Tree tab, to specify that an element can have an attribute:

1. Click the name of the element that you want to have an attribute.

2. In the menu bar on the left, click New Attribute .

3. Type the name of the attribute and press Enter.

Specifying That an Element is Required in DTDs
You specify that an element is required when you add a reference to that element in
another element.

◆ In the Tree tab, to specify that an element is required:

1. Define the element that you want to be required. See “Defining Elements in the DTD
Tree Tab” on page 710.

2. Create the element that contains the element that you want to be required. This is the
container element.

3. Click the container element name.

4. In the tool bar on the left, click New Modifier . Stylus Studio displays a drop-down
menu.

5. Double-click Sequence.

6. If the required element can appear only once, skip this step. If the required element
can appear more than once, click New Modifier and double-click One or More in the
pop-up menu.

7. With the modifier highlighted, click New Reference to Element in the tool bar
on the left.

8. Enter the name of the element that you want this element to reference.

After you add a reference to an element, you might want to check the definition of the
referenced element. To do this, right-click the reference. In the shortcut menu, click
Go To Definition. Stylus Studio moves the focus to the definition of the referenced
element.

For example, suppose the title element is required, and that it is relevant only in the
context of a book element. When you define the book element, you specify that it contains
the title element. If you specify only the Sequence modifier, the occurrence default is
Stylus Studio User Guide 711

Defining Document Type Definitions
assumed. The occurrence default is that there must be exactly one of the contained
element. In other words, the title element is required and there can be only one. In this
case, the definition of the book element is as follows:

The tree representation looks like this:

It is also possible for an element to be required and for more than one to be allowed.
Suppose the book element must also contain at least one author element, but it can contain
more than one author element. The definition of the book element is as follows:

The tree representation looks like this:

Specifying That an Element is Optional in DTDs
You specify that an element is optional when you add a reference to that element in
another element. When an element is optional, it means that there can be one or none. If
you want to specify that there can be none, one, or more, use the Zero or More modifier.
See “Specifying That Multiple Instances of An Element Are Allowed in DTDs” on
page 713.

◆ In the Tree tab, to specify that an element is optional:

1. Define the element that you want to be optional. See “Defining Elements in the DTD
Tree Tab” on page 710.

2. Create the element that contains the element that you want to be optional. This is the
container element.

3. Click the container element name.

<!ELEMENT book (title)>

book
 Sequence
 title

<!ELEMENT book (title, author+)>

book
 Sequence
 title
 One or More
 author
712 Stylus Studio User Guide

Defining Elements in DTDs
4. In the tool bar on the left, click New Modifier . Stylus Studio displays a drop-down
menu.

5. If the container element can contain only the optional element, skip this step. If the
container element can contain more than one element, click Sequence.

6. Click New Modifier.

7. In the pop-up menu that appears, double-click Optional.

8. In the tool bar on the left, click New Reference to Element and enter the name of
the optional element. If the container element can contain additional optional
elements, repeat this step for each one.

After you add a reference to an element, you might want to check the definition of the
referenced element. To do this, right-click the reference. In the shortcut menu, click
Go To Definition. Stylus Studio moves the focus to the definition of the referenced
element.

Specifying That Multiple Instances of An Element Are Allowed in
DTDs

You specify that multiple instances of an element are allowed when you add a reference
to that element in another element. When multiple instances of an element are allowed,
you specify that there can be either

● None, one, or more

● One or more

◆ In the Tree tab, to specify that there can be multiple instances of an element:

1. Define the element that can appear multiple times. See “Defining Elements in the
DTD Tree Tab” on page 710.

2. Define the element that contains the element that can appear multiple times. This is
the container element.

3. Click the container element name.

4. In the left tool bar, click New Modifier . Stylus Studio displays a drop-down menu.

5. If the container element can contain only one type of element, skip this step. If the
container element can contain more than one type of element, double-click
Sequence, and then click New Modifier.
Stylus Studio User Guide 713

Defining Document Type Definitions
6. Double-click Zero or More to allow the container element to contain zero, one, or
more instances of an element. Or, double-click One or More to allow the container
element to contain one or more instances of an element.

7. In the left tool bar, click New Reference to Element and enter the name of the
element that can appear multiple times. If the container element can contain
additional types of elements, repeat this step for each one that can appear multiple
times.

After you add a reference to an element, you might want to check the definition of the
referenced element. To do this, right-click the reference. In the shortcut menu, click
Go To Definition. Stylus Studio moves the focus to the definition of the referenced
element.

Suppose there are some elements that can appear zero, one, or more times, and there are
other elements that can appear one or more times. The tree representation for this might
look like the following:

In this example, an instance document must contain these elements in the following order:

Suppose you want them in the following order:

book
 Sequence
 One or More
 Author
 Format
 Zero or More
 Award
 Review

author
format
award
review

review
format
award
author
714 Stylus Studio User Guide

Defining Elements in DTDs
In this case, the tree representation would look like this:

Specifying That An Element Can Contain One of a Group of
Elements in DTDs

You might want to define an element that contains one element out of a group of elements.
For example, you might want an InventoryNumber element to contain a book, magazine, or
newsletter element.

◆ In the Tree tab, to define an element that contains one of a group of elements:

1. Define the elements that your new element can contain. See “Defining Elements in
DTDs” on page 709.

2. Define the element that you want to contain another element. This is the container
element.

3. Click the container element name.

4. In the left tool bar, click New Modifier . Stylus Studio displays a drop-down menu.

5. Double-click Choice.

6. For each element in the group of elements from which one element can appear:

a. Click New Reference to Element in the left tool bar.

b. Type the name of the element and press Enter.

After you add a reference to an element, you might want to check the definition of the
referenced element. To do this, right-click the reference. In the shortcut menu, click
Go To Definition. Stylus Studio moves the focus to the definition of the referenced
element.

When the XSLT processor validates an instance document against this DTD, it ensures
that each instance of the new element you just defined contains exactly one of the
referenced elements.

book
 Sequence
 Zero or More
 Award
 One or More
 Format
 Zero or More
 Review
 One or More
 Author
Stylus Studio User Guide 715

Defining Document Type Definitions
The tree representation for an InventoryNumber element that can contain a book, magazine,
or newsletter element would look like the following:

Specifying That an Element Can Contain One or More Elements
in DTDs

Often, you want an element to contain a sequence of elements. Some of these elements
might be required, some might be optional, and some might be able to occur more than
once. There might even be a group of elements in which only one can appear.

◆ In the Tree tab, to define an element that contains a sequence of elements:

1. Define the elements that you want your new element to contain. See “Defining
Elements in DTDs” on page 709.

2. Define the element that contains the sequence of elements. This is the container
element.

3. Click the container element name.

4. In the left tool bar, click New Modifier . Stylus Studio displays a drop-down menu.

5. Double-click Sequence.

6. To add required elements to the container element, click New Reference to Element
 in the left tool bar and enter the name of the required element. Do this for each

required element. You can change the order later.

At this point, you can add

● Optional elements

● Elements that can appear one or more times

● Elements that can appear zero, one, or more times

● Elements that belong to a group in which only one element in the group can be present

InventoryNumber
 Choice
 book
 magazine
 newsletter
716 Stylus Studio User Guide

Defining Elements in DTDs
The procedure is the same for these modifiers. The only difference is the modifier you
select. For example, following are the instructions for adding optional elements:

1. In the DTD editor, click the Sequence modifier.

2. In the left tool bar, click New Modifier.

3. Double-click Optional.

4. For each optional element, click New Reference to Element and enter the name of the
optional element. This works only if you want all optional elements to be consecutive.
If you want optional elements to be interspersed with required elements or elements
that can appear one or more times, you must perform steps 1 through 4 for each
element.

In an instance document, the contained elements must appear in the order in which they
are specified in the DTD.

◆ To modify the order:

1. Click the modifier for the element you want to move.

2. Click the up or down arrow repeatedly until the element is where you want it to be.

To move a required element that can appear only once, click its name and then use the up
and down arrows.

Alternative: Right-click the item you want to move. Select Move Up or Move Down from
the shortcut menu.
Stylus Studio User Guide 717

Defining Document Type Definitions
Specifying That an Element Can Contain Data in DTDs
To specify that an element can contain raw data, you must first define the element. See
Defining Elements in the DTD Tree Tab on page 710.

◆ In the Tree tab, to specify that an element can contain data:

1. Click the element you want to contain data.

2. In the left tool bar, click New Modifier . Stylus Studio displays a drop-down menu.

3. Double-click Zero or More.

4. In the left tool bar, click Add $PCDATA .

Moving, Renaming, and Deleting Elements in DTDs
To move an element definition or a reference to an element, in the Tree tab, click the name
of the element or the modifier for the reference. Then click Move Up or Move Down

 repeatedly until the element or reference is where you want it to be.

Alternative: Right-click the item you want to move. Select Move Up or Move Down from
the shortcut menu that appears.

To rename an element or attribute, right-click it and select Rename from the shortcut
menu that appears. Type the new name and press Enter.

Alternative: Click Change Name .

To delete a node in the DTD, right-click the node you want to delete. In the shortcut menu
that appears, click Delete.

Alternative: Click Delete Node .

Defining General Entities and Parameter Entities in
DTDs

In DTDs, an entity allows you to define a symbol for a value. In the Tree view, you can
define general entities and parameter entities. The value of a general entity can be just
about anything. It can be

● A short string that represents a longer string

● A way to include another marked-up file
718 Stylus Studio User Guide

Defining General Entities and Parameter Entities in DTDs
● A reference to a graphical image

● A placeholder for some non-XML data or an expression that needs special formatting

General entities are useful for things that change often, such as the name of a product in
development. An entity allows you to change the value in one place and have the
corrected value appear everywhere it is needed.

See also “Description of Entity and Parameter Entity Properties in DTDs” on page 725.

When you define a general entity, you specify a symbol that you can use in instance
documents. When the XML parser finds a reference to a general entity, it replaces the
symbol with the value you specified when you defined the general entity.

When you define a parameter entity, you specify a symbol that you can use elsewhere in
the DTD. Again, when the XML parser finds a reference to a parameter entity, it replaces
the reference with the value you specified when you defined the parameter entity.

In a DTD, the definition of an entity must appear before a reference to that entity.
Therefore, it is good practice to put all entity declarations at the beginning of a DTD.

This section discusses the following topics:

● Steps for Defining Entities in DTDs on page 719

● General Entity Example in a DTD on page 720

● Parameter Entity Example in a DTD on page 721

Steps for Defining Entities in DTDs
The procedures for defining general entities and parameter entities are almost the same.

◆ To define an entity in the Tree tab:

1. Click the DTD node.

2. In the left tool bar, click New Entity or New Parameter Entity .

3. Type the name of the new entity and press Enter. Stylus Studio displays the properties
for the new entity in the Properties window. If the Properties window is not visible,
select View > Properties from the Stylus Studio menu bar to display it.

4. In the Properties window, check the value of the Location property.

If you want to define the value for this entity in this DTD, the value should be Internal.
Otherwise, the value should be External. If you need to change the value of the
Stylus Studio User Guide 719

Defining Document Type Definitions
Location property, double-click its current value. In the drop-down menu that
appears, double-click the new value.

5. If the value of the Location property is External, skip this step. If the value of the
Location property is Internal, double-click the Value field and enter the value of the
entity. Definition of your entity is complete. You do not perform the remaining steps
in this procedure.

6. If the value of the Location property is External, specify a value for System ID.
Double-click the field to enter a value. The value of System ID is a path to a file. It
can be a URL or a file system path.

Although you can also specify a value for the Public ID property, Stylus Studio
ignores any value you specify. A Public ID is a string that some parsers can resolve to
an address, which they then use to locate a file. Stylus Studio does not have this
capability.

7. If you are defining a parameter entity, you are done. If you are defining a general
entity, check the value of the Parsed property. If necessary, double-click the value of
the Parsed property to change it. The value of the Parsed property indicates whether
the value of the entity is parsed XML. For example, if the entity refers to an image
file, you do not want Stylus Studio to try to parse it.

General Entity Example in a DTD
Suppose you define the shopname general entity as an internal entity with the value Most
Excellent Book Store of Tokyo. In the Text view of the DTD, this appears as follows:

In an instance document, when the XML parser finds &shopname;, it replaces it with Most
Excellent Book Store of Tokyo.

<!ENTITY shopname "Most Excellent Book Store of Tokyo">
720 Stylus Studio User Guide

Inserting White Space in DTDs
Parameter Entity Example in a DTD
Suppose you define the invoice parameter entity as an internal entity as follows:

The percent sign (%) after the ENTITY keyword indicates that this is a parameter entity.
Later in the DTD, you can reference this parameter entity as follows:

When this DTD is processed, it is as if you had specified the following:

Inserting White Space in DTDs
Suppose you define some elements in the Tree tab. If you click the Text tab, you see that
your DTD is on one long line. To make your DTD more readable, you can insert white
space between elements. You cannot insert white space between the nodes that define an
element.

◆ In the Tree tab, to insert white space:

1. Click the DTD node at the top of the schema.

2. In the tool bar on the left, click New Text .

3. Type a space and press Enter.

4. Click the up arrow to move the space to the desired location.

Adding Comments to DTDs
In a DTD, comments are useful for organizing the contents and clarifying the various
parts of a DTD. A comment can appear between element, entity, or white space nodes.
You can insert a comment in the middle of an element definition.

◆ In the Tree tab, to insert a comment:

1. Click the DTD node at the top of the schema.

2. In the tool bar on the left, click New Comment .

<!ENTITY % customer "name, street, city, state, zipcode">

<!ELEMENT invoice (%customer;, item, price, date)>

<!ELEMENT invoice (name, street, city, state, zipcode, item, price, date)>
Stylus Studio User Guide 721

Defining Document Type Definitions
3. Type your comment and press Enter.

4. Click the up arrow to move the comment to the desired location.

About Node Properties in DTDs
Each node in a DTD is associated with one or more properties. Every node has a Type
property. The properties associated with a node vary according to the value of the Type
property. Stylus Studio supports the following values for the Type property of a node in a
DTD:
● Element

● Attribute

● DTD Modifier

● PCDATA

● Entity

● Parameter Entity

● Text

● Comment

To determine the properties for a particular node in a DTD, click the node. Stylus Studio
displays the properties in the Properties window. If the Properties window is not visible,
select View > Properties from the Stylus Studio menu bar.

To change a property, double-click the property value in the Properties window. Enter the
new value or, if a drop-down menu appears, double-click the value you want. Any
changes you make in the Properties window are immediately reflected in the Tree and
Text views. You cannot change the type property of a node.

The remainder of this section discusses the following topics:

● Description of Element Properties in DTDs on page 723

● Description of Attribute Properties in DTDs on page 723

● Description of Entity and Parameter Entity Properties in DTDs on page 725
722 Stylus Studio User Guide

About Node Properties in DTDs
Description of Element Properties in DTDs
An element has three properties: Type, Name, and Content Model. The Name property is a
string that identifies the element. The Content Model property describes the allowed
contents for the element. Table 89 describes the possible values of the Content Model
property for Element nodes:

Description of Attribute Properties in DTDs
Table 90 shows the properties that an attribute can have. It also provides the possible
values, and a description for each property.

Table 89. Element Property Descriptions

Value of Content
Model Property Description

Empty This element can contain only attributes.

Element Only This element can contain attributes and specified elements. It cannot
directly contain raw data.

Mixed This element can contain attributes, specified elements, and raw
data.

Any This element can contain attributes, any elements defined in this
DTD, and raw data.

Table 90. Attribute Property Descriptions

Property Allowable Values Description

Type Attribute All attribute nodes have this type.

Name String Identifier for the particular attribute.

Restrictions Fixed The attribute is required and it must always have
the value specified by the Default property. You
must always explicitly specify this attribute.

Implied The attribute is optional. There is no default value.

Optional The attribute is optional. If you do not specify it,
the XML parser uses the value of the Default
property.
Stylus Studio User Guide 723

Defining Document Type Definitions
Required The element must always explicitly specify this
attribute and assign a value to it.

Content Type CDATA The attribute value can contain any valid character
data. It is a text string.

Entity The attribute value is the name of an entity defined
in the DTD.

Entities The attribute value is a space-separated list of
entities that are defined in the DTD.

Enumerated The attribute value is one of a set of specified
values. When the value of the Content Type
property is Enumerated, the attribute has an
additional property: Allowed Values. Specify the
allowed values in a space-separated list.

ID The attribute value is a unique name within the
DTD.

IDREF The attribute value is an ID that is defined in the
DTD.

IDREFs The attribute value is a space-separated list of IDs
that are defined in the DTD.

NMToken The attribute value is a valid XML name that is
composed of letters, numbers, hyphens,
underscores, and colons.

Table 90. Attribute Property Descriptions

Property Allowable Values Description
724 Stylus Studio User Guide

About Node Properties in DTDs
Description of Entity and Parameter Entity Properties in DTDs
Table 91 shows the properties that an entity or parameter entity can have. It also provides
the possible values, and a description for each property.

NMTokens The attribute value is a space-separated list of
name tokens.

Notation The name of a notation specified in the DTD. The
notation describes a non-XML data format, such
as those used for image files. When the value of
the Content Type property is Notation, the
attribute has an additional property: Allowed
Values. Specify the allowed values in a space-
separated list.

Table 90. Attribute Property Descriptions

Property Allowable Values Description

Table 91. Entity and Parameter Entity Property Descriptions

Property Allowable Values Description

Type Entity

Parameter Entity
All entity nodes have this type.

Name String Identifier for this entity.

Location External or
Internal

An external location indicates that the value of the
entity is in a file that is outside the DTD file.

An internal location indicates that the value of the
entity is defined in the Value property of this
entity node.

Value String If the value of the Location property is Internal,
this property specifies the value of the entity. If the
value of the Location property is External, you
cannot specify this property.

Public ID String String that some parsers can resolve to a file
location. Stylus Studio ignores any value you
specify.
Stylus Studio User Guide 725

Defining Document Type Definitions
Associating an XML Document with an External DTD
To associate an XML document with an external DTD, add a DOCTYPE element to the
beginning of your XML document. The DOCTYPE element should be immediately after the
XML declaration element. The format of the DOCTYPE element is

Replace root_element_name with the name of the root element in your XML document.

Replace path_to_dtd with the path for the DTD you want your document to use.

Moving an Internal DTD to an External File
◆ To move an internal DTD to an external file:

1. In the Text tab of the DTD editor, in the DOCTYPE element, select only the text inside
the brackets [].

2. Cut the text.

3. Select File > New > DTD Schema from the menu bar.

4. Paste the text in the new DTD schema file that Stylus Studio displays.

5. Save the file. You might want to save the DTD in the same directory as the XML
document that uses it.

6. In your XML document in the Text tab of the DTD editor, remove the brackets and
insert the following in their place:

System ID String Path or URI for a file that contains the value of the
entity.

Parsed True or False Indicates whether the entity value is parsed XML.
A parameter entity does not have this property.

Table 91. Entity and Parameter Entity Property Descriptions

Property Allowable Values Description

<!DOCTYPE root_element_name SYSTEM "path_to_dtd">

SYSTEM "schema_file_path"
726 Stylus Studio User Guide

Moving an Internal DTD to an External File
The path you specify can be the relative or absolute path of the DTD file you just
saved. This path must be in quotation marks.
Stylus Studio User Guide 727

Defining Document Type Definitions
728 Stylus Studio User Guide

Chapter 10 Writing XPath Expressions
The XML Path Language (XPath) allows you to query an XML document using XPath
expressions. An XPath expressions returns a well-formed XML node-list or an XPath
value object. Stylus Studio supports the November 2005 W3C XPath 2.0 Candidate
Recommendation. XPath 2.0 is a superset of XPath 1.0.

This section discusses the following topics:

● “About the XPath Processor” on page 730

● “Using the XPath Query Editor” on page 732

● “Sample Data for Examples and Practice” on page 739

● “Getting Started with Queries” on page 745

● “Specifying the Nodes to Evaluate” on page 757

● “Handling Strings and Text” on page 771

● “Specifying Boolean Expressions and Functions” on page 778

● “Specifying Number Operations and Functions” on page 781

● “Comparing Values” on page 784

● “Finding a Particular Node” on page 789

● “Obtaining a Union” on page 796

● “Obtaining Information About a Node or a Node Set” on page 798

● “Using XPath Expressions in Stylesheets” on page 802

● “Accessing Other Documents During Query Execution” on page 806

● “XPath Quick Reference” on page 808
Stylus Studio User Guide 729

Writing XPath Expressions
About the XPath Processor
Stylus Studio supports the November 2005 W3C XPath 2.0 Candidate Recommendation.
XPath 2.0 is a superset of XPath 1.0.

As an overview of the XPath processor, this section provides the following information:

● Where You Can Use XPath Expressions on page 730

● About XPath on page 730

● Benefits of XPath on page 731

● Internationalization on page 732

● Restrictions on Queries on page 732

For additional information about XPath see http://www.w3.org/TR/xpath20.

Where You Can Use XPath Expressions
You use XPath expressions in XQuery documents and XSLT stylesheets to select the
nodes you want to transform and query. For example, you can specify queries as values
of match and select attributes in stylesheets. You can use XPath 1.0 expressions in
XQuery and XSLT 1.0, and XPath 2.0 expressions in XSLT 2.0.

You can also query XML documents using the XPath Query Editor. Stylus Studio displays
the results in the Query Output window, Stylus Studio displays the result of the query.

About XPath
XPath is a notation for retrieving information from a document. The information could be
a set of nodes or derived values.

XPath allows you to identify parts of an XML document. In addition, a subset of XPath
allows you to test whether or not a node matches a particular pattern. XPath provides
Boolean logic, filters, indexing into collections of nodes, and more.

XPath is declarative rather than procedural. You use a pattern modeled on directory
notation to describe the types of nodes to look for. For example, book/author means find
all author elements that are contained in book elements.

XPath provides a common syntax for features shared by Extensible Stylesheet Language
Transformations (XSLT) and XQuery. XSLT is a language for transforming XML
documents into XML, HTML, or text. XQuery builds on XPath and is a language for
extracting information from XML documents.
730 Stylus Studio User Guide

http://www.w3.org/TR/xpath20

About the XPath Processor
The basic syntax for XPath mimics the Uniform Resource Identifier (URI) directory
navigation syntax. However, the syntax does not specify navigation through a physical
file structure. The navigation is through elements in the XML tree.

Benefits of XPath
XPath is designed for XML documents. It provides a single syntax that you can use for
queries, addressing, and patterns. XPath is concise, simple, and powerful. XPath has
many benefits, as follows:

● Queries are compact.

● Queries are easy to type and read.

● Syntax is simple for the simple and common cases.

● Query strings are easily embedded in programs, scripts, and XML or HTML
attributes.

● Queries are easily parsed.

● You can specify any path that can occur in an XML document and any set of
conditions for the nodes in the path.

● You can uniquely identify any node in an XML document.

● Queries return any number of results, including zero.

● Query conditions can be evaluated at any level of a document and are not expected to
navigate from the top node of a document.

● Queries do not return repeated nodes.

● For programmers, queries are declarative, not procedural. They say what should be
found, not how it should be found. This is important because a query optimizer must
be free to use indexes or other structures to find results efficiently.

● XPath is designed to be used in many contexts. It is applicable to providing links to
nodes, for searching repositories, and for many other applications.

When you define a query, keep in mind that XML data can be represented as a tree. A tree
is a hierarchical representation of XML data. The root node is the top of the tree. Each
element, attribute, text string, comment, and processing instruction corresponds to one
node in the tree. A tree also shows the relationships among the nodes. For more
information on tree structure, see “Tree Representation of a Sample XML Document” on
page 742.
Stylus Studio User Guide 731

Writing XPath Expressions
Internationalization
Queries can contain non-Latin characters.

Restrictions on Queries
XPath is a language for selecting existing XML data; it does not perform manipulation
(like sorting) or construction of different XML structures. To perform such operations,
you need to use the language that is hosting XPath – XSLT or XQuery, for example.

You cannot query non-XML data. If you query a document that does not contain XML-
formatted data, Stylus Studio displays an error message that informs you that the queried
text is not XML.

Using the XPath Query Editor
The XPath Query Editor is available only in Stylus Studio XML Enterprise Suite
and Stylus Studio Professional Suite.
732 Stylus Studio User Guide

Using the XPath Query Editor
The XPath Query Editor is a dockable window that you can use to query XML documents
in Stylus Studio. An example, showing an XPath expression being evaluated against
bookstore.xml from the Example project installed with Stylus Studio, is shown here:

A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

Figure 316. XPath Query Editor

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the Introduction to the XPath Query
Editor video.
Stylus Studio User Guide 733

http://www.stylusstudio.com/videos/xpath1/xpath1.html
http://www.stylusstudio.com/videos/xpath1/xpath1.html
http://www.stylusstudio.com/videos/xpath1/xpath1.html
http://www.stylusstudio.com/xml_videos.html

Writing XPath Expressions
Parts of the XPath Query Editor
The XPath Query Editor consists of

● A query pane, in which you enter the XPath expression you want to execute against
the current document. The query pane allows you to enter queries with multiple lines.

The query pane supports Stylus Studio’s Sense:X feature, which provides tool-tips
for XPath expressions and auto-completion for XML documents associated with an
XML Schema, as shown here:

● A results pane, which shows the results from the query after you execute it. Results
are shown as a number of hits and include the type of XML tag and value of each hit.
When you click on a returned node, Stylus Studio moves the cursor in the XML
document to the source node for the returned node.

● A namespace pane, which allows you to redefine the namespace prefix to be used in
the query. The namespace pane is not displayed by default, and is not shown in
Figure 316.

Figure 317. Sense:X Auto-completion in XPath Query Editor
734 Stylus Studio User Guide

Using the XPath Query Editor
Displaying the XPath Query Editor
The XPath Query Editor is not displayed by default. In addition, it is closed when you exit
the XML document with which it is associated.

◆ To display the XPath Query Editor:

● Click the Show XPath Query Editor button on the XML Editor tool bar ().

The XPath Query Editor appears. Any previously created queries are displayed on
individual tabs. If no queries have been created, a new tab, labeled Query1, is
displayed.

Alternative:

● Select View > XPath Query Editor from the Stylus Studio menu.

Customizing Syntax Coloring

The XPath Query Editor uses Stylus Studio’s syntax coloring, and you can change the
default settings for several XPath Query Editor properties on the Editor Format page of
the Options dialog box. These settings affect tokens in XPath expressions, such as errors,
strings, keywords, operators, and attributes.

◆ To change syntax coloring in the XPath Query Editor:

1. Click Tools > Options > General > Editor Format to display the Editor Format page
of the Options dialog box.

The Options dialog box appears.

2. Scroll the Colors list; fields related to the XPath Query Editor are prefixed with
XPath.

3. Use the palette to change the color of the tokens as desired.

4. Click OK.

Working with XPath Queries
When you display the XPath Query Editor, an empty query is created for you. The query
name, Query1, is displayed on a tab in the XPath Query Editor window.You can start
Stylus Studio User Guide 735

Writing XPath Expressions
typing the XPath expression on the first line in the editing pane; use the Enter key to move
the cursor to a new line.

You can create up to sixty-four queries for a single document; each is given the name
Queryn, where n is a unique number incremented by one. You cannot name queries.

Queries are saved with the project. Changes you make – either to query expressions, or
creating and deleting queries – are saved when you save the project, and not the
document.

Executing the Query

Stylus Studio executes XPath query expressions based on the cursor’s current position in
the document, regardless of which editor is currently active.

◆ To execute the query:

● Click the Execute button on the XPath Query Editor tool bar ().

Stylus Studio processes the query and displays the result in the results pane.

Alternatives:

● Press F5.

or

● Right-click the query panel in the XPath Query Editor and select Execute Query from
the short cut menu.

Creating a New Query

◆ To create a new query:

● Click the New XPath Query button on the XPath Query Editor tool bar ().

A new tab appears in the XPath Query Editor.

Alternative:

● Right-click the query panel in the XPath Query Editor and select New XPath Query
from the short cut menu.

Tip Line numbers are displayed in the editing pane if you have enabled them for XML
documents. Click Tools > Options > General > Editor General to change this setting.
736 Stylus Studio User Guide

Using the XPath Query Editor
Deleting a Query

◆ To delete a query:

● Click the Delete button on the XPath Query Editor tool bar ().

The tab associated with the query is removed from the XPath Query Editor. The query
itself is deleted when you save the project.

Alternative:

● Right-click the query panel in the XPath Query Editor and select New XPath Query
from the short cut menu.

Working with Query Results
Query results are shown in the XPath Query Editor in the results pane as a number of hits
and include the type of XML tag and value of each hit, as shown here.

When you click on a result node, Stylus Studio’s back-mapping feature highlights the line
in the XML document that supplied the value for the result node you selected.

Figure 318. XPath Result Pane
Stylus Studio User Guide 737

Writing XPath Expressions
Opening Query Results as a New Document

After you have executed a query, you can optionally choose to display the query result in
a new XML document. If the result contains only elements, Stylus Studio creates a root
element (named <xqr:xpath-query-result>) to ensure that the document is well-
formed.

◆ To open a query result as an XML document:

Execute the query, and then

● Click the Open result in a new XML document button on the XPath Query Editor tool
bar ().

Alternative:

● Right-click the query pane in the XPath Query Editor and select Open result in a new
XML document from the shortcut menu.

Working with Namespaces
When the XML document declares one or more namespaces, those namespaces are
displayed in the namespace pane, as shown here:

In addition to the namespace URI, Stylus Studio displays the namespace prefix declared
in the XML document, if any, and a prefix that is used when creating XPath query
expressions.

If one namespace prefix clashes with another in the XML document, Stylus Studio
renames the second prefix by adding a number to the end of the original prefix name to
make it unique – for example, if two namespaces have the prefix bks, the second is
renamed bks1. Similarly, if no namespace prefix has been declared, Stylus Studio creates
a default namespace prefix, ns1. Namespace declarations in the XML document are not
changed.

Figure 319. Namespaces Pane
738 Stylus Studio User Guide

Sample Data for Examples and Practice
Namespace prefixes defined for the query

● Allow you to execute the query with the root node of the document as the current
context node

● Simplify the process of entering XPath expressions in the query pane

Changes saved to the XML document are reflected in the namespace pane when you click
on the namespace pane or query pane.

Viewing/Changing Namespace Prefixes

You must use the value in the Query for Prefix field when writing XPath query
expressions; you can specify your own prefix if want to use one other than the one
provided by Stylus Studio.

◆ To change a namespace prefix:

1. Click the Show Namespaces button () if the namespace pane is not already
displayed.

The namespace pane shows any namespaces that have been defined for the current
XML document, as well their associated namespace prefixes, if any.

2. Optionally, change the value in the Prefix for Query field.

Sample Data for Examples and Practice
The best way to learn how to query data is to practice using XPath. To prepare you for
practicing with XPath queries, this section provides a review of the basic structure of an
XML document. An understanding of this structure is crucial to defining queries that
return the data you want. Following the review, this section includes the XML data on
which the query examples operate. The last part of this section provides instructions for
running queries on sample data.

The topics in this section include

● “About XML Document Structure” on page 740

● “A Sample XML Document” on page 741

● “Tree Representation of a Sample XML Document” on page 742

● “Steps for Trying the Sample Queries” on page 745
Stylus Studio User Guide 739

Writing XPath Expressions
About XML Document Structure
The XPath processor operates on a tree representation of XML data that looks like the
following figure:

The root node has no actual text associated with it. You can think of the file name as the
root node. A document can include zero or more comments and zero or more processing
instructions.

A document element is required, and there can be only one. The document element
contains all elements in the document. For example:

In the preceding figure, bookstore.xml is the name of a file that contains XML data. There
is a comment near the beginning of the document that starts with "This file represents
a ..." The document element is bookstore. The immediate children of bookstore include
an attribute, a namespace declaration (not supported by Stylus Studio), three book
elements (one is in the my namespace), and a magazine element. The book and magazine
elements contain elements and attributes, which are shown in the figure that appears in
“Tree Representation of a Sample XML Document” on page 742.

 Root Node

Comment... Processing
Instruction...

Document
Element

Element... Comment... Processing Text...
Instruction...

bookstore.xml

<!-- This file represents a --> <bookstore>

<book> <book> <magazine>specialty
="novel"

xmlns:my="http://www.placeholder-name-here.com/schema/"

<my:book>
740 Stylus Studio User Guide

Sample Data for Examples and Practice
A Sample XML Document
The examples in this section are based on the following XML data. This data is in the
bookstore.xml file, which is in the examples directory of your installation directory.

<?xml version="1.0"?>
<!-- This file represents a fragment of a bookstore inventory
database. -->
<bookstore specialty="novel"
 xmlns:my="http://www.placeholder-name-here.com/schema/">
 <book style="autobiography">
 <title>Seven Years in Trenton</title>
 <author>
 first-name>Joe</first-name>
 last-name>Bob</last-name>
 <award>Trenton Literary Review Honorable Mention</award>
 </author>
 <pub_date>1997-11-30</pub_date>
 <price>12</price>
 </book>
 <book style="textbook">
 <title>History of Trenton</title>
 <author>
 <first-name>Mary</first-name>
 <last-name>Bob</last-name>
 <publication>
 Selected Short Stories of
 <first-name>Mary</first-name>
 <last-name>Bob</last-name>
 <price>14</price>
 </publication>
 </author>
 <pub_date>1994-07-21</pub_date>
 <price>55</price>
 </book>
 <magazine style="glossy" frequency="monthly">
 <title>Tracking Trenton</title>
 <price>2.50</price>
 <subscription price="24" per="year"/>
 </magazine>
Stylus Studio User Guide 741

Writing XPath Expressions
Tree Representation of a Sample XML Document
When you query a document, it can be helpful to think of a tree representation of your
data. A tree that represents the bookstore.xml document appears in Figure 320 (and is

 <book style="novel" id="myfave">
 <title>Trenton Today, Trenton Tomorrow</title>
 <author>
 <first-name>Toni</first-name>
 <last-name>Bob</last-name>
 <degree from="Trenton U">B.A.</degree>
 <degree from="Harvard">Ph.D.</degree>
 <award>Pulitzer</award>
 <publication>Still in Trenton</publication>
 <publication>Trenton Forever</publication>
 </author>
 <price intl="canada" exchange="0.7">6.50</price>
 <excerpt>
 <p>It was a dark and stormy night.</p>
 <p>But then all nights in Trenton seem dark and
 stormy to someone who has gone through what
 <emph>I</emph> have.</p>
 <definition-list>
 <term>Trenton</term>
 <definition>misery</definition>
 </definition-list>
 </excerpt>
 </book>
 <my:book style="leather" price="29.50">
 <my:title>Who’s Who in Trenton</my:title>
 <my:author>Robert Bob</my:author>
 </my:book>
 <book style="tour">
 <title>Tar Pits in Trenton</title>
 <price>1.99</price>
 </book>
</bookstore>
742 Stylus Studio User Guide

Sample Data for Examples and Practice
continued in Figure 321). To use Stylus Studio to view a similar tree for any XML
document, open the XML document in Stylus Studio and select the Tree tab.

Figure 320. Tree Display of an XML Document
Stylus Studio User Guide 743

Writing XPath Expressions
Figure 321. Tree Display of an XML Document (continued)
744 Stylus Studio User Guide

Getting Started with Queries
Steps for Trying the Sample Queries
To try the queries in this section, or any other queries you want to run on the
bookstore.xml document, follow these instructions:

1. In Stylus Studio, open bookstore.xml. You can find it in the examples directory of
your installation directory.

2. Open the XPath Query Editor if it is not already displayed. See “Displaying the XPath
Query Editor” on page 735 if you need help with this step.

3. Type a query. For example: /bookstore/book/author.

4. Press F5, or click Execute Query () .

Stylus Studio displays the results in the Query Output window.

Getting Started with Queries
This section provides information to get you started using queries. It does not provide
complete information about how to define a query. Instead, it provides instructions for
defining typical queries you might want to run. There are numerous cross-references to
later sections that provide complete information about a particular query construct.

The topics discussed in this section include

● “Obtaining All Marked-Up Text” on page 746

● “Obtaining a Portion of an XML Document” on page 746

● “Obtaining All Elements of a Particular Name” on page 747

● “Obtaining All Elements of a Particular Name from a Particular Branch” on page 748

● “Different Results from Similar Queries” on page 749

● “Queries That Return More Than You Want” on page 749

● “Specifying Attributes in Queries” on page 750

● “Filtering Results of Queries” on page 751

● “Wildcards in Queries” on page 754

● “Calling Functions in Queries” on page 755

● “Case Sensitivity and Blank Spaces in Queries” on page 756

● “Precedence of Query Operators” on page 756
Stylus Studio User Guide 745

Writing XPath Expressions
Obtaining All Marked-Up Text
When you query a document, you do not usually want to obtain all marked-up text.
However, an understanding of queries that return all marked-up text makes it easier to
define a query that retrieves just what you want.

The following figure shows a complete query (/bookstore) and the way the XPath
processor interprets it:

This query returns the bookstore element. Because the bookstore element is the document
element, which contains all elements and attributes in the document, this query returns all
marked-up text.

In the query, the initial forward slash (/) instructs the XPath processor to start its search
at the root node.

Suppose you run the following query on bookstore.xml:

This query returns an empty set. It searches the immediate children of the root node for
an element named book. Because there is no such element, this query does not return any
marked-up text. Note that this query does not return an error. The query runs successfully,
but the XPath processor does not find any elements that match the query. All book
elements are grandchildren of the root node, and the XPath processor only checks the
children of the root node.

Obtaining a Portion of an XML Document
Usually, you use a query to obtain a portion of an XML document. To obtain the particular
elements that you want, you must understand how to obtain an element that is a child of
the document element. With this information, you can obtain any elements in the
document.

/book

Start at the
root node.

Search immediate children
and return the bookstore
element.

/bookstore
746 Stylus Studio User Guide

Getting Started with Queries
The following figure shows how the XPath processor interprets the /bookstore/book
query:

When the XPath processor starts its search at the root node, there is only one element
among the immediate children of the root node. This is the document element. In this
example, bookstore is the document element.

The query in this figure returns the book elements that are children of bookstore. This
query does not return the my:book element, which is also a child of bookstore.

Now you can define queries that obtain any elements you want. For example:

This query returns title elements contained in book elements that are contained in
bookstore.

Obtaining All Elements of a Particular Name
Sometimes you want all like-named elements regardless of where they are in a document.
In this case, you do not need to start at the root node and navigate to the elements you
want.

For example, the following query returns all last-name elements in any XML document:
//last-name

The double forward slash (//) at the beginning of a query instructs the XPath processor to
start at the root node and search the entire document. In other words, the XPath processor
searches all descendants of the root node.

If you perform this query on bookstore.xml, it returns the last-name elements that are
children of author elements, and it also returns the last-name element that is a child of a
publication element.

Start at the root
node.

Search immediate
children for the
bookstore element.

This is a
separator
between
steps.

Search immediate children
of bookstore and return all
book elements.

/ bookstore / book

/bookstore/book/title
Stylus Studio User Guide 747

Writing XPath Expressions
Obtaining All Elements of a Particular Name from a Particular
Branch

Although sometimes you might want all like-named elements wherever they are in a
document, other times you might want only those like-named elements from a particular
part of the document (branch of the tree).

For example, you might want all price elements contained in book elements, but not price
elements contained in magazine elements. The query is to return such a result is:

This query returns all price elements that are contained in book elements. Some of these
price elements are immediate children of book elements. One returned price element is a
great-grandchild of the second book element. The following figure shows how the XPath
processor interprets this query:

/bookstore/book//price

/ bookstore / book // price

Start at the
root node.

Search
immediate
children for the
bookstore
element.

This is a
step
separator.

Search
immediate
children of
bookstore
for book
elements.

Search all book
elements and all
descendants of all
book elements.

For each node that
is searched,
search its children
for price elements.

Return any price
elements.
748 Stylus Studio User Guide

Getting Started with Queries
Different Results from Similar Queries
Some queries can look very similar but return very different results. The following figure
shows this.

Queries That Return More Than You Want
Suppose you want the titles of all the books. You might decide to define your query like
this:

This query does return all titles of books, but it also returns the title of a magazine. This
query instructs the XPath processor to start at the root node, search all descendants, and
return all title elements. In bookstore.xml, this means that the query returns the title of
the magazine in addition to the titles of books. In some other document, if all titles are
contained in book elements, this query returns exactly what you want.

To query and obtain only the titles of books, you can use either of the following queries.
They obtain identical results. However, the first query runs faster.

The first query runs faster because it uses the child axis, while the second query uses the
descendent-or-self axis. In general, the simpler axes, such as child, self, parent, and

This is a step
separator.

Search all
descendants of
bookstore.

/ bookstore // author

/ bookstore / author

Start at
the
root
node.

Search
immediate
children
for the
bookstore
element.

Return all
author
elements.

This query returns the empty
set. No author elements are
immediate children of
bookstore.

This query returns all author elements
that are anywhere in the bookstore
element. Since bookstore is the
document element, this is all author
elements in the document.

Search
immediate
children of
bookstore.

//title

/bookstore/book/title
//book/title
Stylus Studio User Guide 749

Writing XPath Expressions
ancestor, are faster than the more complicated axes, such as descendent, preceding,
following, preceding-sibling, and following-sibling. This is especially true for large
documents. Whenever possible, use a simpler axis.

Specifying Attributes in Queries
To specify an attribute name in a query, precede the attribute name with an at sign (@).
The XPath processor treats elements and attributes in the same way wherever possible.
For example:

This query returns the style attributes associated with the magazine, the three books, and
the my:book element. That is, it returns all the style attributes in the document. It does not
return the elements that contain the attributes.

Following is another query that includes an attribute:

This query returns the three style attributes for the three book elements.

The following query returns the style attribute of the context node:

If the context node does not have a style attribute, the result set is empty.

The next query returns the exchange attribute on price elements in the current context:

Following is an example that is not valid because attributes cannot have subelements:

Following is a query that finds the style attribute for all book elements in the document:

//@style

/bookstore/book/@style

@style

price/@exchange

price/@exchange/total

//book/@style
750 Stylus Studio User Guide

Getting Started with Queries
Restrictions

Attributes cannot contain subelements. Consequently, you cannot apply a path operator
to an attribute. If you try to, you receive a syntax error.

Attributes are inherently unordered. Consequently, you cannot apply a position number
to an attribute. If you try to, you receive a syntax error.

Attributes and Wildcards

You can use an at sign (@) and asterisk (*) together to retrieve a collection of attributes.
For example, the following query finds all attributes in the current context:

Filtering Results of Queries
Sometimes you want to retrieve only those elements that meet a certain condition. For
example, you might want information about a particular book. In this case, you can
include a filter in your query. You enclose filters in brackets ([]).

The following figure shows how the XPath processor interprets a query with a filter:

This query checks each book element to determine whether it has a title child element
whose value is "History of Trenton". If it does, the query returns the book element. Using
the sample data, this query returns the second book element.

The following topics provide details about filters:

● “Quotation Marks in Filters” on page 752

● “More Filter Examples” on page 752

● “How the XPath Processor Evaluates a Filter” on page 753

@*

/ bookstore / book [title = "History of Trenton"]

Start at the
root node.

Search
immediate
children for
the
bookstore
element.

Step
separator.

Search
immediate
children of
bookstore for
book
elements.

Check book
elements
against the
subquery in
the filter.

Return only
those book
elements that
contain title
child elements
that contain
this value.

End
filter.
Stylus Studio User Guide 751

Writing XPath Expressions
● “Multiple Filters” on page 753

● “Filters and Attributes” on page 754

Quotation Marks in Filters

Suppose you define the following filter:

If you need to specify this filter as part of an attribute value, use single quotation marks
instead of double quotation marks. This is because the attribute value itself is (usually)
inside double quotation marks. For example:

Strings within an expression may contain special characters such as [, {, &, ‘, /, and others,
as long as the entire string is enclosed in double quotes ("). When the string itself contains
double quotes, you may enclose it in single quotes ('). When a string contains both single
and double quotes, you must handle these segments of the string as if they were individual
phrases, and concatenate them.

More Filter Examples

Following is another example of a query with a filter clause. This query returns book
elements if the price of the book is greater than 25 dollars:

The next query returns author elements if the author has a degree:

The next query returns the date attributes that match "3/1/00":

The next query returns manufacturer elements in the current context for which the rwdrive
attribute of the model is the same as the vendor attribute of the manufacturer:

[title="History of Trenton"]

<xsl:value-of select="/bookstore/book[title='History of Trenton']">

/bookstore/book[price > 25]

//author[degree]

//@date[.="3/1/00"]

manufacturer[model/@rwdrive = @vendor]
752 Stylus Studio User Guide

Getting Started with Queries
How the XPath Processor Evaluates a Filter

You can apply constraints and branching to a query by specifying a filter clause. The filter
contains a query, which is called the subquery. The subquery evaluates to a Boolean
value, or to a numeric value. The XPath processor tests each element in the current
context to see if it satisfies the subquery. The result includes only those elements that test
true for the subquery.

The XPath processor always evaluates filters with respect to a context. For example, the
expression book[author] means for every book element that is found in the current
context, determine whether the book element contains an author element. For example,
the following query returns all books in the current context that contain at least one
excerpt:

The next query returns all titles of books in the current context that have at least one
excerpt:

Multiple Filters

You can specify any number of filters in any level of a query expression. Empty filters
([]) are not allowed.

A query that contains one or more filters returns the rightmost element that is not in a filter
clause. For example:

The previous query returns author elements. It does not return degree elements. To be
exact, this query returns all authors who have at least one degree if the author is of a book
for which the document contains at least one excerpt. In other words, for all books in the
current context that have excerpts, this query finds all authors with degrees.

The following query finds each book child of the current context that has an author with
at least one degree:

The next query returns all books in the current context that have an excerpt and a title:

book[excerpt]

book[excerpt]/title

book[excerpt]/author[degree]

book[author/degree]

book[excerpt][title]
Stylus Studio User Guide 753

Writing XPath Expressions
Filters and Attributes

Following is a query that finds all child elements of the current context with specialty
attributes:

The following query returns all book children in the current context with style attributes:

The next query finds all book child elements in the current context in which the value of
the style attribute of the book is equal to the value of the specialty attribute of the
bookstore element:

Wildcards in Queries
In a query, you can include an asterisk (*) to represent all elements. For example:

This query searches for all book elements in bookstore. For each book element, this query
returns all child elements that the book element contains.

The * collection returns all elements that are children of the context node, regardless of
their tag names.

The next query finds all last-name elements that are grandchildren of book elements in the
current context:

The following query returns the grandchild elements of the current context.

*[@specialty]

book[@style]

book[/bookstore/@specialty = @style]

/bookstore/book/*

book/*/last-name

/
754 Stylus Studio User Guide

Getting Started with Queries
Restrictions

Usually, the asterisk (*) returns only elements. It does not return processing instructions,
attributes, or comments, nor does it include attributes or comments when it maintains a
count of nodes. For example, the following query returns title elements. It does not
return style attributes.

Wildcards in strings are not allowed. For example, you cannot define a query such as the
following:

Attributes

To use a wildcard for attributes, you can specify @*. For example:

For each book element, this query returns all attributes. It does not return any elements.

Calling Functions in Queries
The XPath processor provides many functions that you can call in a query. This section
provides some examples to give you a sense of how functions in queries work. Many
subsequent sections provide information about invoking functions in queries. For a
complete list of the functions you can call in a query, see “XPath Functions Quick
Reference” on page 809.

Following is a query that returns a number that indicates how many book elements are in
the document:

In format descriptions, a question mark that follows an argument indicates that the
argument is optional. For example:

This function returns a string. The name of the function is substring. This function takes
two required arguments (a string followed by a number) and one optional argument (a
number).

/bookstore/book/*[1]

/bookstore/book[author=" A* "]

/bookstore/book/@*

count(//book)

string substring(string, number, number?)
Stylus Studio User Guide 755

Writing XPath Expressions
Case Sensitivity and Blank Spaces in Queries
Queries are case sensitive. This applies to every part of the query, including operators,
strings, element and attribute names, and function names.

For example, suppose you try this query:

This query returns an empty set because the name of the document element is bookstore
and not Bookstore.

Blank spaces in queries are not significant unless they appear within quotation marks.

Precedence of Query Operators
The precedence of query operators varies for XPath 1.0 and XPath 2.0, as shown in the
following tables. In these tables, operators are listed in order of precedence, with highest
precedence being first; operators in a given row have the same precedence.

/Bookstore

Table 92. Query Operator Precedence – XPath 1.0

Operation Type XPath Operators

Grouping ()

Filter []

Unary minus -

Multiplication *, div, mod

Addition +, -

Relational
(Comparison)

= != < <= > >=

Union |

Negation not

Conjunction and

Disjunction or
756 Stylus Studio User Guide

Specifying the Nodes to Evaluate
Specifying the Nodes to Evaluate
Consider the bookstore tree in the sample data. If you query the entire tree for all author
elements, the result contains a number of author elements. If you query only one branch
of the tree, the result contains only one author element. The result of the query depends
on which nodes the XPath processor evaluates in the execution of the query.

Table 93. Query Operator Precedence – XPath 2.0

Operation Type XPath Operators

Sequence separator ,

Conjunction and

Type matching instance of

Assertion treat

Conversion test castable

Conversion cast

Relational
(Comparison)

eg, ne, lt, le, gt, ge, =, !=, <, <=, >, >=,
is, <<, >>

Range to

Addition +, -

Multiplication *, div, idiv, mod

Unary unary -, unary +

Union union, |

Select set intersect, except

Navigation /, //

Filter []
Stylus Studio User Guide 757

Writing XPath Expressions
This section discusses the following topics:

● “Understanding XPath Processor Terms” on page 758

● “Starting at the Context Node” on page 760

● “About Root Nodes and Document Elements” on page 760

● “Starting at the Root Node” on page 760

● “Descending Along Branches” on page 761

● “Explicitly Specifying the Current Context” on page 762

● “Specifying Children or Descendants of Parent Nodes” on page 763

● “Examples of XPath Expression Results” on page 763

● “Syntax for Specifying an Axis in a Query” on page 764

● “Supported Axes” on page 765

● “Axes That Represent the Whole XML Document” on page 770

Understanding XPath Processor Terms
To use the context operators, it is important to understand the following terms:

Axis

An axis specifies a list of nodes in relation to the context node. For example, the ancestor
axis contains the ancestor nodes of the context node. The child axis contains the
immediate children of the context node. See “Syntax for Specifying an Axis in a Query”
on page 764.

Context Node

A context node is the node the XPath processor is currently looking at. The context node
changes as the XPath processor evaluates a query. If you pass a document to the XPath
processor, the root node is the initial context node. If you pass a node to the XPath
processor, the node that you pass is the initial context node. During evaluation of a query,
the initial context node is also the current node.

Context Node Set

A context node set is a set of nodes that the XPath processor evaluates.
758 Stylus Studio User Guide

Specifying the Nodes to Evaluate
Current Node

Current node is the node that the XPath processor is looking at when it begins evaluation
of a query. In other words, the current node is the first context node that the XPath
processor uses when it starts to execute the query. During evaluation of a query, the
current node does not change. If you pass a document to the XPath processor, the root
node is the current node. If you pass a node to the XPath processor, that node is the current
node.

Document Element

The document element is the element in a document that contains all other elements. The
document element is an immediate child of the root node. When you obtain the document
element of a document, you obtain all marked-up text in that document.

Filter

A filter in a query specifies a restriction on the set of nodes to be returned. For example,
the filter in the following query restricts the result set to book elements that contain at least
one excerpt element:

Location Path Expression

A location path expression is an XPath expression. It has the following format:

Location Step

An XPath expression consists of one or more location steps. A location step has the
following format:

Node Test

You apply a node test to a list of nodes. A node test returns nodes of a particular type or
nodes with a particular name. For example, a node test might return all comment nodes, or
all book elements.

book[excerpt]

[/]LocationStep[/LocationStep]...

[axis::]node_test[[filter] [filter]...]
Stylus Studio User Guide 759

Writing XPath Expressions
Root Node

The root node is the root of the tree. It does not occur anywhere else in the tree. The
document element node for a document is a child of the root node. The root node also has
as children processing instructions and comment nodes representing processing
instructions and comments that occur in the prolog and after the end of the document
element.

Starting at the Context Node
Following is a query that looks for all child author elements in the current context:

This query is simply the name of the element you want to search for. If the context node
is any one of the book elements, this query returns one author element. If the context node
is any other node, this query returns the empty set.

About Root Nodes and Document Elements
A root node is the topmost node in the tree that represents the contents of an XML
document. The root node can contain comments, a declaration, and processing
instructions, as well as the document element. The document element is the element that
contains all other elements; that is, the document element contains elements that are in the
document but that are not immediate children of the root node.

Starting at the Root Node
To specify that the XPath processor should start at the root node when it evaluates nodes
for a query, insert a forward slash (/) at the beginning of the query.

In an XML document, there is no text that corresponds to the root node. Externally, a root
node is really a concept. Internally, there are data structures that represent this concept,
but there is no text that you can point to and call a root node.

The following query instructs the XPath processor to start at the root node, as indicated
by the forward slash at the beginning of the query.

author

/bookstore
760 Stylus Studio User Guide

Specifying the Nodes to Evaluate
This query searches the children of the root node for a bookstore element. Because the
name of the document element is bookstore, the query returns it. If the name of the
document element is not bookstore, this query returns an empty set.

The following query returns the entire document, starting with the root node. As you can
see, the entire query is just a forward slash:

This query returns everything — comments, declarations, processing instructions, the
document element, and any elements, attributes, comments, and processing instructions
that the document element contains.

Descending Along Branches
Sometimes you want the XPath processor to evaluate all nodes that are descendants of a
node and not just the immediate children of that node. This amounts to operating on a
branch of the tree that forms the document.

To specify the evaluation of descendants that starts at the root node, insert two forward
slashes (//) at the beginning of a query.

To specify the evaluation of descendants that starts at the context node, insert a dot and
two forward slashes (.//) at the beginning of the query.

Following is a query that finds all last-name elements anywhere in the current document:

Suppose the context node is the first book element in the document. The following query
returns a single last-name element because it starts its search in the current context:

At the beginning of a query, / or // instructs the XPath processor to begin to evaluate
nodes at the root node. However, between tag names, / is a separator, and // is an
abbreviation for the descendant-or-self axis.

The // selects from all descendants of the context node set. For example:

/

 //last-name

.//last-name

book//award
Stylus Studio User Guide 761

Writing XPath Expressions
This query searches the current context for book child elements that contain award
elements. If the bookstore element is the context node, this query returns the two award
elements that are in the document.

For the sample bookstore data, the following two queries are equivalent. Both return all
last-name elements in the document.

The first query returns all last-name elements in the sample document or in any XML
document. The second query returns all last-name elements that are descendants of
author elements. In the sample data, last-name elements are always descendants of author
elements, so this query returns all last-name elements in the document. But in another
XML document, there might be last-name elements that are not descendants of author
elements. In that case, the query would not return those last-name elements.

Tip: // is useful when the exact structure is unknown. If you know the structure of your
document, avoid the use of //. A query that contains // is slower than a query with an
explicit path.

Explicitly Specifying the Current Context
If you want to explicitly specify the current context node, place a dot and a forward slash
(./) in front of the query. This construct typically appears in queries that contain filters
(see “Filtering Results of Queries” on page 751) . The following two queries are
equivalent:

Remember, if you specify the name of an element as a complete query (for example, foo),
you obtain only the foo elements that are children of the current context node. You do not
necessarily obtain all foo elements in the document.

You can also specify the dot notation (.) to indicate that you want the XPath processor to
manipulate the current context. For example:

In this example, the XPath processor finds all title elements. The dot indicates the
context node. This causes the XPath processor to check each title in turn to determine
whether its string value is History of Trenton.

//last-name
//author//last-name

./author
author

//title [. = "History of Trenton"]
762 Stylus Studio User Guide

Specifying the Nodes to Evaluate
Specifying Children or Descendants of Parent Nodes
Sometimes you want a query to return information about a sibling of the context node.
One way to obtain a sibling is to define a query that navigates up to the parent and then
down to the sibling.

For example, suppose the context node is the first author element. You want to find out
the title associated with this author. The following query returns the associated title
element:

The double dot (..) at the beginning of the query instructs the XPath processor to select
the parent of the context node. This query returns the title elements that are children of
the first book element, which is the parent of the first author element. In the bookstore.xml
document, there is only one such title element.

Now suppose that the context node is still the first author element and you want to obtain
the style attribute for the book that contains this author. The following query does this:

The double dot notation need not appear at the beginning of a query. It can appear
anywhere in a query string, just like the dot notation.

Examples of XPath Expression Results
Table 94 provides examples of XPath expression results:

../title

../@style

Table 94. XPath Expression Results

Expression Result

/a Returns the document element of the document if it is an a element

/a/b Returns all b elements that are immediate children of the document
element, which is the a element

//a Returns all a elements in the document

//a/b Returns all b elements that are immediate children of a elements that
are anywhere in the document
Stylus Studio User Guide 763

Writing XPath Expressions
Syntax for Specifying an Axis in a Query

The previous sections provide examples of XPath expression syntax that uses
abbreviations. This section introduces you to the axis syntax that many of the
abbreviations represent. For a list of XPath abbreviations, see “XPath Abbreviations
Quick Reference” on page 814.

You can use axis syntax to specify a location path in a query. An axis specifies the tree
relationship between the nodes selected by an expression and the context node. The
syntax for specifying an axis in a query is as follows:

The axis names are defined in “Supported Axes” on page 765.

A node test is a simple expression that tests for a specified node type or node name. For
example:

● node() matches any type of node.

● text() matches text or CDATA nodes.

● comment() matches comment nodes.

● processing-instruction() matches any processing instruction.

● processing-instruction(name) matches processing instructions whose target is name.

a or ./a Returns all a elements that are immediate children of the context
node

a/b Returns all b elements that are immediate children of a elements that
are immediate children of the context node

a//b Returns all b elements that descend from a elements that are
immediate children of the context node

.//a Returns all a elements in the document tree branch that starts with
the context node

../a Returns all a elements in the document tree branch that are children
of the parent node of the context node.

Table 94. XPath Expression Results

Expression Result

axis_name::node_test
764 Stylus Studio User Guide

Specifying the Nodes to Evaluate
● name matches elements or attributes whose name is name.

● * matches any elements or any attributes.

XPath 2.0 adds additional tests, such as

● element() matches any element node

● attribute() matches any attribute node

● document-node() matches any document node

In addition, you can follow the node test with any number of filters.

Supported Axes
The XPath processor supports all XPath axes:

● child

● descendant

● parent

● ancestor

● following-sibling

● preceding-sibling

● following

● preceding

● attribute

● namespace

● self

● descendant-or-self
● ancestor-or-self

About the child Axis

The child axis contains the children of the context node. The following examples select
the book children of the context node:

If the context node is the bookstore element, each of these queries return the book
elements in bookstore.xml. When you do not specify an axis, the child axis is assumed.

child::book
book
Stylus Studio User Guide 765

Writing XPath Expressions
About the descendant Axis

The descendant axis contains the descendants of the context node. A descendant is a child
or a child of a child, and so on. The descendant axis never contains attribute nodes. The
following example selects the first-name element descendants of the context node:

If the context node is the bookstore element, this query returns all first-name elements in
the document. If the context node is the first publication element, this query returns the
first-name element that is in the publication element.

About the parent Axis

The parent axis contains the parent of the context node, if there is one. The following
example selects the parent of the context node if it is a title element:

If the first title element in bookstore.xml is the context node, this query returns the first
book element.

Note that dot dot (..) is equivalent to parent::node().

About the ancestor Axis

The ancestor axis contains the ancestors of the context node. The ancestors of the context
node consist of the parent of the context node and the parent's parent, and so on. The
ancestor axis always includes the root node, unless the context node is the root node. The
following example selects the book ancestors of the context node:

If the context node is the first title element in bookstore.xml, this query returns the first
book element.

descendant::first-name

parent::title

ancestor::book
766 Stylus Studio User Guide

Specifying the Nodes to Evaluate
About the following-sibling Axis

The following-sibling axis contains all the siblings of the context node that come after
the context node in document order. If the context node is an attribute node or namespace
node, the following-sibling axis is empty. The following example selects the next book
sibling of the context node:

If the context node is the first book element in bookstore.xml, this query returns the
second book element.

About the preceding-sibling Axis

The preceding-sibling axis contains all the siblings of the context node that precede the
context node in reverse document order. If the context node is an attribute node or
namespace node, the preceding-sibling axis is empty. The following example selects the
closest previous book sibling of the context node:

If the context node is the third book element in bookstore.xml, this query returns the
second book element. If the context node is the first book element, this query returns the
empty set.

About the following Axis

The following axis contains the nodes that follow the context node in document order.
This can include

● Following siblings of the context node

● Descendants of following siblings of the context node

● Following siblings of ancestor nodes

● Descendants of following siblings of ancestor nodes

The following axis never includes

● Ancestors or descendants of the context node

● Attribute nodes

● Namespace nodes

following-sibling::book[position()=1]

preceding-sibling::book[position()=1]
Stylus Studio User Guide 767

Writing XPath Expressions
The following example selects the book elements that are following siblings of the context
node and that follow the context node in document order:

If the context node is the first book element, this query returns the last three book elements.
If the context node is the second book element, this query returns only the third and fourth
book elements.

About the preceding Axis

The preceding axis contains the nodes that precede the context node in reverse document
order. This can include:

● Preceding siblings of the context node

● Descendants of preceding siblings of the context node

● Preceding siblings of ancestor nodes

● Descendants of preceding siblings of ancestor nodes

The preceding axis never includes

● Ancestors or descendants of the context node

● Attribute nodes

● Namespace nodes

The following example selects the book elements that are preceding siblings of the context
node and that precede the context node in document order:

If the third book element is the context node, this query returns the first two book elements.
If the first book element is the context node, this query returns the empty set.

About the attribute Axis

The attribute axis contains the attributes of the context node. The attribute axis is
empty unless the context node is an element. The following examples are equivalent.
They both select the style attributes of the context node. The at sign (@) is an
abbreviation for the attribute axis.

following::book

preceding::book

attribute::style
@style
768 Stylus Studio User Guide

Specifying the Nodes to Evaluate
If the context node is the second book element, this query returns a style attribute whose
value is textbook.

About the namespace Axis

The namespace axis contains the namespace nodes that are in scope for the context node.
This includes namespace declaration attributes for the

● Context node

● Ancestors of the context node

If more than one declaration defines the same prefix, the resulting node set includes only
the definition that is closest to the context node.

If the context node is not an element, the namespace axis is empty.

For example, if an element is in the scope of three namespace declarations, its namespace
axis contains three namespace declaration attributes.

About the self Axis

The self axis contains just the context node itself. The following example selects the
context node if it is a title element:

Note that dot (.) is equivalent to self::node().

About the descendant-or-self Axis

The descendant-or-self axis contains the context node and the descendants of the context
node. The following example selects the first-name element descendants of the context
node and the context node itself if it is a first-name element:

If the context node is the first-name element that is in the author element in the second
book element, this query returns just the context node. If the context node is the second
book element, this query returns the two first-name elements contained in the second book
element.

Note that // is equivalent to descendant-or-self::node(), while //name is equivalent to
descendant-or-self::node()/child::name.

self::title

descendant-or-self::first-name
Stylus Studio User Guide 769

Writing XPath Expressions
About the ancestor-or-self Axis

The ancestor-or-self axis contains the context node and the ancestors of the context
node. The ancestor-or-self axis always includes the root node. The following example
selects the author element ancestors of the context node and the context node itself if it is
an author element:

If the context node is the award element in the first book element, this query returns the
first author element.

Axes That Represent the Whole XML Document
The following group of axes represent an entire XML document:
● ancestor

● preceding

● self

● following

● descendant

There is no overlap among these axes, as shown in the following figure:

ancestor-or-self::author

ancestor Axis

self Axispreceding Axis following Axis

descendant Axis
770 Stylus Studio User Guide

Handling Strings and Text
Handling Strings and Text
This section includes the following topics:

● “Searching for Strings” on page 771

● “Manipulating Strings” on page 774

● “Obtaining the Text Contained in a Node” on page 777

 Searching for Strings
This section provides information about searching for strings. This section discusses the
following topics:

● “Finding Identical Strings” on page 771

● “Finding Strings That Contain Strings You Specify” on page 772

● “Finding Substrings That Appear Before Strings You Specify” on page 772

● “Finding Substrings That Appear After Strings You Specify” on page 773

● “Finding Substrings by Position” on page 773

Finding Identical Strings

In a document, you can search for text that is an exact match with what you specify in
your query. For example, consider the following query:

This query finds all name elements that contain only the text Lu. It would return elements
like these:

The same query does not return elements like these:

The XPath processor does not return the first name element because the comparison is
between "Lu" and "Lu Chen". The query does not return the second name element because

//name [. ="Lu"]

<name>Lu</name>
<name>
 <firstname>Lu</firstname>
</name>

<name>Lu Chen</name>
<name>
 <firstname>Lu</firstname>
 <lastname>Chen</lastname>
</name>
Stylus Studio User Guide 771

Writing XPath Expressions
the XPath processor concatenates the two strings "Lu" and "Chen" before it makes the
evaluation. Consequently, the comparison is between "Lu" and "LuChen". Note that the
XPath processor does not insert a space between text nodes that it concatenates.

Case Sensitivity

Searches are case sensitive. A search for "Lu" does not return "lu".

Finding Strings That Contain Strings You Specify

To obtain elements that contain a particular string, call the contains() function. The
format is

The contains() function returns true if the first argument string contains the second
argument string, and otherwise returns false. For example, the following query returns
all books that have a title that contains the string "Trenton":

When the first argument is a node list, the XPath processor tests only the string value of
the node in the node list that is first in document order. Any subsequent nodes are ignored.

Finding Substrings That Appear Before Strings You Specify

To obtain a substring that appears before a string you specify, call the substring-before()
function. The format is

The substring-before() function returns the substring of the first argument string that
precedes the first occurrence of the second argument string in the first argument string.
This function returns the empty string if the first argument string does not contain the
second argument string. For example, the following call returns "1999":

boolean contains(string, string)

/bookstore/book[contains(title, "Trenton")]

string substring-before(string, string)

substring-before("1999/04/01","/")
772 Stylus Studio User Guide

Handling Strings and Text
Finding Substrings That Appear After Strings You Specify

To obtain a substring that appears after a string you specify, call the substring-after()
function. The format is

The substring-after() function returns the substring of the first argument string that
follows the first occurrence of the second argument string in the first argument string.
This function returns the empty string if the first argument string does not contain the
second argument string. For example, the following call returns "04/01":

Finding Substrings by Position

To obtain a substring that is in a particular position within its string, call the substring()
function. The format is

The substring() function returns the substring of the first argument, starting at the
position specified in the second argument, with length specified in the third argument. For
example, the following returns "234":

If you do not specify the third argument, the substring() function returns the substring
starting at the position specified in the second argument and continuing to the end of the
string. For example, the following call returns "2345":

More precisely, each character in the string is considered to have a numeric position. The
position of the first character is 1. The position of the second character is 2, and so on.
The returned substring contains those characters for which the position of the character is
greater than or equal to the rounded second argument and, if the third argument is
specified, less than the sum of the value of the second and third arguments. The
comparisons and addition used for the preceding follow the standard IEEE 754 rules. The

string substring-after(string, string)

substring-after("1999/04/01","/")

string substring(string, number, number?)

substring("12345", 2, 3)

substring("12345", 2)
Stylus Studio User Guide 773

Writing XPath Expressions
XPath processor rounds the second and third arguments as if by a call to the round()
function. For example:

Manipulating Strings
After you obtain a string, you might want to manipulate it and use the result in the query.
This section describes functions that allow you to do this. It discusses the following
topics:

● “Concatenating Strings” on page 774

● “Determining the Number of Characters in a String” on page 774

● “Normalizing Strings” on page 775

● “Replacing Characters in Strings with Characters You Specify” on page 775

● “Converting Objects to Strings” on page 776

● “Finding Strings That Start with a Particular String” on page 777

Concatenating Strings

To concatenate two or more strings, call the concat() function. The format is

The concat() function returns the concatenation of its arguments.

Determining the Number of Characters in a String

To obtain the number of characters in a string, call the string-length() function. The
format is

The string-length() function returns the number of characters in the string. If you omit
the argument, it defaults to the string value of the context node.

substring("12345", 1.5, 2.6) returns "234"
substring("12345", 0, 3) returns "12"
substring("12345", 0 div 0, 3) returns ""
substring("12345", 1, 0 div 0) returns ""
substring("12345", -42, 1 div 0) returns "12345"
substring("12345", -1 div 0, 1 div 0) returns ""

string concat(string, string, {string}...)

number string-length(string?)
774 Stylus Studio User Guide

Handling Strings and Text
Normalizing Strings

To strip leading and trailing white space from a string, call the normalize-space()
function. The format is

The normalize-space() function removes leading and trailing white space. White space
consists of spaces, tabs, new lines, and returns.

If there are consecutive internal spaces, the normalize-space() function collapses the
internal spaces into one space. The normalize-space() function returns the string with the
extraneous white space removed. If you omit the argument, it defaults to the string value
of the context node.

Replacing Characters in Strings with Characters You Specify

To replace characters in a string with other characters, call the translate() function. The
format is

The translate() function looks for characters in the first string that are also in the second
string. For each such character, the translate() function replaces the character in the first
string with a character from the third string. The replacement character is the character in
the third string that is in the same position as the character in the second string that
corresponds to the character being replaced. For example:

Execution of this function returns "BAr". Following is another example:

Execution of this function returns "AAA". Sometimes there is a character in the second
argument string with no character at a corresponding position in the third argument string.
This happens when the second argument string is longer than the third argument string.
In this case, the XPath processor removes occurrences of that character.

If a character occurs more than once in the second argument string, the first occurrence
determines the replacement character. If the third argument string is longer than the
second argument string, the XPath processor ignores the excess characters.

string normalize-space(string?)

string translate(string, string, string)

translate("bar", "abc", "ABC")

translate("---aaa---", "abc", "ABC")
Stylus Studio User Guide 775

Writing XPath Expressions
Converting Objects to Strings

In some situations, you might want to force a string comparison. The XPath processor
performs a string comparison only when the operands are neither Boolean nor numeric
values. If an operand is numeric or Boolean, call the string() function on it to convert it
to a string. The format of the string() function is

The string() function can convert any object to a string. If you omit the argument, it
defaults to a node set with the context node as the only member. The string value of an
element node is the concatenation of the string values of all text node descendants of the
element node in document order.

Node Sets When the string() function converts a node set to a string, it returns the string value of
the node in the node set that is first in document order. If the node set is empty, the
string() function returns an empty string.

Numbers The string() function converts numbers to strings as follows:

● NaN (not a number) becomes "NaN"

● Positive zero becomes "0"

● Negative zero becomes "0"

● Positive infinity becomes "Infinity"

● Negative infinity becomes "-Infinity"

● An integer becomes a sequence of digits with no leading zeros, for example, "1234".
A negative integer is preceded by a minus sign, for example, "–1234".

● A noninteger number becomes a sequence of digits with at least one digit before a
decimal point and at least one digit after a decimal point, for example, "12.34". A
negative noninteger number is preceded by a minus sign, for example, "–12.34".
Leading zeros are not allowed unless there is only one to satisfy the requirement of a
zero before the decimal point. Beyond the one required digit after the decimal point,
there must be as many, but only as many, more digits as are needed to uniquely
distinguish the number from all other IEEE 754 numeric values.

Boolean
Values

The string() function converts the Boolean false value to the string "false", and the
Boolean true value to the string "true".

string string(object?)
776 Stylus Studio User Guide

Handling Strings and Text
Finding Strings That Start with a Particular String

To determine if a string starts with a particular string, specify the starts-with() function.
The format is

This function returns true if the first argument string starts with the second argument
string, and otherwise returns false.

Obtaining the Text Contained in a Node
You can use the string() function to obtain the text in a node. The string value of an
element node is the concatenation of the string values of all text node descendants of the
element node in document order. Use one of the following formats:

Replace pathExpression with the path of the node or nodes that contain the text you want.
This can be a rooted path or a relative path. It need not be a single node. If you do not
explicitly specify the string() function, you must specify pathExpression in a context
where the XPath processor must treat it as a string, for example:

The XPath processor obtains the text contained in each title element and compares it
with "Trenton Revisited". The XPath processor returns books with the title Trenton
Revisited.

For additional information about the string() function, see “Converting Objects to
Strings” on page 776.

boolean starts-with(string, string)

string string(pathExpression)
pathExpression

/bookstore/book[title = "Trenton Revisited"]
Stylus Studio User Guide 777

Writing XPath Expressions
Specifying Boolean Expressions and Functions
This section provides information on how to specify Boolean expressions and functions
in queries. It includes the following topics:

● “Using Boolean Expressions” on page 778

● “Calling Boolean Functions” on page 779

Using Boolean Expressions
You can specify Boolean expressions in the subqueries in filters. You specify the Boolean
AND, OR, and NOT operators like this:

● and

● or

● not

You can use parentheses to group collection specifications and operators for clarity or
where the normal precedence is inadequate to express an operation.

Case Sensitivity

Operators are case sensitive. Spaces are not significant. You can omit them or include
them for clarity.

Examples

The following query returns all authors who have at least one degree and one award:

The next query finds all authors who have at least one degree or award and at least one
publication:

Following is a query that finds all authors who have at least one degree and no
publications:

author[degree and award]

author[(degree or award) and publication]

author[degree and not(publication)]
778 Stylus Studio User Guide

Specifying Boolean Expressions and Functions
Calling Boolean Functions
This section describes the Boolean functions that you can call in a query. The operations
you can perform are

● “Converting an Object to Boolean” on page 779

● “Obtaining Boolean Values” on page 780

● “Determining the Context Node Language” on page 780

Converting an Object to Boolean

In some situations, you might want to force a Boolean comparison. The XPath processor
performs a Boolean comparison if either operand is a Boolean value. Consequently, if
neither operand is a Boolean value, call the boolean() function on one operand to convert
it to a Boolean value. The XPath processor automatically converts the other operand to a
Boolean value. The format of the boolean() function is
boolean boolean(object)

The boolean() function converts its argument to Boolean as follows:

● A number is false if and only if it is one of the following:

❍ Positive zero

❍ Negative zero

❍ NaN (not a number)

● A node set is false if and only if it is empty.

● A string is false if and only if its length is 0.

The boolean() function is useful in comparisons. For example, the following query returns
b elements that either contain both c and d elements as children or contain neither c nor d
elements as children:

This query is equivalent to the following query:

/a/b[boolean(c) = d]

/a/b [(c and d) or (not(c) and not(d))]
Stylus Studio User Guide 779

Writing XPath Expressions
Obtaining Boolean Values

To obtain the opposite Boolean value, call the not() function. The format is

The not() function returns true if its argument is false, and returns false if its argument
is true. For example, the following query finds all authors who have publications but no
degrees or awards:

To obtain the value true, call the true() function. The format is

The true() function returns true.

To obtain the value false, call the false() function. The format is

The false() function returns false.

Determining the Context Node Language

To determine whether the language of the context node is the language you expect it to
be, call the lang() function. The format is

The lang() function returns true or false depending on whether the language of the
context node as specified by the xml:lang attribute is the same as, or is a sublanguage of,
the language specified by the argument string. The language of the context node is
determined by the value of the xml:lang attribute on the context node or, if the context
node has no xml:lang attribute, by the value of the xml:lang attribute on the nearest
ancestor of the context node that has an xml:lang attribute.

If there is no such attribute, then lang() returns false. If there is such an attribute, lang()
returns true in the following situations:

● The attribute value is equal to the argument string.

● The attribute value has a suffix starting with a dash (-) such that the attribute value is
equal to the argument string if you ignore the suffix.

boolean not(boolean)

author[not(degree or award) and publication]

boolean true()

boolean false()

boolean lang(string)
780 Stylus Studio User Guide

Specifying Number Operations and Functions
In both situations, case is ignored. For example:
lang("en")

This returns true if the context node is any of these elements:

● <para xml:lang="en"/>

● <div xml:lang="en"><para/></div>

● <para xml:lang="EN"/>

● <para xml:lang="en-us"/>

Specifying Number Operations and Functions
This section includes the following topics:

● Performing Arithmetic Operations

● Calling Number Functions

Performing Arithmetic Operations
In queries, a number represents a floating-point number. A number can have any double-
precision 64-bit format IEEE 754 value. This includes

● A special not-a-number (NaN) value

● Positive and negative infinity

● Positive and negative zero

The numeric operators convert their operands to numbers as if by calling the number()
function. See “Converting an Object to a Number” on page 782.

You can use the following arithmetic operators in queries:

● + performs addition

● - performs subtraction

XML allows hyphens (-) in names. Consequently, the subtraction operator (–)
typically needs to be preceded by white space. For example, foo-bar evaluates to a
node set that contains the child elements named foo-bar. However, foo - bar
evaluates to the difference between the result of converting the string value of the first
foo child element to a number and the result of converting the string value of the first
bar child to a number.

● * performs multiplication
Stylus Studio User Guide 781

Writing XPath Expressions
● mod returns the remainder from a truncating division. For example:

❍ 5 mod 2 returns 1.

❍ 5 mod -2 returns 1.

❍ -5 mod 2 returns -1.

❍ -5 mod -2 returns -1.

The mod operator is the same as the % operator in Java and ECMAScript. But it does
not perform the same operation as the IEEE remainder operation, which returns the
remainder from a rounding division.

● div performs floating-point division according to IEEE 754.

Calling Number Functions
This section describes the number functions that you can call in a query. The operations
you can perform are

● Converting an Object to a Number on page 782

● Obtaining the Sum of the Values in a Node Set on page 783

● Obtaining the Largest, Smallest, or Closest Number on page 783

Converting an Object to a Number

In some situations, you might want to force a numeric comparison. The XPath processor
performs a numeric comparison if either operand is numeric and neither is Boolean. (If
one operand is Boolean, the XPath processor converts the other to Boolean and performs
a Boolean comparison.) However, if neither operand is a numeric or Boolean value, you
can call the number() function on one operand to convert it to a numeric value. The XPath
processor automatically converts the other operand to a numeric value.

To perform a numeric comparison, you must call the number() function to convert a
Boolean operand, if there is one, to a numeric value.

The format of the number() function is

number number(object?)
782 Stylus Studio User Guide

Specifying Number Operations and Functions
If you omit the argument, the value of the argument defaults to a node set with the context
node as its only member. Table 95 shows how the number() function converts its argument
to a number:

Obtaining the Sum of the Values in a Node Set

To obtain the sum of the values of the nodes in a set, call the sum() function. The format is

For each node in the argument node-set, the XPath processor converts the string value of
the node to a number. The sum() function returns the sum of these numbers.

Obtaining the Largest, Smallest, or Closest Number

To obtain the largest integer that is not greater than a particular number, call the floor()
function. The format is

Table 95. number() Function Arguments and Converted Values

Argument Converted Value

String that consists of optional
white space followed by an
optional minus sign followed by a
number followed by white space

IEEE 754 number that is nearest to the mathematical value
represented by the string.

Any other string NaN (not a number)

Boolean true 1

Boolean false 0

Node set First the XPath processor converts the node set to a
concatenated string as if by a call to the string() function
for the first node in the node set, in document order. The
XPath processor then converts this string the same way as
it would a string argument.

number sum(node-set)

number floor(number)
Stylus Studio User Guide 783

Writing XPath Expressions
The floor() function returns the largest (closest to positive infinity) number that is not
greater than the argument and that is an integer. For example:

● floor(5.3) returns 5

● floor(-5.3) returns -6

To obtain the smallest integer that is not less than a particular number, call the ceiling()
function. The format is

The ceiling() function returns the smallest (closest to negative infinity) number that is
not less than the argument and that is an integer. For example:

● ceiling(5.3) returns 6

● ceiling(-5.3) returns -5

To obtain the closest integer to a particular number, call the round() function. The format
is

The round() function returns the number that is closest to the argument and that is an
integer. If there are two such numbers, the function returns the one that is closest to
positive infinity. For example:

● round(5.3) returns 5

● round(5.6) returns 6

● round(5.5) returns 6

Comparing Values
In queries, you can specify operators that compare values. Comparison operations return
Boolean values. If you want to obtain the nodes for which a comparison tests true,
enclose the comparison in a filter.

This section discusses the following topics:

● “About Comparison Operators” on page 785

● “How the XPath Processor Evaluates Comparisons” on page 785

● “Comparing Node Sets” on page 786

● “Comparing Single Values With = and !=” on page 787

number ceiling(number)

number round(number)
784 Stylus Studio User Guide

Comparing Values
● “Comparing Single Values With <=, <, >, and >=” on page 788

● “Priority of Object Types in Comparisons” on page 788

● “Examples of Comparisons” on page 789

● “Operating on Boolean Values” on page 789

About Comparison Operators
The comparison operators you can specify are listed in Table 96:

You can specify single or double quotation marks (' or ") as string delimiters in
expressions. This makes it easier to construct and pass queries from within scripting
languages.

How the XPath Processor Evaluates Comparisons
A query can compare values of elements. For example:

The XPath processor compares the value of each last-name element in the current context
with the value "foo". The result of each comparison is a Boolean value. The XPath
processor returns the last-name elements for which the comparison yields true.

As mentioned before in “Filtering Results of Queries” on page 751, the XPath processor
evaluates filters with respect to a context. For example, the expression book[author]
means for every book element that is found, determine whether it has an author child

Table 96. Comparison Operator Descriptions

Operator Description

= Equality

!= Inequality

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

last-name [. = "foo"]
Stylus Studio User Guide 785

Writing XPath Expressions
element. Likewise, book[author = "Bob"] means for every book element that is found,
determine whether it contains an author child element whose value is "Bob".

Comparisons are case sensitive. For example, "Bob" and "bob" are not considered to be
equal.

Remember that comparisons return Boolean values. For example:

You might think that this query returns authors whose last name is "Bob". But this is not
the case. This query returns a single Boolean value. It tests each last-name element to
determine if its value is "Bob". As soon as the XPath processor finds a last-name element
that tests true, it returns true. If no nodes test true, this query returns false.

To obtain author elements whose last name is "Bob", enclose the comparison in a filter as
follows:

Comparing Node Sets
You can compare

● Two node sets

● A node set and a number

● A node set and a string

● A node set and a Boolean value

Two Node Sets

Suppose the objects you want to compare are both node sets. The result is true only in the
following case. There is a node in the first node set and a node in the second node set such
that the result of performing a comparison on the values of the two nodes is true. For
string values, the comparison can be = or !=. For numeric values, the comparison can also
be <, >, <=, or >=.

A Node Set and a Number

Now suppose one object to be compared is a node set and the other is a number. The
XPath processor searches for a node in the node set that yields a true result when its
number value is compared with the number that is not in the node set. If necessary, the

/bookstore/book/author/last-name="Bob"

/bookstore/book/author[last-name="Bob"]
786 Stylus Studio User Guide

Comparing Values
XPath processor uses the number() function to convert values to numeric values. If and
only if the XPath processor finds such a node, the result is true.

A Node Set and a String

Sometimes you want to compare a node set with a string. The XPath processor searches
for a node in the node set that yields a true result when its string value is compared with
the string that is not in the node set. If necessary, the XPath processor uses the string()
function to convert values to string values. If and only if the XPath processor finds such
a node, the result is true.

A Node Set and a Boolean Value

Finally, suppose you want to compare a node set with a Boolean value. This tests true if
and only if the result of performing the comparison on the Boolean value and on the result
of converting the node set to a Boolean value using the boolean() function is true.

Comparing Single Values With = and !=
When neither object to be compared is a node set and the operator is = or !=, the XPath
processor compares the objects by converting them to a common type and then comparing
them. The XPath processor converts the objects to a common type as follows:

● If at least one object to be compared is Boolean, the XPath processor converts the
other object to Boolean as if by applying the boolean() function.

● If at least one object to be compared is a number, and neither is Boolean, the XPath
processor converts the nonnumber object to a number as if by applying the number()
function.

If the objects to be compared are neither Boolean nor numeric, the XPath processor
compares the string values of the objects as if by applying the string() function to each
object.

The = comparison returns true if and only if the objects are equal. The != comparison
returns true if and only if the objects are not equal. Numbers are compared for equality
according to IEEE 754. Two Boolean values are equal if either both are true or both are
false. Two strings are equal if and only if they both consist of the same sequence of
Universal Character Set (UCS) characters.

Note Use single or double quotes to specify string values being used with a comparison
operator.
Stylus Studio User Guide 787

Writing XPath Expressions
Comparing Single Values With <=, <, >, and >=

When neither object to be compared is a node set and the operator is <=, <, >=, or >, the
XPath processor performs the comparison by converting both objects to numbers and
comparing the numbers according to IEEE 754.

The XPath processor always evaluates these comparisons in terms of numbers. You
cannot use the less than and greater than operators to order strings. This is especially
important to remember when you compare a number with a string. For example, suppose
you want to evaluate the expression

The return value is always false. This is because number("foo") returns NaN, and the
resulting comparison, shown below, is always false.

Priority of Object Types in Comparisons
When the XPath processor performs a comparison, if either operand is a Boolean value,
the XPath processor automatically converts the other operand to a Boolean value, if
necessary, and makes a Boolean comparison.

If either operand is numeric and neither operand is Boolean, the XPath processor
automatically converts the other operand to a numeric value, if necessary, and performs
a numeric comparison.

If neither operand is numeric or Boolean, the XPath processor performs a string
comparison.

Table 97. Comparison Operator Descriptions

Comparison True If and Only If

< The first number is less than the second number.

<= The first number is less than or equal to the second number.

> The first number is greater than the second number.

>= The first number is greater than or equal to the second number.

a < "foo"

a < NaN
788 Stylus Studio User Guide

Finding a Particular Node
Examples of Comparisons
The following query finds all authors whose last name is Bob:

The next query finds authors whose degrees are not from Harvard:

The following query returns prices that are greater than 20 dollars. This assumes that the
current context contains one or more price elements.

Operating on Boolean Values
You can use the = or != operator to compare Boolean values. If you try to use any other
operator to compare Boolean values, you receive an error.

Finding a Particular Node
To find a specific node within a set of nodes, enclose an integer within brackets ([]). The
integer indicates the position of the node relative to its parent. This section discusses the
following topics:

● “About Node Positions” on page 790

● “Determining the Position Number of a Node” on page 790

● “Positions in Relation to Parent Nodes” on page 791

● “Finding Nodes Relative to the Last Node in a Set” on page 792

● “Finding Multiple Nodes” on page 792

● “Examples of Specifying Positions” on page 793

● “Finding the First Node That Meets a Condition” on page 793

● “Finding an Element with a Particular ID” on page 793

● “Obtaining Particular Types of Nodes By Using Node Tests” on page 795

See also “Obtaining the Current Node for the Current XSLT Template” on page 803.

author[last-name = "Bob"]

author/degree[@from != "Harvard"]

price [. > 20]
Stylus Studio User Guide 789

Writing XPath Expressions
About Node Positions
The node positions for a node set start with 1. Evaluation of the position number is always
based on document order. For example, the following query returns the first author
element in the current context:

The next query finds the author elements (in the current context) that contain a first-name
element. The query returns the third such author element.

When you specify an integer in brackets, it is equivalent to calling the position() function.
For example, the following queries both return the third y child element of each x child
element in the current context:

Tip: If you do not know the position of the node you want, a call to the position() function
might help you. See “Determining the Position Number of a Node” on page 790.

The return value of the position() function depends on the specified axis. For example,
suppose the axis is one of the reverse axes, such as preceding, ancestor, or preceding-
sibling. The position() function returns the nth one in reverse document order that falls
in the specified axis.

Determining the Position Number of a Node
The position() function returns an integer that indicates the position of the node within
the parent. Positions start with 1; a node with a position of 1 is always the first node in the
collection.

For example, the following query returns the first three degree elements in the document:

The next query finds the first two book children in the current context:

author[1]

(author[first-name])[position()=3]

x/y[3]
x/y[position()=3]

(//degree)[position() < 4]

book[position() <= 2]
790 Stylus Studio User Guide

Finding a Particular Node
The XPath processor executes the position() function with respect to the parent node.
Consider the following data:

The following expression returns the first y element contained in each x element:

For more information, see also “Finding an Element with a Particular ID” on page 793.

Positions in Relation to Parent Nodes
Positions are relative to the parent. Consider the following data, which has line numbers
on the left for explanation only.

The following query returns the first y element contained in each x element. It returns the
elements on lines 6 and 10. The XPath processor finds all x elements. For each x element,
the XPath processor then returns the first y element it finds.

The next query returns the first y element that is contained in an x element that is in the
context node set. It returns the element on line 6. The XPath processor finds all y elements
inside x elements. The XPath processor then returns the first element in that set.

<x>
 <y/>
 <y/>
</x>
<x>
 <y/>
 <y/>
</x>

x/y[position() = 1]

1 <x>
2 <z>
3 <z/>
4 </x>
5 <x>
6 <y>
7 <y/>
8 </x>
9 <x>
10 <y>
11 <y/>
12 </x>

x/y[1]

(x/y)[1]
Stylus Studio User Guide 791

Writing XPath Expressions
The next query returns the empty set. The XPath processor finds the first x element. It then
searches that first x element for the first y. Because the first x element does not contain a
y element, this query returns the empty set.

Finding Nodes Relative to the Last Node in a Set
To obtain nodes relative to the last node in the set, use the position() and last() functions
with arithmetic. For example, the following queries both obtain the last author element in
the current context:

The following queries both return the next-to-last author element:

For information about position(), see “Determining the Position Number of a Node” on
page 790. For information about last(), see “Determining the Context Size” on page 801.

Finding Multiple Nodes
To obtain several nodes in one operation, use the and or the or operator with the position()
and last() functions. For example, the following query returns the first and the last author
nodes in the current context:

You can also specify a range of nodes. For example, the next query returns the second,
third, and fourth author elements:

To obtain a range of nodes, m to n, relative to the last node, use the following format:

For example, the following query obtains the last five nodes in the current context:

x[1]/y[1]

author [position() = last()]
author [last()]

author [position() = last() – 1]
author [last() - 1]

author [(position() = 1) or (position() = last())]

author [(position() >= 2) and (position() <= 4)]

(m <= position()) and (position() <= n)

author [(last() – 4) <= position()) and (position() <= last())]
792 Stylus Studio User Guide

Finding a Particular Node
Examples of Specifying Positions
The following query finds the first and fourth author elements:

The next query finds the first, the third through the fifth, and the last author elements:

The XPath processor removes duplicate values. For the previous query, if there are only
five elements in the collection, the query returns only one copy of the fifth element.

The next example finds all author elements in which the first degree is a Ph.D.:

Finding the First Node That Meets a Condition
Suppose you want to obtain from a collection the first node that meets a certain condition.
For example, you want the first book whose author’s last name is Bob. You can specify
the following query:

When the XPath processor evaluates this expression, it creates a collection of book
elements where the author’s last name is Bob. The XPath processor then returns the first
node in this collection.

The following two expressions appear to also return the first book whose author’s last
name is Bob, but they do not. Instead, these queries both return a book whose author’s last
name is Bob only if that book is the first book in the document.

Finding an Element with a Particular ID
To obtain the element that has a particular identifier (ID), the DTD must specify an
attribute for that element. The type of this attribute must be ID. The name of the attribute

author [(position() = 4) or (position() = 1)]

author [(position() = 1) or
 (position() >= 3 and position() <= 5) or
 (position() = last())]

author[degree[1] = "Ph.D."]

(//book[author/last-name="Bob"])[position()=1]

//book[author/first-name="Bob"][position()=1]
//book[author/first-name="Bob" and position() = 1]
Stylus Studio User Guide 793

Writing XPath Expressions
is not significant, though it is typically id. If there is such an attribute, you can call the
id() function to obtain the element with a particular ID. The format is

The id() function evaluates to a set. It ignores the context node set except to evaluate the
function’s argument. The result set contains an element node that has an attribute of type
ID whose value is identical to the string the object argument evaluates to. The element
node can appear anywhere in the document that is being queried.

For example:

This query searches for an element that has an attribute whose

● Type is ID

● Value is special

Details about working with IDs are in the following topics:

● “The id() Function’s Argument” on page 794

● “Unique IDs” on page 794

The id() Function’s Argument

When the id() function’s argument is of type node-set, the result is the union of the results
of applying id() to the string value of each of the nodes in the argument node set.

When the argument of id() is any other type, the XPath processor converts the argument
to a string as if by a call to the string() function. The XPath processor splits the string
into a white-space-separated list of tokens. The result is a node set that contains the
elements in the same document as the context node that have a unique ID equal to any of
the tokens in the list.

Unique IDs

An element node can have a unique ID. This is the value of the attribute that is declared
in the DTD as type ID. No two elements in a document can have the same unique ID. If
an XML processor reports two elements in a document as having the same unique ID
(which is possible only if the document is invalid), the second element is treated as not
having a unique ID.

If a document does not have a DTD, the id() function always returns an empty node list.

node-set id(object)

id("special")
794 Stylus Studio User Guide

Finding a Particular Node
Obtaining Particular Types of Nodes By Using Node Tests
The node tests allow you to obtain nodes according to their type. Node test is an XPath
term. Although a node test looks like a function, it is not a function.

You can use node tests with filters and position specifiers. They resolve to the set of
children of the context node that meets the restrictions you specify.

Node tests for XPath 2.0 add to the set of node tests supported for XPath 1.0. Node tests
common to both XPath 1.0 and XPath 2.0 are shown in Table 98. Node tests unique to
XPath 2.0 are shown in Table 98.

For each p element in the current context, the following query returns its second text child
node:

Table 98. Node Test Return Values Common to XPath 1.0 and XPath 2.0

Node Test Node Type Returned

comment() Comment nodes.

node() All nonattribute nodes.

processing-
instruction("name")

Processing instruction nodes. The processing-instruction()
node test selects all processing instructions. When this node test
specifies a literal argument, it selects any processing instruction that
has a name equal to the value of the argument. If there is no
argument, this node test selects all processing instructions.

text() Text nodes and CDATA nodes.

Table 99. Node Test Return Values Unique to XPath 2.0

Node Test Node Type Returned

attribute() Matches any attribute node.

document-node() Matches any document node.

element() Matches any element node.

item() Matches any single item.

p/text()[2]
Stylus Studio User Guide 795

Writing XPath Expressions
Following is a query that finds the third comment child in each foo element anywhere in
the document:

About the Document Object

In the Document Object Model (DOM), a document contains comments, processing
instructions, and declarations, as well as the document element. As in XPath, the root
node is the root of the DOM tree, and the root node is not the same as the document
element. This allows comments, declarations, and processing instructions at the
document entity level.

For example, the following query finds all comments at the document entity level. In
other words, it finds all comments that are immediate children of the root node.

This query returns the comment at the beginning of the bookstore.xml file:

Getting Nodes of a Particular Type

A query like the following returns all the comments in a document:

The following query returns the third comment in the document.

Obtaining a Union
Specify the | operator to combine collection sets. For example, the following query
returns all last-name elements and all first-name elements in the current context:

The result set can contain zero or more of each element that the | operator applies to. For
example, using the previous query, it is possible for the query to contain only first-name

//foo/comment()[3]

/comment()

"This file represents a fragment of a book store inventory database."

//comment()

(//comment()) [3]

first-name | last-name
796 Stylus Studio User Guide

Obtaining a Union
elements if no last-name elements are found. The following query finds all book elements
and magazine elements in the bookstore element:

The next query finds all books and all authors in the current context:

The next query returns the first names, last names, and degrees of authors of books or
magazines in the current context:

A union can appear only as the first step in a location path expression. Consequently, the
following is incorrect because there is a union specification that is not in the first step of
a location path expression.

The following query finds all books for which the author’s first name is Bob and all
magazines with prices less than 10 dollars:

/bookstore/book | /bookstore/magazine

book | book/author

((book | magazine)/author/first-name) |
(book | magazine)/author/last-name |
(book | magazine)/author/degree))

(book | magazine)/author/(first-name | last-name | degree)

/bookstore/book[author/first-name = "Bob"] | magazine[price < 10]
Stylus Studio User Guide 797

Writing XPath Expressions
Obtaining Information About a Node or a Node Set
In a query, you can perform the following operations to obtain information about a node:

● “Obtaining the Name of a Node” on page 798

● “Obtaining Namespace Information” on page 798

● “Obtaining the URI for an Unparsed Entity” on page 801

● “Determining the Number of Nodes in a Collection” on page 801

● “Determining the Context Size” on page 801

Obtaining the Name of a Node
The name() function returns a string that contains the tag name of the node, including the
namespace prefix, if any.

The following query returns the name of the third element in bookstore, which is
"magazine".

Wildcards

An asterisk (*) specifies a wildcard name for element names. If there are comments
before the third element in the preceding example, this query does not include them in the
count. See “Filtering Results of Queries” on page 751.

Obtaining Namespace Information
You can call functions to obtain namespace information. This topic discusses

● “Obtaining the Namespace URI” on page 799

● “Obtaining the Local Name” on page 799

● “Obtaining the Expanded Name” on page 799

In addition to a discussion of the functions you call, this section covers the following:

● “Specifying Wildcards with Namespaces” on page 800

● “Examples of Namespaces in Queries” on page 800

name(/bookstore/*[3])

Note Remember, an asterisk that is not preceded by an at sign (@) never returns attributes. The
XPath processor does not include attributes in node counts. See “Attributes and
Wildcards” on page 751.
798 Stylus Studio User Guide

Obtaining Information About a Node or a Node Set
Obtaining the Namespace URI

To obtain the URI for a namespace, call the namespace-uri() function. The format is

The namespace-uri() function returns the namespace URI of the expanded name of the
node in the node-set argument that is first in document order. If the node-set argument is
empty, the first node has no expanded name, or the namespace URI of the expanded name
is null, the XPath processor returns an empty string. If you omit the argument, it defaults
to a node set with the context node as its only member.

Call the namespace-uri() function on element or attribute nodes. For example, the query

returns the string

For any other type of node, the XPath processor always returns an empty string.

Obtaining the Local Name

To obtain the local portion of a node name, excluding the prefix, call the local-name()
function. The format is

The local-name() function returns the local part of the expanded name of the node in the
node-set argument that is first in document order. If the node-set argument is empty or
the first node has no expanded name, the function returns an empty string. If you omit the
argument, it defaults to a node set with the context node as its only member. For example,
the following query returns my:book nodes:

Obtaining the Expanded Name

To obtain the expanded name of a node, call the name() function. The expanded name is
the namespace prefix, if any, plus the local name. The format is

string namespace-uri(node-set?)

/bookstore/my:book/namespace-uri()

"http://www.placeholder-name-here.com/schema/"

string local-name(node-set?)

/bookstore/my:*[local-name()="book"]

string name(node-set?)
Stylus Studio User Guide 799

Writing XPath Expressions
The name() function returns a string that represents the expanded name of the node in the
node-set argument that is first in document order. The returned string represents the
expanded name with respect to the namespace declarations in effect on the node whose
expanded name is being represented.

Typically, this is the name in the XML source. This need not be the case if there are
namespace declarations in effect on the node that associate multiple prefixes with the
same namespace.

If the node-set argument is empty or the first node has no expanded name, the XPath
processor returns an empty string. If you omit the argument, it defaults to a node set with
the context node as its only member.

Except for element and attribute nodes, the string that the name() function returns is the
same as the string the local-name() function returns.

Specifying Wildcards with Namespaces

Element and attribute names that include colons (:) can include wildcards; that is,
asterisks (*). For example, queries can include *:*, *:a, or a:*.

Examples of Namespaces in Queries

The following example finds all book elements in the current context. This query does not
return any book elements that are not in the default namespace. For example, it does not
return my:book elements.

The next query finds all book elements with the prefix my. This query does not return
unqualified book elements; that is, book elements in the default namespace.

The following query finds all book elements with a my prefix that have an author
subelement:

The following query finds all book elements with a my prefix that have an author
subelement with a my prefix:

book

my:book

my:book[author]

my:book[my:author]
800 Stylus Studio User Guide

Obtaining Information About a Node or a Node Set
The next example returns the style attribute with a my prefix for book elements in the
current context:

Obtaining the URI for an Unparsed Entity
To obtain the URI for an unparsed entity, call the unparsed-entity-uri() function. The
format is

This function returns the URI of the unparsed entity with the specified name that is in the
same document as the context node. If there is no such entity, this function returns an
empty string.

Determining the Number of Nodes in a Collection
To obtain the number of nodes in a node set, call the count() function. The format is

The count() function returns the number of nodes in the specified set. For example, the
following query finds all authors who have more than ten publications:

To obtain the number of nodes in the current context, call the last() function, described
in the next section.

Determining the Context Size
To obtain the number of nodes in the current context, call the last() function. The format
is

The last() function returns a number equal to the context size of the expression
evaluation context. Essentially, the last() function returns the position number of the last
node in document order for the current context. For example, the following query returns

book/@my:style

string unparsed-entity-uri(string)

number count(node-set)

//author[count(publications) > 10]

number last()
Stylus Studio User Guide 801

Writing XPath Expressions
all books if there are three or more of them. There are three book elements in the current
context. Consequently, this query returns three book elements.

Using XPath Expressions in Stylesheets
This section provides information about using XPath expressions in stylesheets. It
includes the following topics:

● “Using Variables” on page 802

● “Obtaining System Properties” on page 802

● “Determining If Functions Are Available” on page 803

● “Obtaining the Current Node for the Current XSLT Template” on page 803

● “Finding an Element with a Particular Key” on page 804

● “Generating Temporary IDs for Nodes” on page 806

Using Variables
In a query that you specify in a stylesheet, you can refer to variables that you defined
elsewhere in the stylesheet. Use the following format to refer to a variable:

In a stylesheet, you can define variables with either of the following instructions:
● xsl:param on page 532

● xsl:variable on page 541

Obtaining System Properties
In a query in a stylesheet, there are three system properties for which you can obtain
information:

● xsl:version returns 1.0 as the version of XSLT that the Stylus Studio XSLT
processor implements.

● xsl:vendor returns DataDirect as the vendor of Stylus Studio’s XSLT processor.

● xsl:vendor-url returns http://www.stylusstudio.com as the vendor URL.

/bookstore/book[last() >= 3]

$variable_name
802 Stylus Studio User Guide

Using XPath Expressions in Stylesheets
To obtain this information, call the system-property() function. The format is

The string you specify must identify one of the three properties and must be a qualified
name. This function returns an object that represents the value of the system property you
specify.

Determining If Functions Are Available
In a query in a stylesheet, to determine whether the XPath processor supports a particular
function, call the function-available() function. The format is

Specify a string that identifies the name of the function. The XPath processor returns true
if it implements that function.

Obtaining the Current Node for the Current XSLT Template
In a stylesheet, the current node is the node for which the XSLT processor instantiates a
template. When the XPath processor evaluates an expression during stylesheet
processing, the initial context node for the expression is set to the current node for the
stylesheet instruction that contains the expression. Because the context node can change
during evaluation of subexpressions, it is useful to be able to retrieve, from within a
subexpression, the original context node for which the expression is being evaluated. You
can use the current() function for this purpose. The format is

The current() function returns a node set that contains only the current node for the
current template. The current() function is specified in the W3C XSLT
Recommendation.

object system-property(string)

boolean function-available(string)

node-set current()
Stylus Studio User Guide 803

Writing XPath Expressions
For example, the following stylesheet causes the XSLT processor to pass the bookstore
node to the outer xsl:for-each instruction:

The bookstore node is the current node within the outer xsl:for-each instruction. Within
the inner xsl:for-each instruction, a book node is the current node.

The current() function in the inner expression returns the bookstore element because the
bookstore element is the current node for the inner xsl:for-each instruction. The result
of the query contains book elements if the value of their style attribute is the same as the
value of the specialty attribute of the bookstore element (novel).

Suppose the select attribute in the inner xsl:for-each instruction specified the dot (.)
instead of the current() function:

In a query, the dot specifies the context node. This query would return a book if the value
of its style attribute was the same as the value of its specialty attribute.

You can nest xsl:for-each instructions more than one level deep. In any given nested
xsl:for-each instruction, the current() function returns the current node for the closest
enclosing xsl:for-each instruction.

Finding an Element with a Particular Key
The key() function, defined in the XSLT Recommendation, obtains the node whose key
value matches the specified key. The format is

The first argument specifies the name of the key. The value of this argument must be a
qualified name. The second argument specifies the node or nodes to examine. When the
second argument is a node set, the result is the union of the results of applying the key()
function to the string value of each of the nodes in the set. When the second argument is

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/XSL/Transform" version="1.0" >
 <xsl:template match="/">
 <xsl:for-each select="bookstore">
 <xsl:for-each select=
 "book[@style=current()/@specialty]">
 ...
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

<xsl:for-each select="book[@style=./@specialty]">

node-set key(string, object)
804 Stylus Studio User Guide

Using XPath Expressions in Stylesheets
any other type, the XPath processor converts the argument to a string, as if by a call to the
string() function. The key() function returns a node set that contains the nodes in the same
document as the context node that have a value for the named key that is equal to this
string.

For example, the videos.xml document, which is in the examples directory of the Stylus
Studio installation directory, contains the following elements:

When you display information about a video in a Web browser, you want to display the
names of the actors. Because the actors are referenced only by an ID number, you create
a key table in your stylesheet:

This indexes all actors by their ID. To process a video, your stylesheet specifies the
following:

This instructs the XPath processor to look up the actor element in the actors key table by
using the actorRef element as a key.

<result>
 <actors>
 <actor id="00000003">Jones, Tommy Lee</actor>
 ...
 </actors>
 <videos>
 <video id="id1235AA0">
 <title>The Fugitive</title>
 ...
 <actorRef>00000003</actorRef>
 <actorRef>00000006</actorRef>
 ...
 </video>
 ...
 </videos>
</result>

<xsl:key
 name="actors"
 match="/result/actors/actor"
 use="@id"/>

<xsl:for-each select="actorRef">
 <xsl:value-of select="key('actors', .)"/>
</xsl:for-each>
Stylus Studio User Guide 805

Writing XPath Expressions
Generating Temporary IDs for Nodes
The generate-id() function, defined in the XSLT recommendation, generates temporary
IDs for nodes.

Format

The format for the generate-id() function is as follows:

The generate-id() function returns a string that uniquely identifies the node in node-set
that is first in document order. This string starts with xln and ends with eight hexadecimal
digits. Syntactically, the string is an XML name.

If the node-set argument is empty, the generate-id() function returns an empty string. If
you omit the node-set argument, the generate-id() function generates a temporary ID
for the context node.

Accessing Other Documents During Query Execution
During execution of a query, you might want to access data in another document. To do
this, call the document() function.

This section discusses the following topics:

● “Format of the document() Function” on page 806

● “When the First Argument is a Node Set” on page 807

● “Specification of Second Argument” on page 807

● “Example of Calling the document() Function” on page 808

Format of the document() Function
To query multiple documents with a single query, call the document() function in a query.
During execution of a query on a particular document, this function allows you to access
another XML document.

Caution The ID generated by the generate-id() function is not an object ID. The value generated
by the generate-id() function is guaranteed to be the same only during an XSL
transformation. If the source document changes, the value for this ID can change.

string generate-id(node-set?)
806 Stylus Studio User Guide

Accessing Other Documents During Query Execution
The format for the document() function is

The XPath processor examines the first argument. If it is a single value (that is, it is not a
node set) the XPath processor converts it to a string, if it is not already a string. Separate
directory names and the file name with a forward slash (/). See the following format:

This string must be an absolute path. The XPath processor retrieves the specified
document. The new context node is the root node of this document. Suppose you invoke
the document() function and the requested document does not exist. If the invocation is in
a stylesheet, the XPath processor returns an empty node set. If the invocation is anywhere
else, the XPath processor returns an error message.

When the First Argument is a Node Set
It is possible for the first argument of the document() function to be a node set. In this case,
the result is as if you had called the document() function on each node in this node set. That
is, the first argument of the document() function is each node in the node set in turn. The
second argument, if there is one, is the same for each iteration of the document() function.
This allows you to obtain the contents of multiple documents.

Specification of Second Argument
If you specify a second argument, it must be a node set. The XPath processor examines
the first node (in the context of document order) in the node set to determine the document
that this node belongs to. The XPath processor retrieves the name of the directory that
contains this document and appends the relative path from the first argument to the name
of the directory. This creates an absolute path, and the XPath processor retrieves the
specified document.

If there is no second argument, the query must be an expression in an XSLT stylesheet.
The XPath processor appends the relative path to the name of the directory that contains
the XSLT stylesheet. This allows the query to examine the stylesheet itself.

node-set document(object, node-set?)
Stylus Studio User Guide 807

Writing XPath Expressions
Example of Calling the document() Function
Suppose you have the following XML document:

The following query returns the bookstore elements:

Now suppose you pass this query to the document() function as follows:

This query returns the root nodes of bookstore1.xml, bookstore2.xml, and
bookstore3.xml.

XPath Quick Reference
This section includes the following topics:

● XPath Functions Quick Reference

● XPath Syntax Quick Reference

● XPath Abbreviations Quick Reference

See also “Precedence of Query Operators” on page 756.

<?xml version="1.0" encoding="UTF-8"?>
<books>
 <bookstore>bookstore1:bookstore1.xml</bookstore>
 <bookstore>bookstore2:bookstore2.xml</bookstore>
 <bookstore>bookstore3:bookstore3.xml</bookstore>
</books>

/books/bookstore

document(/books/bookstore)
808 Stylus Studio User Guide

XPath Quick Reference
XPath Functions Quick Reference
Table 100 lists the functions you can call in a query and provides short descriptions.

Table 100. XPath Function Quick Reference

Function Source Returns

boolean() XPath Boolean value that is the result of converting an
object to a Boolean value. See “Converting an
Object to Boolean” on page 779.

ceiling() XPath Number that is the smallest integer that is not less
than a number you specify. See “Obtaining the
Largest, Smallest, or Closest Number” on
page 783.

comment() XPath Comment nodes. See “Obtaining Particular Types
of Nodes By Using Node Tests” on page 795.

concat() XPath String that concatenates two or more strings you
specify. See “Concatenating Strings” on page 774.

contains() XPath Nodes that contain the specified string. See
“Searching for Strings” on page 771.

count() XPath Number of nodes in the node-set argument. See
“Determining the Number of Nodes in a
Collection” on page 801.

current() XPath Node for which the current template started its
operation. See “Obtaining the Current Node for
the Current XSLT Template” on page 803.

document() XSLT Root node of the specified document. See
“Accessing Other Documents During Query
Execution” on page 806.

element-available() XSLT Boolean value that indicates whether the specified
element is supported by the XSLT processor. See
“Determining If Functions Are Available” on
page 803.

false() XPath false. See “Obtaining Boolean Values” on
page 780.
Stylus Studio User Guide 809

Writing XPath Expressions
floor() XPath Number that is the largest integer that is not greater
than a number you specify. See “Obtaining the
Largest, Smallest, or Closest Number” on
page 783.

function-available() XSLT Boolean value that indicates whether the specified
function is supported by the XPath processor. See
“Determining If Functions Are Available” on
page 803.

generate-id() XSLT String that uniquely, temporarily, identifies a node.
See “Generating Temporary IDs for Nodes” on
page 806.

id() XPath Element whose id attribute value matches the
specified value. See “Finding an Element with a
Particular ID” on page 793.

key() XSLT Node whose key value matches the specified key.
See “Finding an Element with a Particular Key” on
page 804.

lang() XPath Boolean value that indicates whether the language
of the node is the language you expect. See
“Determining the Context Node Language” on
page 780.

last() XPath Number of nodes in the context list. See
“Determining the Number of Nodes in a
Collection” on page 801.

local-name() XPath Local portion of the node name, excluding the
prefix. See “Obtaining Namespace Information”
on page 798.

name() XPath String that contains the tag name of the node,
including namespace information, if any. See
“Obtaining Namespace Information” on page 798.

Table 100. XPath Function Quick Reference

Function Source Returns
810 Stylus Studio User Guide

XPath Quick Reference
namespace-uri() XPath URI for the namespace of the node. See
“Obtaining Namespace Information” on page 798.

node() XPath All nonattribute nodes. See “Obtaining Particular
Types of Nodes By Using Node Tests” on
page 795.

normalize-space() XPath String without leading or trailing white space. See
“Normalizing Strings” on page 775.

not() XPath Boolean value that indicates the opposite of the
specified Boolean value. See “Obtaining Boolean
Values” on page 780.

number() XPath Number that is the result of converting the
specified argument to a number. See “Converting
an Object to a Number” on page 782.

position() XPath Position number of the node relative to the context
node set. See “Finding a Particular Node” on
page 789.

processing-
instruction()

XPath Processing instruction nodes. If you specify a
literal argument, this function returns a processing
instruction if its name matches the literal you
specify. See “Obtaining Particular Types of Nodes
By Using Node Tests” on page 795.

round() XPath Number that is the closest to the argument and is
an integer. See “Obtaining the Largest, Smallest,
or Closest Number” on page 783.

starts-with() XPath Boolean value that indicates if a string starts with
a particular string. See “Finding Strings That Start
with a Particular String” on page 777.

string() XPath String that is the result of converting some object
to a string. See “Converting Objects to Strings” on
page 776.

Table 100. XPath Function Quick Reference

Function Source Returns
Stylus Studio User Guide 811

Writing XPath Expressions
string-length() XPath Number of characters in a string you specify. See
“Determining the Number of Characters in a
String” on page 774.

substring() XPath Substring that is in a particular position within its
string. See “Finding Substrings by Position” on
page 773.

substring-before() XPath Substring that appears before a string you specify.
See “Finding Substrings That Appear Before
Strings You Specify” on page 772.

substring-after() XPath Substring that appears after a string you specify.
See “Finding Substrings That Appear After
Strings You Specify” on page 773.

sum() XPath Number that is the sum of the values of the nodes
in the specified set. See “Obtaining the Sum of the
Values in a Node Set” on page 783.

system-property() XSLT Object that represents the specified property. See
“Obtaining System Properties” on page 802.

translate() XPath String with some characters replaced by other
characters. See “Replacing Characters in Strings
with Characters You Specify” on page 775.

true() XPath true. See “Obtaining Boolean Values” on
page 780.

unparsed-entity-uri() XSLT URI of an unparsed entity with the specified name.
See “Obtaining the URI for an Unparsed Entity”
on page 801.

Table 100. XPath Function Quick Reference

Function Source Returns
812 Stylus Studio User Guide

XPath Quick Reference
XPath Syntax Quick Reference
This topic provides a quick reference for XPath expression syntax.

Axes

XPath provides the following axes:
● ancestor

● ancestor-or-self

● attribute

● child

● descendant

● descendant-or-self

● following

● following-sibling

● namespace

● parent

● preceding

● preceding-sibling

● self

Node Tests

XPath provides the following node tests:

● * selects all nodes of the specified name. For the attribute axis, attributes are
selected. For the namespace axis, namespace nodes are selected. For all other axes,
element nodes are selected.

● comment() selects all comment nodes.

● element_name selects all element_name nodes.

● node() selects all nodes.

● processing-instruction(["some_literal"]) selects all processing instructions. If
some_literal is specified, processing-instruction() selects all processing
instructions with some_literal as their name.

● text() selects all text nodes.

Filters

A filter specifies a constraint on a node set with respect to an axis to produce a new node
set.
Stylus Studio User Guide 813

Writing XPath Expressions
Location Steps

A location step has the following format:

XPath Expression

An XPath expression has one of the following formats:

A function call or an XPath expression in parentheses can appear only at the very
beginning of an XPath expression. An expression in parentheses always returns a node
set. Any function that appears at the beginning of an XPath location step expression must
return a node set.

XPath Abbreviations Quick Reference
Table 101 defines the abbreviations you can use in XPath expressions:

AxisSpecifier::NodeTest[Filter][Filter]...

LocationStep[/LocationStep]...
FunctionCall()[Filter]/LocationStep[/LocationStep]...
(Expression)[Filter]/LocationStep[/LocationStep]...

Table 101. XPath Abbreviations Quick Reference

Abbreviation Description

No axis is specified in a
location step.

The child axis is assumed. For example, the following two
XPath expressions both return the para children of chapter
children of the context node:
chapter/para
child::chapter/child::para

@ The attribute axis. For example, the following two XPath
expressions both return para children of the context node that
have type attributes with a value of warning:
para[@type="warning"]
child::para[attribute::type="warning"]
814 Stylus Studio User Guide

XPath Quick Reference
Table 102 shows examples of abbreviations in XPath expressions.

// The descendant-or-self axis. For example, the following two
XPath expressions both return all para descendants of the context
node:
//para
/descendant-or-self::node()/child::para
However, it is important to note that the following two expressions
are not equivalent:
/descendant::para[1]
//para[1]

The first expression selects the first para element that is a
descendant of the context node. The second expression selects each
para descendant that is the first para child of its parent.

. A single dot is the abbreviation for self::node(). This selects the
context node. For example, the following two XPath expressions
both return all para descendants of the context node:
.//para
self::node()/descendant-or-self::node()/child::para

.. A double dot is the abbreviation for parent::node(). This selects
the parent of the context node. For example, the following two
XPath expressions both return the title children of the parent of
the context node:
../title
parent::node()/child::title

Table 102. Abbreviations in XPath Expressions

Example Description

para Selects the para children of the context node

* Selects all element children of the context node

node_test Evaluates all children of the context node and returns those that test
true for the particular node_test

*/para Selects all para grandchildren of the context node

para[1] Selects the first para child of the context node

Table 101. XPath Abbreviations Quick Reference

Abbreviation Description
Stylus Studio User Guide 815

Writing XPath Expressions
para[last()] Selects the last para child of the context node

/doc/chapter[5]/sect
ion[2]

Selects the second section of the fifth chapter of the doc child of
the context node

para[@type="warning"
]

Selects para children of the context node that have type attributes
with a value of warning

para[@type="warning"
][5]

Selects the fifth para child of the context node that has a type
attribute with a value of warning

para[5][@type="warni
ng"]

Selects the fifth para child of the context node if that child has a
type attribute with a value of warning

chapter[title] Selects the chapter children of the context node that have one or
more title children

//para Selects all para descendants of the document root

chapter//para Selects all para descendants of chapter children of the context
node

//olist/item Selects all item elements that have olist parents

. Selects the context node

.//para Selects the para descendants of the context node

.. Selects the parent of the context node

@* Selects all attributes of the context node

@name Selects the name attribute of the context node

../@name Selects the name attribute of the parent of the context node

Table 102. Abbreviations in XPath Expressions

Example Description
816 Stylus Studio User Guide

Chapter 11 Working with XQuery in Stylus Studio
Stylus Studio provides many features for working with XML Query (XQuery), including
a graphical mapper that allows you to construct a query without writing any code, and
tools to help you run and debug XQuery.

You can learn more about other video demonstrations of the XQuery Mapper here:
http://www.stylusstudio.com/learn_xquery.html#xquery_1.

This chapter covers the following topics:

● “Getting Started with XQuery in Stylus Studio” on page 818

● “An XQuery Primer” on page 824

● “Understanding FLWOR Expressions” on page 835

● “Building an XQuery Using the Mapper” on page 851

● “User-Defined Functions” on page 883

● “Working with Relational Data Sources” on page 889

● “Working with Zip Archive Format Files as Data Sources” on page 901

● “Updating Relational Databases” on page 905

● “Debugging XQuery” on page 926

● “Using DataDirect XQuery® Execution Plans” on page 934

XQuery support is available only in Stylus Studio XML Enterprise Suite and
Stylus Studio XML Professional Suite. Some features, like query plan, are
available only in Stylus Studio XML Enterprise Suite.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the Introduction to the XQuery
Mapper video.
Stylus Studio User Guide 817

http://www.stylusstudio.com/videos/xquery1/xquery1.html
http://www.stylusstudio.com/videos/xquery1/xquery1.html
http://www.stylusstudio.com/videos/xquery1/xquery1.html
http://www.stylusstudio.com/learn_xquery.html#xquery_1

Working with XQuery in Stylus Studio
● “Creating an XQuery Scenario” on page 939

● “Generating XQuery Documentation” on page 952

● “Using XQuery to Invoke a Web Service” on page 958

● “Using Web Services in XQuery” on page 960

● “Generating Java Code for XQuery” on page 972

● “Generating C# Code for XQuery” on page 977

Getting Started with XQuery in Stylus Studio
This section describes working with XQuery in Stylus Studio. It covers the following
topics:

● What is XQuery? on page 818

● What is an XQuery? on page 819

● The Stylus Studio XQuery Editor on page 819

What is XQuery?
XML Query (XQuery) is the World Wide Web Consortium (W3C) language for querying
XML. XQuery is a language developed by the W3C XML Query working group.

Example

The XQuery grammar allows you to define expressions like those shown in the following
sample XQuery, R-Q2.xquery:

<result>
{

for $i in doc("items.xml")/items/item_tuple
let $b := doc("bids.xml")//bid_tuple[itemno = $i/itemno]
where contains($i/description,"Bicycle")
order by $i/itemno
return
<item_tuple>

{$i/itemno}
{$i/description}
<high_bid>

{ max (for $c in $b/bid return xs:decimal($c)) }
</high_bid>

</item_tuple>
}

</result>
818 Stylus Studio User Guide

Getting Started with XQuery in Stylus Studio
This and other XQuery examples are provided in the Stylus Studio examples\XQuery
directory.

Sources for Additional XQuery Information

See An XQuery Primer on page 824 if you are just getting started with XQuery. For more
detailed information, including the formal W3C XQuery specification, visit
http://www.w3.org/XML/Query (the W3C page for XML Query).

What is an XQuery?
In Stylus Studio, an XQuery is a document with a .xquery extension. Stylus Studio
expects documents with this extension to contain a query expressed using the XML Query
language.

The Stylus Studio XQuery Editor
In Stylus Studio, you use the XQuery editor’s textual editor and graphical interfaces to
work with XQuery. The XQuery editor consists of the XQuery Source, Mapper, and Plan
tabs. You use the XQuery Source and Mapper tabs to compose an XQuery.

By default, Stylus Studio gives new XQuery files a .xquery extension. You can save
XQuery using any extension you choose. If you decide to use a different extension, use
the File Types page of the Options dialog box to associate that extension with the XQuery
editor.

XQuery Source Tab

You can use the XQuery Source tab to view, compose, preview, and debug your XQuery.
For example, you can edit query text directly, set breakpoints, and debug your XQuery on
this tab. The tab is divided into two panes:

● An editing pane, which shows the XQuery code, and

● A schema pane, which displays the schema of the source documents you are using to
build your XQuery. You can hide the schema pane to view more of the XQuery code
by clicking the show/hide button at the base of the splitter, which allows you to vary
the relative width of the two panes.

Tip You can drag schema objects directly to the editing pane. This allows you to quickly
create FLWOR and XPath expressions, for example, without writing any code or
introducing typographical errors to the source.
Stylus Studio User Guide 819

http://www.w3.org/XML/Query

Working with XQuery in Stylus Studio
Stylus Studio’s Sense:X automatic completion feature is supported for XQuery – Sense:X
simplifies editing and helps ensure well-formed XML for queries you compose manually.

You can define other XQuery editor settings on the Editor General and Editor Format
pages of the Options dialog box. (Click Tools > Options.)

You can preview the XQuery result by clicking the Preview Result button (). Results
are displayed in the Preview window at the bottom of the XQuery editor, and, optionally,
in any external application that you specify.

Figure 322. XQuery Source Tab
820 Stylus Studio User Guide

Getting Started with XQuery in Stylus Studio
Mapper Tab

The Mapper tab provides an interface that allows you to compose and view your XQuery
graphically.

The Mapper tab consists of these areas:

● Source document pane, in which you add one or more source documents.

● Target structure pane, in which you specify the structure of the result you want the
XQuery to return.

● Mapper canvas, on which you can define conditions, functions, and operations for
source document nodes to filter return values that are then mapped to the target node.

● Text pane. The text pane allows you to view the XQuery code while using the mapper.
This is a great way to see how changes to the mapper affect the XQuery code, without
the need to switch to the XQuery Source tab. Of course, the XQuery Source tab is
available if you prefer working with the code using a full-page view. All views –
Mapper tab, XQuery Source tab, and the text pane – are synchronized.

Figure 323. XQuery Editor Mapper Tab
Stylus Studio User Guide 821

Working with XQuery in Stylus Studio
As with the XQuery Source tab, you can preview XQuery results from the Mapper tab by
clicking the Preview Result button (). Debugging, however, can be performed from
the XQuery Source tab only.

See Building an XQuery Using the Mapper to learn more about the features of the XQuery
editor Mapper tab.

Plan Tab

The Plan tab displays how the DataDirect XQuery processor will execute your XQuery
code and includes information about the type of SQL statements that are used to access
relational data, when XML streaming is being used, which temporary tables are being
created, when variables are being called, and so on.

One of the main benefits of using the query plan feature is that it can help you tune your
queries for the best performance possible. See Using DataDirect XQuery® Execution
Plans on page 934 for more information.

Figure 324. Plan Tab Displays XQuery Execution Information
822 Stylus Studio User Guide

Getting Started with XQuery in Stylus Studio
XQuery Source and Mapper Tab Interaction

Changes made to an XQuery on the Mapper tab are reflected on the XQuery Source tab,
and vice versa. For example, if you start writing your XQuery on the XQuery Source tab
and then click the Mapper tab, Stylus Studio displays a graphic representation of your
XQuery code. If you next edit the XQuery graphically (adding a function or a FLWOR
block and mapping the return value to a node in the target structure, for example) and then
return to the XQuery Source tab, you will see that Stylus Studio has updated the XQuery
code based on your edits on the Mapper tab. Viewing the code on the XQuery Source tab
that Stylus Studio creates based on actions performed on the Mapper tab can be a useful
aid to learning XQuery syntax.

Note An incomplete XQuery artifact created on the Mapper tab is removed from the XQuery
you are composing when you click the XQuery Source tab because it cannot be expressed
in XQuery given its current definition. For example, imagine creating a FLWOR block
that is not mapped to a node in the target structure. The FLWOR (pronounced “flower”)
block appears on the Mapper tab, but Stylus Studio does not generate any code for it or
display it on the XQuery Source tab, and when you return to the Mapper tab you will see
that the FLWOR block has been removed.
Stylus Studio User Guide 823

Working with XQuery in Stylus Studio
An XQuery Primer
This XQuery primer was adapted from a whitepaper written by Dr. Michael Kay. You can
read the original document on the Stylus Studio Web site. This primer covers the
following topics:

● What is XQuery For?

● Your First XQuery

● Accessing XML Documents with XQuery

● XQuery and XPath

● Introduction to FLWOR Expressions

● Generating XML Output with XQuery

● Accessing Databases with XQuery

What is XQuery For?
XQuery was devised primarily as a query language for data stored in XML form. So its
main role is to get information out of XML databases — this includes relational databases
that store XML data, or that present an XML view of the data they hold.

Some people are also using XQuery for manipulating free-standing XML documents, for
example, for transforming messages passing between applications. In that role XQuery
competes directly with XSLT, and which language you choose is largely a matter of
personal preference.

In fact, some people like XQuery so much that they are even using it for rendering XML
into HTML for presentation. That's not really the job XQuery was designed for, and there
are other technologies, like XSLT, that are better suited for this purpose, but once you get
to know a tool, you tend to find new ways of using it.

Your First XQuery
Try a few simple examples to get acquainted with XQuery. Start Stylus Studio, and open
a new XQuery (File > New > XQuery File). Save the file now (if you do not, Stylus Studio
will prompt you to save it when you preview your first XQuery).

Type the following in the XQuery Editor:

“Hello, world!”
824 Stylus Studio User Guide

http://www.stylusstudio.com/xquery_primer.html

An XQuery Primer
Now, click the Preview Result button (), and Stylus Studio displays the result of this
XQuery in the Preview window:

Enter a simple equation (2+2) and click the Preview Result button (). Predictably, the
result is:

Finally, try the XQuery function current-time() and click the Preview Result button
():

Your results, will vary based on several conditions. For example, the XQuery processor
you use to execute the XQuery will affect the precision of the time value (fractions of
seconds), and the time zone (here, shown as Z) is determined by how your system is
configured.

None of these is a very useful query on its own, but within a query language you need to
be able to perform little calculations and XQuery has this covered. Further, XQuery is
designed so that expressions can be fully nested – that is, any expression can be used
within any other expression, provided that it delivers a value of the right type – and this
means that expressions that are primarily intended for selecting data within a where clause
can also be used as free-standing queries in their own right.

Accessing XML Documents with XQuery
Though XQuery is capable of handling mundane tasks like those described in the previous
section, it is designed to access XML data. Right now, we will look at some simple queries
that require an XML document as their input. For this purpose, we will use videos.xml,
which is installed with Stylus Studio in the \examples\VideoCenter directory. You can also
find a copy of this XML document on the Stylus Studio Web site.

XQuery allows you to access the file directly from either of these locations, using a
suitable URL as an argument for its doc() function. If you wanted to retrieve and display

“Hello, world!”

4

11:27:38Z
Stylus Studio User Guide 825

http://www.stylusstudio.com/examples/videos.xml

Working with XQuery in Stylus Studio
the entire file from your Stylus Studio installation directory, your doc() might look like
this:

To fetch this document from the Stylus Studio Web site, you would need a doc() like this:

(The latter doc() function will work only if you are online; and if you are behind a
corporate firewall you might have to modify your Java configuration to make it work.)

Handling URLs

URLs like those used in the previous example can be a bit unwieldy, but there are some
shortcuts you can use.

● In Stylus Studio, you can specify the source document as the Main Input on the
General tab of the Scenario Properties dialog box. Once you browse to the
appropriate file and select it, you can refer to it in your XQuery code as simply “.”
(dot).

● If you are working directly with a command line processor such as Saxon, you can
copy the file locally (c:\xquery\videos.xml, for example) and work with it from that
location. Once you have done this, you can use the command line option -s
c:\xquery\videos.xml and again be able to refer to the input document in your
XQuery code as “.” (dot).

The videos.xml Document

The videos.xml document contains a number of sections: video_template, actors, and
videos. You might want to open this document in the XML Editor to get acquainted with
it if you are not already familiar with it.

doc('file:///c:/Program%20Files/Stylus%20Studio%202011%20XML%20Professiona
l %20Suite/examples/VideoCenter/videos.xml')

doc('http://www.stylusstudio.com/examples/videos.xml')
826 Stylus Studio User Guide

An XQuery Primer
XQuery and XPath
We can access the actors section of videos.xml using this expression: .//actors. When
we execute this XQuery we get the following result:

That was our first “real” query. If you are familiar with XPath, you might recognize that
all the queries so far have been valid XPath expressions. We have used a couple of
functions – current-time() and doc() – that might be unfamiliar because they are new in
XPath 2.0, which is still only a draft; but the syntax of all the queries so far is plain XPath
syntax. In fact, the XQuery language is designed so that every valid XPath expression is
also a valid XQuery query.

This means we can write more complex XPath expressions like this one:

which gives us this output:

Different systems might display this output in different ways. Technically, the result of
this query is a sequence of two element nodes in a tree representation of the source XML
document, and there are many ways a system might choose to display such a sequence on
the screen. Stylus Studio gives you the choice of a text view, like the one shown above,

<actors>
 <actor id="00000015">Anderson, Jeff</actor>
 <actor id="00000030">Bishop, Kevin</actor>
 <actor id="0000000f">Bonet, Lisa</actor>
 <actor id="00000024">Bowz, Eddie</actor>
 <actor id="0000002d">Curry, Tim</actor>
 <actor id="00000033">Dullea, Keir</actor>
 <actor id="00000042">Fisher, Carrie</actor>
 <actor id="00000006">Ford, Harrison</actor>
 <actor id="00000045">Foster, Jodie</actor>
...etc...
</actors>

.//actors/actor[ends-with(., 'Lisa')]

<actor id="0000000f">Bonet, Lisa</actor>
<actor id="0000001b">Spoonhauer, Lisa</actor>
Stylus Studio User Guide 827

Working with XQuery in Stylus Studio
and a tree view: you use the buttons next to the Preview window to switch from one to the
other. Here is what the tree view looks like:

This example used another function – ends-with() – that's new in XPath 2.0. We are
calling it inside a predicate (the expression between the square brackets), which defines a
condition that nodes must satisfy in order to be selected. This XPath expression has two
parts: a path .//actors/actor that indicates which elements we are interested in, and a
predicate [ends-with(., ‘Lisa’)] that indicates a test that the nodes must satisfy. The
predicate is evaluated once for each selected element; within the predicate, the expression
“.” (dot) refers to the node that the predicate is testing, that is, the selected actor.

The “/” in the path informally means “go down one level”, while the “//” means “go
down any number of levels”. If the path starts with “./” or “.//” you can leave out the
initial “.”. (This assumes that the selection starts from the top of the tree, which is always
the case in our examples.) You can also use constructs like “/..” to go up one level, and
“/@id” to select an attribute. Again, this is all familiar if you already know XPath.

XPath is capable of doing some pretty powerful selections, and before we move on to
XQuery proper, let us look at a more complex example. Suppose we want to find the titles

Figure 325. XQuery Preview Window Tree View
828 Stylus Studio User Guide

An XQuery Primer
of all the videos featuring an actor whose first name is Lisa. If we look at the videos.xml
file, we see that each video in the file is represented by a video element like this one:

The query required to provide the results we desire is written like this:

Again, this is pure XPath (and therefore a valid XQuery). You can read it from left-to-
right as:

● Start at the implicitly-selected document (videos.xml)

● Select all the <video> elements at any level

● Choose those that have an actorRef element whose value is equal to one of the values
of the following:

■ Select all the <actors> elements at any level

■ Select all their <actor> child elements

■ Select the element only if its value ends with ‘Lisa’

■ Select the value of the id attribute

● Select the <title> child element of these selected <video> elements

When run against our source document, the result of this XQuery is:

<video id="647599251">
 <studio></studio>
 <director>Francesco Rosi</director>
 <actorRef>916503211</actorRef>
 <actorRef>916503212</actorRef>
 <title>Carmen</title>
 <dvd>18</dvd>
 <laserdisk></laserdisk>
 <laserdisk_stock></laserdisk_stock>
 <genre>musical</genre>
 <rating>PG</rating>
 <runtime>125</runtime>
 <user_rating>4</user_rating>
 <summary>A fine screen adaptation of Bizet's popular opera.</summary>
 <details>Placido Domingo does it again, this time in Bizet's popular opera.</details>
 <vhs>15</vhs>
 <beta_stock></beta_stock>
 <year>1984</year>
 <vhs_stock>88</vhs_stock>
 <dvd_stock>22</dvd_stock>
 <beta></beta>
</video>

//video[actorRef=//actors/actor[ends-with(., 'Lisa')]/@id]/title

<title>Enemy of the State</title>
<title>Clerks</title>
Stylus Studio User Guide 829

Working with XQuery in Stylus Studio
Many people find that at this level of complexity, XPath syntax gets rather mind-
boggling. In fact, this example just about stretches XPath to its limits. For this kind of
query, and for anything more complicated, XQuery syntax comes into its own. But it is
worth remembering that there are many simple things you can do with XPath alone, and
that every valid XPath expression is also valid in XQuery.

XPath Query Editor

Stylus Studio provides a built-in XPath Query Editor in its XML Editor that allows you
to visually edit and test complex XPath expressions, and it supports both version 1.0 and
2.0.

See “Using the XPath Query Editor” on page 732 to learn more about using this tool.

Figure 326. XPath Query Editor
830 Stylus Studio User Guide

An XQuery Primer
Introduction to FLWOR Expressions
If you have used SQL, then you will have recognized the last example as a join between
two tables – the videos table and the actors table. Join queries are not quite the same in
XML, because the data is hierarchic rather than tabular, but XQuery allows you to write
join queries in a similar way to the familiar SQL approach. The equivalent of the SQL
SELECT expression is called the FLWOR expression, named after its five clauses: for,
let, where, order by, return. Here is the last example (all videos with an actor named
‘Lisa’, rewritten this time as a FLWOR expression.

When we run this XQuery, we get the same result as before.

Let’s examine the FLWOR expression:

● The let clause simply declares a variable. We included this here because when we
deploy the query we might want to set this variable differently; for example, we might
want to initialize it to doc(‘videos.xml’), or to the result of some complex query that
locates the document in a database.

● The for clause defines two range variables: one processes all the videos in turn, the
other processes all the actors in turn. Taken together, the FLWOR expression is
processing all possible pairs of videos and actors.

● The where clause then selects those pairs that we are actually interested in. We are
only interested if the actor appears in that video, and we are only interested if the
actor’s name ends in ‘Lisa’.

● Finally the return clause tells the system what information we want to get back. In this
case we want the title of the video.

If you have been following very closely, you might have noticed one little XPath trick that
we retained in this query: most videos will feature more than one actor (though this
particular database does not attempt to catalog the bit-part players). The expression
$v/actorRef therefore selects several elements. The rules for the = operator in XPath (and
therefore also in XQuery) are that it compares everything on the left with everything on
the right and returns true if there is at least one match. In effect, it is doing an implicit join.

let $doc := .
for $v in $doc//video,
 $a in $doc//actors/actor
where ends-with($a, 'Lisa')
 and $v/actorRef = $a/@id
return $v/title
Stylus Studio User Guide 831

Working with XQuery in Stylus Studio
If you want to avoid exploiting this feature, and you want to write your query in a more
classically relational form, you could express it as follows:

This time we used a different equality operator, eq, which follows more conventional
rules than = does: it strictly compares one value on the left with one value on the right.
(But like comparisons in SQL, it has special rules to handle the case where one of the
values is absent.)

What about the O in FLWOR? That is there so you can get the results in sorted order.
Suppose you want the videos in order of their release date. Here's the revised query:

If you are wondering why FLWOR is not really a LFWOR expression: the for and let
clauses can appear in any order, and you can have any number of each. To learn more
about the FLWOR expression, see Understanding FLWOR Expressions on page 835.

Generating XML Output with XQuery
So far all the queries we have written have selected nodes in the source document. We
have shown the results as if the system copies the nodes to create some kind of result
document, and if you execute the XQuery in Stylus Studio or run Saxon from the
command line that is exactly what happens. But this is simply a default mode of
execution. In a real application you want control over the form of the output document,
which might well be the input to another application – perhaps the input to an XSLT
transformation or even another query.

let $doc := .
for $v in $doc//video,
 $va in $v/actorRef,
 $a in $doc//actors/actor
where ends-with($a, 'Lisa')
 and $va eq $a/@id
return $v/title

let $doc := .
for $v in $doc//video,
 $a in $doc//actors/actor
where ends-with($a, 'Lisa')
 and $v/actorRef = $a/@id
order by $v/year
return $v/title
832 Stylus Studio User Guide

An XQuery Primer
XQuery allows the structure of the result document to be defined using an XML-like
notation. Here is an example that fleshes out our previous query with some XML markup:

We have also changed the query so that the actor's first name is now an externally defined
parameter. This makes the query reusable. The way parameters are supplied varies from
one XQuery processor to another. In Stylus Studio, select XQuery > Scenario Properties;
click the Parameter Values tab, and Stylus Studio provides an area to specify values for
any variables defined in the XQuery.

Enter “Lisa”, in quotes (Stylus Studio expects an expression, so if the quotes are omitted,
this value would be taken as a reference to an element named <Lisa>).

declare variable $firstName as xs:string external;
<videos featuring="{$firstName}">
{
 let $doc := .
 for $v in $doc//video,
 $a in $doc//actors/actor
 where ends-with($a, $firstName)
and $v/actorRef = $a/@id
 order by $v/year
 return
 <video year="{$v/year}">
 {$v/title}
 </video>
}
</videos>

Figure 327. Entering Values for XQuery Variables
Stylus Studio User Guide 833

Working with XQuery in Stylus Studio
If instead you are running Saxon from the command line, you can enter:

Either way, our XQuery returns the following result:

As you might recall from our previous XQuery, this version of the XQuery is not
especially well-designed as it returns videos featuring different actresses named Lisa.
Take some time and modify the XQuery to see if you can improve it.

Accessing Databases with XQuery
At the start of this section, we stated that the main purpose of XQuery is to extract data
from XML databases, but all our examples have used a single XML document as input.

People sometimes squeeze a large data set (for example, a corporate phone directory) into
a single XML document, and process it as a file without the benefit of any database
system. While there are preferable alternatives, if the data volumes do not go above a few
megabytes and the transaction rate is modest, then XML-document-as-database is a
perfectly feasible storage mechanism. In other words, the examples in this section are not
totally unrealistic.

If you have got a real database, however, the form of the queries used in this section will
not need to change all that much from these examples. Instead of using the doc() function
(or simply “.”) to select a document, you are likely to call the collection() function to
open a database, or a specific collection of documents within a database. The actual way
collections are named is likely to vary from one database system to another. The result of
the XQuery collection() function is a set of documents (more strictly, a sequence of
documents, but the order is unlikely to matter), and you can process this using XPath
expressions or FLWOR expressions in just the same way as you address a single
document.

There is a lot more to databases than doing queries, of course. Each product has its own
ways of setting up the database, defining schemas, loading documents, and performing
maintenance operations such as backup and recovery. XQuery currently handles only one

java net.sf.saxon.Query sample.xquery firstName=Lisa

<videos featuring="Lisa">
 <video year="1999">
 <title>Enemy of the State</title>
 </video>
 <video year="1999">
 <title>Clerks</title>
 </video>
</videos>
834 Stylus Studio User Guide

Understanding FLWOR Expressions
small part of the job. In the future it is also likely to have an update capability, but in the
meantime each vendor is defining his own.

One particularly nice feature of XQuery is that it has the potential to combine data from
multiple databases (and freestanding XML documents). DataDirect XQuery, which
supports access to Oracle, DB2, SQL Server, and Sybase is one product that addresses this
need.

Understanding FLWOR Expressions
This XQuery primer was adapted from a whitepaper written by Dr. Michael Kay. You can
read the original document on the Stylus Studio Web site. This section covers the
following topics:

● Simple XQuery FLWOR Expressions

● The Principal Parts of an XQuery FLWOR Expression

● Other Parts of the XQuery FLWOR Expression

● Grouping

Simple XQuery FLWOR Expressions
The simplest XQuery FLWOR expression might be something like this:

This returns all of the video elements in $doc.

We can add a bit of substance by adding XQuery where and return clauses:

This returns all of the titles of videos released in 1999.

If you know SQL, that XQuery probably looks reassuringly similar to the equivalent SQL
statement:

for $v in $doc//video return $v

for $v in $doc//video
where $v/year = 1999
return $v/title

SELECT v.title
FROM video v
WHERE v.year = 1999
Stylus Studio User Guide 835

http://www.stylusstudio.com/xquery_flwor.html

Working with XQuery in Stylus Studio
And if you know XPath, you might be wondering why our XQuery cannot be written as
this:

Well, you can. This XPath expression is completely equivalent to the FLWOR expression
above, and furthermore, it is a legal XQuery query. In fact, every legal XPath expression
is also legal in XQuery. Thus the first query in this section can be written as:

Which style you prefer seems to depend on where you are coming from: if you have been
using XML for years, especially XML with a deep hierarchy as found in “narrative”
documents, then you will probably be comfortable with path expressions. But if you are
more used to thinking of your data as representing a table, then the FLWOR style might
suit you better.

As you will see, FLWOR expressions are a lot more powerful than path expressions when
it comes to doing joins. But for simple queries, the capabilities overlap and you have a
choice. Although it might be true that in SQL every query is a SELECT statement, it is
not so that in XQuery every query has to be a FLWOR expression.

The Principal Parts of an XQuery FLWOR Expression
The name FLWOR comes from the five clauses that make up a FLWOR expression: for,
let, where, order by, and return. Most of these clauses are optional: the only clause that
is always present is the XQuery return clause (though there must be at least one XQuery
for or let clause as well). To see how FLWOR expressions work, we will build up our
understanding one clause at a time.

F is for For

The behavior of the for clause is fairly intuitive: it iterates over an input sequence and
calculates some value for each item in that sequence, returning a sequence obtained by
concatenating the results of these calculations. In simple cases there is one output item for
every input item. So, this FLWOR expression:

$doc//video[year=1999]/title

$doc//video

for $i in (1 to 10)
return $i * $i
836 Stylus Studio User Guide

Understanding FLWOR Expressions
returns the sequence (1, 4, 9, 16, 25, 36, 49, 64, 81, 100). In this example, the input items
are simple numbers, and the output items are also simple numbers. Numbers are an
example of what XQuery calls atomic values; other examples are strings, dates, booleans,
and URIs. But the XQuery data model allows sequences to contain XML nodes as well
as atomic values, and the for expression can work on either.

Here is an example that takes nodes as input, and produces numbers as output. It counts
the number of actors listed for each video in a data file:

You can run this in Stylus Studio or in Saxon, using the example videos.xml file as input.
(Tips on setting up these tools are described in the previous section, An XQuery Primer.)
Here's the output from Stylus Studio:

The Preview window shows the result: a rather mundane sequence of numbers (2, 4, 3, 3,
3...).

This gives us a good opportunity to point out that a FLWOR expression is just an
expression, and you can use it anywhere an expression is allowed: it doesn't have to be at

for $v in //video
return count($v/actorRef)

Figure 328. FOR Clause in a FLWOR Expression
Stylus Studio User Guide 837

Working with XQuery in Stylus Studio
the top level of the query. There is a function, avg(), to compute the average of a sequence
of numbers, and we can use it here to find the average number of actors listed for each of
the movies in our data file:

The answer is 2.2941176 and a bit – the number of decimal places shown will depend on
the XQuery processor that you use. If you are only interested in the answer to two decimal
places, try:

which gives a more manageable answer of 2.29. (The strange name round-half-to-even
is there to describe how this function does rounding: a value such as 2.145 is rounded to
the nearest even number, in this case 2.14.) This is all designed to demonstrate that
XQuery is a functional language, in which you can calculate a value by passing the result
of one expression or function into another expression or function. Any expression can be
nested inside any other, and the FLWOR expression is no exception.

If you are coming from SQL, your instinct was probably to try and do the averaging and
rounding in the return clause. But the XQuery way is actually much more logical. The
return clause calculates one value for each item in the input sequence, whereas the avg()
function applies to the result of the FLWOR expression as a whole.

As with some of the examples in An XQuery Primer, XPath 2.0 allows you to write this
example using path expressions alone if you prefer:

We have seen a for expression that produces a sequence of numbers from another
sequence of numbers, and we have seen one that produces a sequence of numbers from a
sequence of selected nodes. We can also turn numbers into nodes: the following query
selects the first five videos.

avg(
 for $v in //video
 return count($v/actorRef)
)

round-half-to-even(
 avg(
 for $v in //video
 return count($v/actorRef)
),
2)

round-half-to-even(avg(//video/count(actorRef)), 2)

for $i in 1 to 5 return (//video)[$i]
838 Stylus Studio User Guide

Understanding FLWOR Expressions
And we can get from one sequence of nodes to another sequence of nodes. This example
shows all the actors that appear in any video:

In fact, this last example probably represents the most common kind of for expression
encountered, but we introduced it last to avoid leaving you with the impression that it is
the only kind there is.

Once again, you could write this example as an XPath expression:

However, this time the two expressions are not precisely equivalent. Try them both in
Stylus Studio: the FLWOR expression produces a list containing 38 actors, while the list
produced by the path expression contains only 36. The reason is that path expressions
eliminate duplicates, and FLWOR expressions do not. Two actors are listed twice because
they appear in more than one video.

The FLWOR expression and the “/” operator in fact perform quite similar roles: they
apply a calculation to every item in a sequence and return the sequence containing the
results of these calculations. There are three main differences between the constructs:

● The for expression defines a variable $v that is used in the return clause to refer to
each successive item in the input sequence; a path expression instead uses the notion
of a context item, which you can refer to as “.” In this example, //video is short for
./root()//video, so the reference to the context item is implicit.

● With the “/” operator, the expression on the left must always select nodes rather than
atomic values. In the earlier example //video/count(actorRef), the expression on
the right returned a number – that's a new feature in XPath 2.0 – but the left-hand
expression must still return nodes.

● When a path expression selects nodes, they are always returned in document order,
with duplicates removed. For example, the expression $doc//section//para will
return each qualifying <para> element exactly once, even if it appears in several
nested <section> elements. If you used the nearest-equivalent FLWOR expression,
for $s in $doc//section return $s//para, then a <para> that appears in several
nested sections would appear several times in the output, and the order of <para>
elements in the output will not necessarily be the same as their order in the original
document.

for $actorId in //video/actorRef
return //actors/actor[@id=$actorId]

//actors/actor[@id=//video/actorRef]
Stylus Studio User Guide 839

Working with XQuery in Stylus Studio
The for clause really comes into its own when you have more than one of them in a
FLWOR expression. We will explore that a little later, when we start looking at joins. But
first, let's take a look at the other clauses: starting with let.

L is for Let

The XQuery let clause simply declares a variable and gives it a value:

Hopefully the meaning of that is fairly intuitive. In fact, in this example you can simply
replace each variable reference by the expression that provides the expression's value.
This means that the result is the same as this:

In a for clause, the variable is bound to each item in the sequence in turn. In a let clause,
the variable only takes one value. This can be a single item or a sequence (there is no real
distinction in XQuery – an item is just a sequence of length one). And of course the
sequence can contain nodes, or atomic values, or (if you really want) a mixture of the two.

In most cases, variables are used purely for convenience, to simplify the expressions and
make the code more readable. If you need to use the same expression more than once, then
declaring a variable is also a good hint to the XQuery processor to only do the evaluation
once.

In a FLWOR expression, you can have any number of for clauses, and any number of let
clauses, and they can be in any order. For example (returning to the videos.xml data
again), you can do this:

To understand this, just translate it into English:

For each choice of genre, let’s call the set of videos in that genre $genreVideos. Now
let’s call the set of references to all the actors in all those videos $genreActorRefs.
For each actor whose ID is equal to one of the references in $genreActorRefs, output

let $maxCredit := 3000
let $overdrawnCustomers := //customer[overdraft > $maxCredit]
return count($overdrawnCustomers)

count(//customer[overdraft > 3000])

for $genre in //genre/choice
let $genreVideos := //video[genre = $genre]
let $genreActorRefs := $genreVideos/actorRef
for $actor in //actor[@id = $genreActorRefs]
return concat($genre, ": ", $actor)
840 Stylus Studio User Guide

Understanding FLWOR Expressions
a string formed by concatenating the name of the genre and the name of the actor,
separated by a colon.

Here is the result in Stylus Studio:

As a quick aside, the Stylus Studio XQuery Mapper allows you to visually map from one
or more XML input documents to any target output format. In a nutshell – click on the
Mapper tab on the bottom of the XQuery Editor. Next, click Add Source Document and

Figure 329. LET Clause in a FLWOR Expression
Stylus Studio User Guide 841

Working with XQuery in Stylus Studio
add your source document(s). Our last XQuery would look like this in the XQuery
Mapper:

The FLWOR block is graphically represented as a function block with three input ports
going into it on the left (For, Where, Order By), a flow control port on the top, and an
output port on the right. As you draw your XML mappings, Stylus Studio writes the
XQuery code; similarly, you can edit the XQuery code manually and Stylus Studio which
will update the graphical model – both views of the XQuery are kept synchronized. See
Building an XQuery Using the Mapper for more information on the Mapper module.

One important thing to note about variables in XQuery (you can skip this if you already
know XSLT, because the same rule applies there): variables cannot be updated. This
means you cannot write something like let $x := $x+1. This rule might seem very
strange if you are expecting XQuery to behave in the same way as procedural languages
such as JavaScript. But XQuery is not that kind of language, it is a declarative language
and works at a higher level. There are no rules about the order in which different
expressions are executed (which means that the little yellow triangle that shows the
current execution point in the Stylus Studio XQuery debugger and XSLT debugger can
sometimes behave in surprising ways), and this means that constructs whose result would
depend on order of execution (like variable assignment) are banned. This constraint is

Figure 330. Simple FLWOR Shown in XQuery Mapper
842 Stylus Studio User Guide

Understanding FLWOR Expressions
essential to give optimizers the chance to find execution strategies that can search vast
databases in fractions of a second. Most XSLT users (like SQL users before them) have
found that this declarative style of programming grows on you. You start to realize that it
enables you to code at a higher level: you tell the system what results you want, rather
than telling it how to go about constructing those results.

You might ask yourself at this point, Isn’t a variable being updated when we write
something like the following?

(This query shows the running time of each video. It first converts the stored value from
a string to an integer, then multiplies it by one minute (PT1M) to get the running time as a
duration, so that it can extract the hours and minutes components of the duration. Try it.)

Here the variable $x has a different value each time around the XQuery for loop. This feels
a bit like an update. Technically though, each time round the for loop you are creating a
new variable with a new value, rather than assigning a new value to the old variable. What
you cannot do is to accumulate a value as you go around the loop. Try doing this to see
what happens:

The result is not a single number, but a sequence of numbers, one for each video. This
example is actually declaring two separate variables that happen to have the same name.
You are allowed to use the same variable name more than once, but this is probably not a
good idea, because it will only get your readers confused. You can see more clearly what
this query does if we rename one of the variables.

for $v in //video
let $x := xs:int($v/runtime) * xdt:dayTimeDuration("PT1M")
return concat($v/title, ": ",
 hours-from-duration($x), " hour(s) ",
 minutes-from-duration($x), " minutes")

let $totalDuration := 0
for $v in //video
let $totalDuration := $totalDuration + $v/runtime
return $totalDuration

let $zero := 0
for $v in //video
let $totalDuration := $zero + $v/runtime
return $totalDuration
Stylus Studio User Guide 843

Working with XQuery in Stylus Studio
which is the same as this:

Hopefully it is now clear why this returns a sequence of numbers rather than a single total.
The correct way to get the total duration is to use the sum function: sum(//video/runtime).

W is for Where

The XQuery where clause in a FLWOR expression performs a very similar function to the
WHERE clause in a SQL select statement: it specifies a condition to filter the items we are
interested in. The where clause in a FLWOR expression is optional, but if it appears it
must only appear once, after all the for and let clauses. Here is an example that restates
one of our earlier queries, but this time using a where clause:

This style of coding is something that SQL users tend to be very comfortable with: first
define all the tables you are interested in, then define a WHERE expression to define all the
restriction conditions that select subsets of the rows in each table, and join conditions that
show how the various tables are related.

Although many users seem to find that this style comes naturally, an alternative is to do
the restriction in a predicate attached to one of the for clauses, like this:

Perhaps there is a balance between the two; you will have to find the style that suits you
best. With some XQuery processors one style or the other might perform better (and with
Stylus Studio, you can easily create multiple XQuery scenarios that execute the same code
but use different XQuery processors), but a decent optimizer is going to treat the two
forms as equivalent.

for $v in //video
return 0 + $v/runtime

for $genre in //genre/choice
for $video in //video
for $actorRefs in $video/actorRef
for $actor in //actor
where $video/genre = $genre
 and $actor/@id = $actorRefs
return concat($genre, ": ", $actor)

for $genre in //genre/choice
for $video in //video[genre = $genre]
for $actorRefs in $video/actorRef
for $actor in //actor[@id = $actorRefs]
return concat($genre, ": ", $actor)
844 Stylus Studio User Guide

Understanding FLWOR Expressions
Do remember that in a predicate, you select the item that you are testing relative to the
context node, while in the where clause, you select it using a variable name. A bare name
such as genre is actually selecting ./child::genre – that is, it is selecting a child of the
context node, which in this case is a <video> element. It is very common to use such
expressions in predicates, and it is very uncommon to use them (except by mistake!) in
the where clause. If you use a schema-aware processor like Saxon, then you might get an
error message when you make this mistake; in other cases, it is likely that the condition
will not select anything. The where condition will therefore evaluate to false, and you will
have to puzzle out why your result set is empty.

O is for Order By

If there is no order by clause in a FLWOR expression, then the order of the results is as
if the for clauses defined a set of nested loops. This does not mean they actually have to
be evaluated as nested loops, but the result has to be the same as if they were. That is an
important difference from SQL, where the result order in the absence of any explicit
sorting is undefined. In fact, XQuery defines an alternative mode of execution, unordered
mode, which is similar to the SQL rules. You can select this in the query prolog, and the
processor might even make it the default (this is most likely to happen with products that
use XQuery to search a relational database). Some products (Stylus Studio and Saxon
among them) give you exactly the same result whether or not you specify unordered mode
– since the XQuery specification says that in unordered mode anything goes, that is
perfectly acceptable.

Often however you want the query results in sorted order, and this can be achieved using
the order by clause. Let's sort our videos in ascending order of year, and within that in
decreasing order of the user rating:

Note that we have not actually included the sort keys in the data that we are returning
(which makes it a little difficult to verify that it is working properly; but it is something
you might well want to do in practice). We have explicitly converted the user-rating to a
number here to use numeric sorting: this makes sure that 10 is considered a higher rating
than 2. This is not necessary if the query is schema-aware, because the XQuery processor
then knows that user-rating is a numeric field.

for $x in //video
order by $x/year ascending, number($x/user-rating) descending
return $x/title
Stylus Studio User Guide 845

Working with XQuery in Stylus Studio
Ordering gets a little complicated when there is more than one for clause in the FLWOR
expression. Consider this example:

To understand this we have to stop thinking about the two for clauses as representing a
nested loop. We cannot compute all the result values and then sort them, because the result
does not contain all the data used for sorting (it orders the videos for each actor by year,
but only shows their titles). In this case we could imagine implementing the order
specification by rearranging the for clauses and doing a nested loop evaluation with a
different order of nesting; but that doesn't work in the general case. For example, it
wouldn't work if the order by clause changed to:

to sort first on the surname, then on the year, then on the first name (admittedly,
nonsensical coding, but we show it only to illustrate that it is allowed).

The XQuery specification introduces a concept of tuples, borrowed from the relational
model, and describes how the sort works in terms of creating a sequence of tuples
containing one value for each of the variables, and then sorting these notional tuples.

R is for Return

Every XQuery FLWOR expression has a return clause, and it always comes last. It
defines the items that are included in the result. What more can one say about it?

Usually the XQuery return clause generates a single item each time it is evaluated. In
general, though, it can produce a sequence. For example, you can do this:

for $v in //video
for $a in //actor
where $v/actorRef = $a/@id
order by $a, $v/year
return concat($a, ":", $v/title)

order by substring-after($a, ","),
 $v/year,
 substring-before($a, ",")

for $v in //video[genre="comedy"]
return //actor[@id = $v/actorRef]
846 Stylus Studio User Guide

Understanding FLWOR Expressions
which selects all the actors for each comedy video. However, the result is a little
unsatisfactory, because we cannot tell which actors belong to which video. It is much
more common here to construct an element wrapper around each result:

We have not discussed XQuery element and attribute constructors until now. But in
practice, a FLWOR expression without element constructors can only produce flat lists of
values or nodes, and that is not usually enough. We usually want to produce an XML
document as the output of the query, and XML documents are not flat.

This means that very often, instead of doing purely relational joins that generate a flat
output, we want to construct hierarchic output using a number of nested FLWOR
expressions. Here is an example that (like the previous query) lists the videos for each
actor, but with more structure this time:

Here we really do have two nested XQuery loops. The two queries below are superficially
similar, and in fact they return the same result:

and:

for $v in //video[genre="comedy"]
return
 <actors video="{$v/title}">
 {//actor[@id = $v/actorRef]}
 </actors>

for $v in //video[genre="comedy"]
return
 <actors video="{$v/title}">
 {for $a in //actor[@id = $v/actorRef]
 return
 <actor>
 <firstname>{substring-after($a, ",")}</firstname>
 <lastname>{substring-before($a, ",")}</lastname>
 </actor>
 }
 </actors>

for $i in 1 to 5
for $j in ("a", "b", "c")
return concat($j, $i)

for $i in 1 to 5
return
 for $j in ("a", "b", "c")
 return concat($j, $i)
Stylus Studio User Guide 847

Working with XQuery in Stylus Studio
But now add an order by clause to both queries so they become:

and:

The difference now becomes apparent. In the first case the result sequence is a1, a2, a3,
… b1, b2, b3,. In the second case it remains a1, b1, c1,… a2, b2, c2. The reason is that the
first query is a single FLWOR expression (one return clause), and the order by clause
affects the whole expression. The second query consists of two nested loops, and the
order by clause can only influence the inner loop.

So, the return clause might seem like the least significant part of the FLWOR, but a
misplaced return can make a big difference in the result. Consider always aligning the F,
L, O, W, and R clauses of a single FLWOR expression underneath each other, and
indenting any nested expressions, so that you can see what is going on. You can do this
easily with the Stylus Studio XQuery Editor.

Other Parts of the XQuery FLWOR Expression
We have explored the five clauses of the FLWOR expression that give it its name. But
there are a few details we have not touched on, partly because they are not used very often.
They are summarized in this section.

for $i in 1 to 5
for $j in ("a", "b", "c")
order by $j, $i
return concat($j, $i)

for $i in 1 to 5
return
 for $j in ("a", "b", "c")
 order by $j, $i
 return concat($j, $i)
848 Stylus Studio User Guide

Understanding FLWOR Expressions
Declaring XQuery Types

In the for and let clauses, you can (if you wish) declare the types of each variable. Here
are some examples.

Declaring types can be useful as a way of asserting what you believe the results of the
expressions are, and getting an error message (rather than garbage output) if you have
made a mistake. It helps other people coming along later to understand what the code is
doing, and to avoid introducing errors when they make changes.

Unlike types declared in other contexts such as function signatures (and unlike variables
in XSLT 2.0), the types you declare must be exactly right. The system does not make any
attempt to convert the actual value of the expression to the type you declare – for example
it will not convert an integer to a double, or extract the string value of an attribute node.
If you declare the type as string but the expression delivers an attribute node, that is a fatal
error.

XQuery Position Variables

If you have used XSLT and XPath, you have probably come across the position()
function, which enables you to number the items in a sequence, or to test whether the
current item is the first or the last. FLWOR expressions do not maintain an implicit
context in this way. Instead, you can declare an auxiliary variable to hold the current
position, like this:

This selects all the even-numbered videos – useful if you are arranging the data in a table.
You can use $pos anywhere where you might use the primary variable $v. Its value ranges
from 1 to the number of items in the //video sequence. If there are no order by clauses,
then the position variables in each for clause follow a nested-loop model as you would

for $i as xs:integer in 1 to 5 return $i*2

for $v as element(video) in //video return $v/runtime

let $a as element(actor)* := //actor return string($a)

for $v at $pos in //video
 where $pos mod 2 = 0
 return $v
Stylus Studio User Guide 849

Working with XQuery in Stylus Studio
expect. If there is an order by clause, the position values represent the position of the
items before sorting (which is different from the rule in XSLT).

There are various keywords in the order by clause that give you finer control over how
the sorting takes place. The most important is the collation: unfortunately, though, the
way collations work is likely to be very product-dependent. The basic idea is that if you
are sorting the index at the back of a book, or the names in a phone directory, then you
need to apply rather more intelligent rules than simply sorting on the numeric Unicode
code value of each character. Upper-case and lower-case variants of letters may need to
be treated the same way, and accents on letters have some quite subtle rules in many
languages. The working group defining XQuery settled on the simple rule that every
collating sequence you might want has a name (specifically, a URI rather like a
namespace URI), and it is up to each vendor to decide what collations to provide and how
to name them.

Other things you can say in the order specification include defining whether empty values
of the sort key (XQuery's equivalent of null values in SQL) should go at the start or end
of the sequence, and whether the sort should be stable, in the sense that items with equal
sort key values preserve their original order.

Multiple Assignments

One simple syntax note. Instead of writing

you can write:

The meaning of both is the same. This same technique applies to let statements as well.

Grouping
If you are used to SQL, then you might have been wondering what the equivalent to its
DISTINCT and GROUP BY keywords is in XQuery FLOWR expressions. Well, SQL does not
have one.

for $i in ("a", "b", "c")
for $j in 1 to 5
return concat($i, $j)

for $i in ("a", "b", "c"),
 $j in 1 to 5
return concat($i, $j)
850 Stylus Studio User Guide

Building an XQuery Using the Mapper
You can, however, get a fair amount of mileage from the distinct-values() function.
Here is a query that groups videos according to who directed them:

This is not an ideal solution: apart from anything else, it depends heavily on the ability of
the query processor to optimize the two nested loops to give good performance. But for
the time being, this is all there is. This is an area where vendors are very likely to offer
extensions to the language as defined by W3C.

Grouping was a notoriously weak point of XSLT 1.0, and the problem has been addressed
with considerable success in the 2.0 version of the language. XQuery will likely follow
suit.

Building an XQuery Using the Mapper
This section describes how to build a new XQuery using Stylus Studio’s XQuery Mapper.

You can learn more about other video demonstrations of the XQuery Mapper here:
http://www.stylusstudio.com/learn_xquery.html#xquery_1.

This section covers the following topics:

● Process Overview

● Data Sources

● Specifying a Target Structure

● Modifying the Target Structure

● Mapping Source and Target Document Nodes

● Simplifying the Mapper Canvas Display

● Exporting Mappings

<movies>
 {for $d in distinct-values(//director) return
 <director name="{$d}">
 { for $v in //video[director = $d] return
 <title>{$v/title}</title>
 }
 </director>
 }
</movies>

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the Introduction to the XQuery
Mapper video.
Stylus Studio User Guide 851

http://www.stylusstudio.com/videos/xquery1/xquery1.html
http://www.stylusstudio.com/videos/xquery1/xquery1.html
http://www.stylusstudio.com/videos/xquery1/xquery1.html
http://www.stylusstudio.com/learn_xquery.html#xquery_1

Working with XQuery in Stylus Studio
● Searching Document Panes

● FLWOR Blocks

● Function Blocks

● IF Blocks

● Condition Blocks

● Predicate Blocks

● SQL Function Blocks

Process Overview
The process of using the XQuery mapper to build a new XQuery consists of the following
steps:

1. Create a new XQuery file in Stylus Studio (File > New > XQuery File).

2. Click the Mapper tab in the XQuery editor.

3. Add one or more data sources (documents or relational database tables, for example).

4. Specify a target structure.

5. Map data source nodes to target structure nodes. As part of this step, you can
optionally define function, FLWOR (For each, Let, Where, Order by, Return), If, and
condition blocks to perform actions on source document nodes and map the return
value to the target structure node.

Stylus Studio uses the information expressed on the Mapper tab to compose an XQuery
that returns as its result an XML document that conforms to the structure represented by
the target structure you specify.

Each of these steps is described in greater detail in the following sections.

Working with Existing XQuery

You can, of course, open an existing XQuery in Stylus Studio. When you do, the XQuery
Source page displays the XML used to compose the XQuery, and the Mapper tab displays
the source documents, target structure, and source-target mappings that can be inferred
from the source XQuery file. All of the procedures described in this section can be
performed on new or existing XQuery files.
852 Stylus Studio User Guide

Building an XQuery Using the Mapper
Saving the Mapping

You can save the XQuery mapping – source and target document trees, as well as the
contents of the Mapper canvas – as an image. See “Exporting Mappings” on page 871.

Data Sources
The role of a data source is to provide Stylus Studio with a structure that it can use to
compose the XQuery based on how you map individual source objects (XML elements
and attributes, or table rows, for example) to nodes in the target structure. Stylus Studio
infers the structure from the data source you specify and displays this structure on the Add
Source Document pane of the Mapper tab.

In Stylus Studio, a data source can be one or more of the following:

● XML document

● XML Schema (XSD)

● Document type definition (DTD)

● Relational database table

● Microsoft Office Open XML documents

● OpenDocument Format documents

● Zip files

This section covers the following topics:

● Choosing a Data Source

● Source Documents and XML Instances

● How to Add a Source Document

● How to Remove a Source Document

● How Source Documents are Displayed

For information on using a relational database table as a source for XQuery mapper, see
“Working with Relational Data Sources” on page 889. For information on using
Microsoft Office Open XML, OpenDocument Format, and .zip files as data sources, see
“Working with Zip Archive Format Files as Data Sources” on page 901.

Choosing a Data Source

You can use one or more data sources to build an XQuery in Stylus Studio. You might
want to select multiple data sources if you need their elements or attributes to fully
describe the target structure or the desired XQuery result content, for example.
Stylus Studio User Guide 853

Working with XQuery in Stylus Studio
If you choose an XSD or DTD document, you must also choose an XML instance
document to associate with it. Stylus Studio uses the instance document associated with
a XSD or DTD source document to generate the XPath doc() function in the finished
XQuery code. This document is also used to preview XQuery results.

See Source Documents and XML Instances to learn more about how Stylus Studio treats
source documents. See Creating an XQuery Scenario to learn more about XQuery
scenarios.

Source Documents and XML Instances

As described previously, Stylus Studio uses the source document you specify to infer a
structure you can use to create mappings to the target structure. In addition to the
document structure, Stylus Studio needs document content information in order to
compose a complete XQuery. You provide this information by associating a XML
instance to each source document you specify.

Source documents can have one of three associations, each of which has implications for
the XPath expressions written by Stylus Studio when it composes the XQuery code. A
source document can be associated with

● Itself. That is, the document represented by structure displayed on the Mapper tab and
the XML instance are one in the same. In this situation, Stylus Studio generates the
doc() function in the XQuery code. For example:

● The XML document specified in the optional XQuery scenario. Only one source
document can be associated with the XQuery scenario. In this situation, Stylus Studio
does not generate the doc() function in the XQuery code. For example:
for $book in /books/book

The doc() function is not necessary because Stylus Studio uses the XQuery input
document specified in the Scenario Properties dialog box.

for $book in doc("file://c:\Program Files\Stylus Studio\examples\
simpleMappings\catalog.xml")/books/book
854 Stylus Studio User Guide

Building an XQuery Using the Mapper
By default, Stylus Studio uses the first XML document you add to the XQuery mapper
as the source XML for the XQuery scenario, as shown here:

The document specified in the Source XML URL field on the Scenario Properties
dialog box is the document used to preview XQuery results. You can select this
association for another XML document if you choose, but only one source document
may have this association.

● Some other XML instance. A XSD or DTD document used as an XQuery source
document must always be associated with an XML instance. In this situation, Stylus
Studio generates the doc() function in the XQuery code.

Figure 331. Default Source Document

Note Creating a scenario for an XQuery is optional. See Creating an XQuery Scenario.
Stylus Studio User Guide 855

Working with XQuery in Stylus Studio
Source icons

Stylus Studio uses different icons to indicate how a source is associated with the other
sources used to compose the XQuery.

How to Add a Source Document

This procedure describes how to add an XML document, an XML Schema, or a DTD as
a data source. To learn how to add a relational database table as a data source, see
“Working with Relational Data Sources” on page 889.

◆ To add an XQuery source document to XQuery mapper:

1. Click the Mapper tab if necessary.

2. Click the Add Source Document button at the top left of the Mapper tab.

The Open dialog box appears.

3. Select the document you want to use as the source document for building the XQuery.

4. Click Open.

If you selected an XML document in Step 3, the document appears in the source
document pane of the Mapper tab. Go to Step 5.

Table 103. Source Document Icons

Icon Meaning

The source document is associated with itself. This is the default for
most XML documents (and XML documents only).

The source document is associated with the XML document
specified in the XQuery scenario. This is the case with the first XML
document you add to XQuery mapper, but you can change this
association manually if you choose. See How to Change a Source
Document Association.

The source document is associated with a separate XML document
instance. XSD and DTD source documents are always associated
with an XML instance.

The source is a relational database table. A relational data source can
only be associated with itself.
856 Stylus Studio User Guide

Building an XQuery Using the Mapper
If you selected an XSD or DTD document, Stylus Studio displays the Choose Root
Element dialog box.

You use this dialog box to associate the XSD or DTD with an XML instance.

a. Select the element from the XSD or DTD document that you want to use as the
root element. The Choose root element drop-down list displays elements defined
in the document you selected in Step 3.

b. Use the Browse () button to specify the XML instance to which you want to
map the root element you have selected. The root element of the XML document
you select must be the same as the element you selected as the root element from
the XSD or DTD document.

c. Click OK.
The document appears in the source document pane of the Mapper tab. Go to
Step 5.

5. To add another source document, return to Step 2.

Figure 332. Choose Root Element Dialog Box

Note The Associate With field appears only when you add a second document to the
XQuery mapper source and that document is an XSD or DTD. You use it to specify
the XML instance that you want to associate with the XSD or DTD. This field does
not appear if the XSD or DTD is the first source document you add to the XQuery
mapper – Stylus Studio uses the XML Source document specified in the Scenario
Properties dialog box as the XML instance in this case.
Stylus Studio User Guide 857

Working with XQuery in Stylus Studio
How to Change a Source Document Association

◆ To change a source document association:

1. Right click the source document whose association you want to change.

The source document shortcut menu appears.

2. Click Associate With, and then select the document you want to associate with the
source document.

How to Remove a Source Document

◆ To remove a source document from XQuery:

1. Remove any maps from the source document to the target schema. (See Removing
Source-Target Map if you need help with this step.)

2. Right click on the source document.

The source document shortcut menu appears.

3. Select Remove Schema.

How Source Documents are Displayed

A source document is represented using a page icon, and its name is displayed using a
different color to help distinguish it from element and attribute names. The page icon is
modified based on the source document’s association with other documents. See Source
Documents and XML Instances for more information on this topic.

Note A source document cannot be removed from XQuery mapper if it is mapped to the target
structure. See Removing Source-Target Map.
858 Stylus Studio User Guide

Building an XQuery Using the Mapper
By default, only the file name itself is displayed; if you want, you can display the
document’s full path by selecting Show Full Path on the document’s shortcut menu.
(Right-click on the document name to display the shortcut menu.)

Source documents are displayed using the tree view; you can use your keyboard’s *, +,
and - number pad keys to expand and collapse selected documents.

Document structure symbols

Stylus Studio uses the following symbols to represent nodes in both source and target
document structures:

See Source icons to learn about the different ways source document icons are depicted.

Getting source document details

If you want details about the document that are not available in tree view, you can open
the document by selecting Open from the document’s shortcut menu. When you open a
document this way, Stylus Studio displays it in its own editor (the XML editor if it is an
XML document, for example).

Figure 333. Source Document Display

Table 104. Document Structure Symbols

Symbol Meaning

Repeating element

Element

Attribute

Tip If a node is required by the XML Schema or DTD associated with the target document,
a red check appears over the node symbol.
Stylus Studio User Guide 859

Working with XQuery in Stylus Studio
Specifying a Target Structure
There are two ways to specify an XQuery target structure:

● You can select an existing document from which Stylus Studio infers a structure and,
optionally, modify the structure. Existing nodes in a target structure are displayed in
blue. Nodes that you add are displayed in red. If a node is required by the associated
XML Schema or DTD, a red check appears over the node symbol.

● You can build a structure from scratch, starting with the root element and defining
other elements and attributes as needed. Nodes for target structures you define are
displayed in red.

This section covers the following topics:

● Using an Existing Document

● Building a Target Structure

See Modifying the Target Structure to learn about the types of changes you can make to
a target structure.

Using an Existing Document

◆ To use an existing document to provide the XQuery target structure:

1. Click the Mapper tab if necessary.

2. Click the Set Target Document button at the top left of the Mapper tab.

The Open dialog box appears.

3. Select the document you want to use to provide the target structure for defining the
XQuery.

4. Click Open.

The structure of the document you select appears in the target document pane of the
Mapper tab.

Building a Target Structure

To build a target structure from scratch, you first create a root element, and then define
child elements and attributes as needed.
860 Stylus Studio User Guide

Building an XQuery Using the Mapper
How to create a root element

◆ To create a root element:

1. Click the Mapper tab if necessary.

2. Right click the area underneath the Set Target Document button.

The target document shortcut menu appears.

3. Select Create Root Element.

The Name dialog box appears.

4. Type a name for the root element and click OK.

The root element you specified appears in the target document pane of the Mapper
tab.

How to create elements and attributes

◆ To create elements and attributes:

1. Click the Mapper tab if necessary.

2. Select the attribute or element to which you want to add a child element or attribute.
If you have just created a root element, select the root element.

3. Right click the area underneath the Set Target Document button.

The target document shortcut menu appears.

4. Choose one of the following:
❍ Add Attribute
❍ Add Child Element

❍ Insert Element After (This choice is not applicable to the root element; it creates
the element as a sibling of the selected element.)

Figure 334. Name Dialog Box

Note You can create elements and attributes in a new or existing target structure.
Stylus Studio User Guide 861

Working with XQuery in Stylus Studio
The Name dialog box appears.

5. Type a name for the node and click OK.

The node you specified is added to the target structure in the Mapper tab.

Modifying the Target Structure
This section describes the techniques you can use to modify the structure and content of
an XQuery mapper target structure. It covers the following topics:

● Adding a Node

● Removing a Node

● Setting a Text Value

Adding a Node

See How to create elements and attributes.

Removing a Node

◆ To remove a node from the target structure:

1. Remove any links to the node you want to remove from the target structure. See
Removing Source-Target Map if you need help with this step.

2. Select the node and press the Delete key.

Alternative: Right-click the node and select Remove Node from the shortcut menu.

Figure 335. Name Dialog Box

Note Before you can remove a node, you must delete any links to that node. See Removing
Source-Target Map.
862 Stylus Studio User Guide

Building an XQuery Using the Mapper
Setting a Text Value

You can set text values for target structure elements and attributes. You might want to do
this if you are composing an XQuery with an element or attribute that requires a fixed
value, instead of using a value gathered from an input XML document.

Here is the XQuery code Stylus Studio generates for the Title element when a text value
is specified for it:

Stylus Studio displays a red letter T for nodes for which you define a text value: .

◆ To set a text value for a target structure node:

1. Right-click the node for which you want to set the text value.

The shortcut menu appears.

2. Select Set Text Value from the shortcut menu.

The Value dialog box appears.

3. Type the string you want to use as the text value and click OK.

Mapping Source and Target Document Nodes
You map a source document node to a target structure node using drag and drop to create
a link between the two nodes. Stylus Studio composes XQuery code based on these maps.

This section covers the following topics:

● Preserving Mapper Layout

● Left and Right Mouse Buttons Explained

● How to Map Nodes

● Link Lines Explained

<Book>
<Title>Confederacy of Dunces</Title>

</Book>

Figure 336. Value Dialog Box
Stylus Studio User Guide 863

Working with XQuery in Stylus Studio
● Removing Source-Target Map

Preserving Mapper Layout

As you add function blocks to the XQuery mapper, Stylus Studio places them in the center
of the mapper canvas. You can change the default placement of function blocks by
dragging and drag and dropping them where you like. Stylus Studio preserves the
placement you select within and across sessions (as you toggle between the mapper and
the XQuery Source tab, for example).

As you use the splitter in the XQuery mapper to widen the source and target document
panes, the size of the mapper canvas is reduced. The Fit in Mapper Canvas button (),
located at the top of the XQuery mapper, redraws the diagram in whatever space is
currently available to the mapper canvas. This feature is also available from the mapper
short-cut menu (right-click anywhere on the mapper canvas to display the short-cut
menu).

Left and Right Mouse Buttons Explained

You can use either the left or the right mouse button to perform the drag and drop
operation used to create source-target mappings in XQuery.

If you use the left mouse button to perform the drag operation, the link always maps the
source node to the target node, one-to-one, without making any changes to the target
structure.

Tip You can also show links for visible nodes, or links for just the node you select. See
Simplifying the Mapper Canvas Display.
864 Stylus Studio User Guide

Building an XQuery Using the Mapper
If you use the right mouse button, Stylus Studio displays a shortcut menu that provides
you with alternatives for modifying the target structure.

Using this menu, you can easily perform many operations. For example, you can

● Map a source document node to an existing target structure node – this menu choice,
Map to This Node, is the same as creating the link using the left mouse button.

● Add a source document node (element or attribute) as an attribute of the target
structure node you select and map the two nodes.

● Add a source document node as a child element of the target structure node you select
and map the two nodes.

● Add a source document node as a sibling of the target structure node you select and
map the two nodes.

● Copy the entire source document node – its structure and its content – to the target
structure and map it.

How to Map Nodes

◆ To map nodes:

1. Using either the left or right mouse button, drag the source document element or
attribute to the appropriate node on the target structure.

2. When the pointer is on the appropriate target element, release the mouse button to
complete the link.

Figure 337. Linking Using the Right Mouse Button Displays a Shortcut Menu
Stylus Studio User Guide 865

Working with XQuery in Stylus Studio
Link Lines Explained

Stylus Studio draws lines for the maps you create from source document nodes to target
structure nodes. Different line styles are used to convey information about the XQuery
represented by the node mapping. There are three line styles:

● Thin

● Dashed

● Thick

The sample files used to illustrate these styles are books.xml and catalog.xml, from the
Stylus Studio examples\simpleMappings directory.

Thin line

A thin line indicates that the XQuery code generated by Stylus Studio copies content from
the source node to the target node. Such a line is created when you map one element or
attribute to another using the left mouse button, or any of the following choices on the
map shortcut menu:

● Create Root Element and Map It

● Add Attribute and Map It

● Add Child Element and Map It

● Insert Element After and Map It

In addition, the structure required to navigate to the node is also generated if it does not
already exist in the XQuery. For example, consider the map between the title element in
books.xml and the Title element in catalog.xml:

Figure 338. Thin Lines in XQuery Mapper
866 Stylus Studio User Guide

Building an XQuery Using the Mapper
This map results in Stylus Studio composing the following XQuery code:

The content is expressed as {/books/book/title/text(), and this statement is preceded by
the structure needed to locate the title element content.

Dashed line

A dashed line indicates that only structure code is being generated. Such a line is created
when you use a FLWOR or IF block. For example, consider the map between the book
and Book repeating elements:

A map involving a FLWOR block results in the following code:

<Catalog>
<Book>

<Title>
{/books/book/title/text()}

</Title>
</Book>

</Catalog>

Figure 339. Dashed Lines in XQuery Mapper

<Catalog>
{

for $book in /books/book
return
<Book>

<Title/>
</Book>

}
</Catalog>
Stylus Studio User Guide 867

Working with XQuery in Stylus Studio
Notice that the FOR loop returns only structure (shown in italics), not content. To add
content, we could also map the title element to the Title element, which results in the
following:

Of course, the FLWOR block can be used to define much more complex expressions,
involving maps from source document nodes to its WHERE and ORDER BY ports, for
example.

Thick line

A thick line indicates that the XQuery code generated by Stylus Studio replicates the
complete structure and content of the source document node in the target. Such a map is
created when you use the Copy Node choice on the link shortcut menu. Consider the
following map – the bookid attribute on the source was copied to the target as a child of
the Book repeating element:

<Catalog>
{

for $book in /books/book
return
<Book>

<Title>
{$book/title/text()}

</Title>
</Book>

}
</Catalog>

Figure 340. Thick Lines in XQuery Mapper
868 Stylus Studio User Guide

Building an XQuery Using the Mapper
For this type of map, Stylus Studio creates the XQuery code required to duplicate the
source structure and content in the target, as shown in the following sample:

Notice that the bookid attribute is displayed in gray in the target structure pane. This
indicates that you cannot edit it.

Removing Source-Target Map

◆ To remove a map from a source document node to a target element node:

1. Select the line that represents the map you want to delete.

2. Press the Delete key.

Alternative: Select Delete from the line shortcut menu (right click on the line to
display the shortcut menu).

Simplifying the Mapper Canvas Display
By default, the XQuery Mapper displays all links between source and target document
nodes, regardless of whether or not the node associated with a link is currently visible in
the Source Document or Target Document pane. Further, as your XQuery code becomes
more complex, the mapper canvas can become dense with graphical representations of the
functions defined in the code and the links that represent them. Consider this example of

<Catalog>
<Book>

{/books/book/@bookid}</Book>
</Catalog>

Note Select the portion of the line that is drawn on the XQuery mapper canvas.
Stylus Studio User Guide 869

Working with XQuery in Stylus Studio
XML-Q4.xquery, one of the sample XQuery files in the Examples project installed with
Stylus Studio.

You can hide links for nodes that are not currently visible in the Source Document or
Target Document pane by clicking the Hide Links for Nodes that are not Visible button,
as shown in Figure 342:

Figure 341. Mapper Shows Links to All Nodes, Visible or Not

Figure 342. Simply the Mapper by Hiding Links
870 Stylus Studio User Guide

Building an XQuery Using the Mapper
When you use this feature, Stylus Studio displays

● Links in the Mapper canvas only if both nodes are currently visible in the document
panes

● Green arrows (like the ones shown in Figure 343) in the document panes if only one
of two linked nodes is currently visible.

Other Mapper Display Features

In addition to displaying links for only those nodes that are visible in both document
panes, you can use the document node shortcut menu (right-click on a node in a document
pane) to

● Show links to a specific node

● Hide links to a specific node

● Show/hide all links

Exporting Mappings
You can export a mapping – source and target document trees and Mapper canvas
contents – as an image file. The default image format is JPEG (.jpg), but you can choose
from other popular image file formats such as .bmp and .tiff.

The exported image reflects the document trees at the time you export the image – if you
have collapsed a node in Stylus Studio, for example, that node is also collapsed in the
exported image. However, the exported image includes the entire document tree and
Mapper canvas, not just what is currently visible on the Mapper tab.

By default, all source-target document links are displayed. However, if you have chosen
to hide or show links for only certain nodes, the exported image reflects that choice and
displays only the links for the nodes as you have specified. See “Simplifying the Mapper
Canvas Display” on page 869 for more information on hiding and showing links.

Figure 343. Arrows Identify Partially Available Links
Stylus Studio User Guide 871

Working with XQuery in Stylus Studio
◆ To export an XQuery mapping:

1. Optionally, hide links for any nodes in the source or target documents that you do not
want to appear in the exported image.

2. Select XQuery > Export Mapping as Image from the Stylus Studio menu.

Stylus Studio displays the Save As dialog box.

3. Specify a URL for the file.

4. Optionally, change the image type. (The default is JPEG; .bmp and .tiff are also
available.)

5. Click Save.

Searching Document Panes
You can search document panes using the Find dialog box.

You can restrict your search to elements and/or attributes, and you can even search using
regular expressions to define your match pattern.

◆ To display the Find dialog box:

1. Right-click in the document pane.

2. Select Find from the shortcut menu.

FLWOR Blocks
This section describes how to work with FLWOR blocks in the XQuery Mapper tab. It
covers the following topics:

● Parts of a FLWOR Block

● Creating a FLWOR Block

Figure 344. You Can Search Document Panes
872 Stylus Studio User Guide

Building an XQuery Using the Mapper
Parts of a FLWOR Block

FLWOR blocks are drawn as a green block with an illustration of a flower at its center,
and five connectors, called ports, placed along the block’s border:

For, Order by, and Return ports

You define a FLWOR statement’s For and Order by clauses by mapping source document
elements and attributes to them, as appropriate. For example, if you wanted your XQuery
to return a list of books ordered by publication date, you would map the book repeating
element in books.xml to the FLWOR block’s For port, and the Return port to the Book
repeating element in catalog.xml. (As an alternative, you could map the two repeating
elements directly, and Stylus Studio would create the FLWOR block and this mapping for
you automatically, as described in Creating a FLWOR Block). Next, you would map the
source document pubdate attribute to the Order by port. For a FLWOR block defined in
this way, Stylus Studio generates the following XQuery:

Where port

The input for the Where port must be the output port of another block, such as a condition,
IF, or function block. Imagine you have two source documents – you can create an Equal
condition block, and specify that the content of an element in one source document must
match the content of an element in the other source document, and map the return value

Figure 345. FLWOR Block

<Catalog>
{

for $book in /books/book
order by $book/@pubdate
return
<Book/>

}
</Catalog>
Stylus Studio User Guide 873

Working with XQuery in Stylus Studio
of this condition to the Where port on the FLWOR block. Creating an Equal condition that
specifies that the bookid attribute must be equal to the title element results in Stylus
Studio generating the following XQuery code, for example:

See IF Blocks and Function Blocks for information on using other types of blocks in
XQuery mapper.

Flow port

The Flow port, which is also present on IF and function blocks, allows you to link the
result from other FLWOR, IF, and function blocks to define a conditional execution order
for your XQuery expressions. You might decide you want a particular For each statement
executed only after performing a certain function, for example. Inputs for the Flow port
include the Return port of IF, function, and other FLWOR blocks.

Creating a FLWOR Block

You can create FLWOR blocks in the XQuery Mapper tab in one of two ways:

● Right-click on the mapper canvas and select New | FLWOR Block from the shortcut
menu.

● Map one repeating element to another – Stylus Studio automatically creates a
FLWOR block, mapping the source document node to the For port, and the Return
port to the target structure node. Consider this code, which Stylus Studio generated
after mapping the book repeating element in books.xml to the Book repeating element
in catalog.xml:

<Catalog>
{

for $book in /books/book
where $book/@bookid = $book/title
order by $book/@pubdate
return
<Book/>

}
</Catalog>

<Catalog>
{

for $book in /books/book
return
<Book/>

}
</Catalog>
874 Stylus Studio User Guide

Building an XQuery Using the Mapper
Function Blocks
Stylus Studio supports standard functions defined by the W3C and any user-defined
functions you might have created. This section describes how to work with function
blocks in Stylus Studio and covers the following topics:

● Standard Function Block Types

● Creating a Function Block

● Parts of a Function Block

● User-Defined Functions

● concat Function Blocks

See Using Web Services in XQuery on page 960 to learn about the wscall function.

Standard Function Block Types

Stylus Studio provides graphic support for the following types of XQuery functions:

● anyURI

● Accessor

● Aggregate

● Boolean

● Context

● DataDirect XQuery

● Date/time, duration

● Error

● Node

● Numeric values

● QName

● Sequence

● Sequence generator

● Special constructor

● String

● Trace

If a standard function does not provide the functionality you need, create a user-defined
function. See User-Defined Functions.
Stylus Studio User Guide 875

Working with XQuery in Stylus Studio
Creating a Function Block

The procedure for creating standard and user-defined function blocks varies slightly:

◆ To create a standard function block:

1. Right-click on the mapper canvas.

2. Select New > Function Block from the shortcut menu. Available functions are
displayed in submenu categories.

◆ To create a user-defined function block:

1. Right-click on the mapper canvas.

2. Select New > User Functions from the shortcut menu.

Any user-defined functions defined in the XQuery source are displayed in a sublist.

See User-Defined Functions to learn more about creating user-defined functions in
Stylus Studio.

Parts of a Function Block

Function blocks are drawn as a purple block with an italic “f” at its center, and connectors,
called ports, placed along the block’s border. Input ports (none or more based on the
function), the Flow port at the top, and the Return port on the right:

Input ports

Input ports are on the left side of the function block. The number and definition of input
ports varies from function to function. To specify a value for an input port, drag a source
document element or attribute to the port and release it.

Flow port

Flow ports, on the top of function blocks, are the same for FLWOR, function, and IF
blocks. See Flow port.

Figure 346. Function Block
876 Stylus Studio User Guide

Building an XQuery Using the Mapper
Return port

The Return port is on the right side of the function block. You use the Return port to map
the function result directly to a target structure element or attribute, or to a FLWOR, IF,
condition, or another function block.

User-Defined Functions

You can declare your own functions in XQuery. Such functions are referred to as user-
defined functions. For more information, see User-Defined Functions on page 883.

concat Function Blocks

There are three types of concatenation (concat) functions for strings:

● concat() as string allows you to specify a literal value that you might wish to
concatenate to some other value in your XQuery.

● concat($op1 as string?) as string allows you to specify a variable that you might
wish to concatenate to some other value.

● concat($op1 as string?, $op2 as string?, ...) as string allows you to concatenate
two or more variables.

Note that only the first two input ports are associated with variables ($op1 as string?
and $op2 as string?). When you map a value to the third input port (...), Stylus
Studio automatically adds a fourth input port to allow you concatenate a fourth value.
This behavior is repeated for each additional string you define.

Figure 347. concat() as string

Figure 348. concatn($op1 as string?)

Figure 349. concat($op1 as string?, $op2 as string?, ...)
Stylus Studio User Guide 877

Working with XQuery in Stylus Studio
IF Blocks
IF blocks have a single input port, labeled condition; a Flow port; and two result ports: if
then, and if else.

You use IF blocks to compose if then, else XQuery expressions, such as the following:

This expression, for example, was composed by mapping

● The title element in the source document to the IF block’s input port.

● The if then result port to the Title element in the target structure.

● The if else result port to the ISBN element in the target structure.

IF blocks create a structure if the if then or if else branches are true. These ports can
be connected to the target schema; otherwise they can be connected to Flow ports of
FLWOR, function, and other IF blocks.

Condition Blocks
The Stylus Studio XQuery mapper allows you to graphically define the following types
of conditions:

● Equal (=)

● Less than (<)

Figure 350. IF Block

<Book>
{

if($book/title) then
<Title/>

else
<ISBN/>

}
</Book>
878 Stylus Studio User Guide

Building an XQuery Using the Mapper
● Greater than (>)

● Less than or equal to (<=)

● Greater than or equal to (>=)

● and (&)

● or (||)

All condition blocks have two input ports and a single Return port, as shown in this
example of a greater than block.

You can map the Return port to a target structure element or attribute, or to the input port
on a FLWOR, function, IF, or another condition block.

Predicate Blocks
A predicate allows you to filter data returned from an XQuery. For example, in books.xml,
you might want to return only those books whose bookid attribute was within a specified
range of values. In Stylus Studio, you can display (and create) predicates as predicate
blocks in XQuery Mapper.

A predicate block in XQuery Mapper is rendered as a pair of binoculars. It has two input
ports – Context (shown as data in the predicate block’s tool tip) and Expression – and a
single Return port, as shown in this example of a greater than block.

Enabling Predicate Blocks

You can create predicates in the XQuery source at any time, but if you want them
displayed in the Mapper canvas and/or you want to be able to create them graphically, you
need to first enable them.

Figure 351. Greater Than Block

Figure 352. Predicate Block
Stylus Studio User Guide 879

Working with XQuery in Stylus Studio
◆ To enable predicate blocks:

1. Select Tools > Options from the Stylus Studio menu.

2. Navigate to Module Settings > XQuery > Mapper.

3. Select the Display predicates in XPath expressions in the canvas option.

Predicates will be displayed in the next XQuery file you open in Stylus Studio.

Creating a Predicate Block

◆ To create a predicate block:

1. Ensure that predicates have been enabled in Stylus Studio. See “Enabling Predicate
Blocks” on page 879 if you need help with this step.

2. Open an XQuery file.

3. Click the Mapper tab.

4. Right-click the Mapper canvas.

5. Select Conditional Block > XPath predicate.

Example

Following is a simple example that selects all books books.xml whose bookid attribute
equals 2. This example uses the books.xml and catalog.xml files in the simpleMappings
folder in the examples project.

1. Ensure that predicates have been enabled in Stylus Studio. See “Enabling Predicate
Blocks” on page 879 if you need help with this step.

2. Open an XQuery file.

3. Click the Mapper tab.

4. Drag and drop books.xml to the Add Source Document pane, and drag and drop
catalog.xml to the Set Target Document pane.

5. Drag title to Title.

6. Right-click the Mapper canvas and select Conditional Block > XPath predicate.

The predicate block appears on the Mapper canvas.
880 Stylus Studio User Guide

Building an XQuery Using the Mapper
7. Since we want to look for all book elements, drag book to the predicate block’s
Context port.

Next, we use the conditional block to create predicate expression (that is, “only those
book elements whose bookid attribute equals 2”).

8. Right-click the Mapper canvas and select Conditional Block > =.

The equal block appears on the Mapper canvas.

9. Drag bookid to the first input port on the equal block.

10. Double-click the second port on the equal block and specify 2 for the value.

11. Drag the output port on the equal block to the expression port on the predicate block.

12. Finally, drag the output port on the predicate block to the control port on the link
connecting title to Title.

At this point, your diagram should look something like this.

As you can see, Stylus Studio created the predicate, [./@bookid = 2], as part of the
XPath expression used to query books.xml. (Note that we defined the document using
the variable $a to simplify the XPath expression.)

Figure 353. Predicate Block Defined in XQuery Mapper
Stylus Studio User Guide 881

Working with XQuery in Stylus Studio
13. Preview the XQuery by clicking the Preview Result button ().

The result appears in the Preview window:

SQL Function Blocks
A SQL function block is used to represent one of three DataDirect XQuery built-in
functions that can be used to update relational data bases. Supported SQL statements and
the SQL function blocks used to represent them are shown in the following table.

For more information about using SQL blocks to create XQuery code, see “Updating
Relational Databases” on page 905.

Figure 354. Predicate Result

Table 105. SQL Block Symbols

SQL Statement SQL Block Symbol

INSERT

UPDATE

DELETE
882 Stylus Studio User Guide

User-Defined Functions
User-Defined Functions
A user-defined function is an XQuery function that you define. Consider the following
example, which illustrates the total-price user-defined function:

The total-price user-defined function takes an inventory element as its argument and
returns a sum reflecting the dollar value of that inventory (quantity * price). Here is an
example of how it might be used (the user-defined function is shown in italics):

When you create a user-defined function, Stylus Studio adds it to the New > User
Functions shortcut menu available when you right-click the mapper canvas.

This makes it easy to reuse a user-defined function on the Mapper tab once it has been
defined in the XQuery source. See “Building an XQuery Using the Mapper” on page 851
for more information.

Another way to use user-defined functions is to include them in a library module. You can
then import this library module into other XQuery instead of rewriting the user-defined

declare function total-price($i as element) as xs:decimal
{
 let $subtotals := for $s in $i return $s/quantity * $s/USPrice
 return sum($subtotals)
};

<Catalog>
{

for $book in /books/book
return
<Book>

<Price>
{total-price($book/@bookid)}

</Price>
</Book>

}
</Catalog>

Figure 355. User-Defined Functions
Stylus Studio User Guide 883

Working with XQuery in Stylus Studio
function each time you need it. See “Working with XQuery Library Modules” on
page 921

Creating a User-Defined Function
You can create a user-defined function by typing its definition in the XQuery Source tab,
but it can be easier to have Stylus Studio create a user-defined function for you. You do
this by selecting existing code and refactoring that code as a user-defined function. Any
complete block of code can be used for refactoring. Examples include XML fragments
and FLWOR expressions.

When you create a user-defined function using the refactoring feature, Stylus Studio

● Creates a function declaration for the newly created user-defined function

● Replaces the code you selected with a function call to the user-defined function

◆ To create a user-defined function:

1. In the XQuery Source tab or the Text pane of the XQuery Mapper tab, select the
fragment you want to use to create your user-defined function.

Consider the following example, which uses the createFullOrder.xquery that is part
of the pipelines example project installed with Stylus Studio.
884 Stylus Studio User Guide

User-Defined Functions
2. Drag select the code you want to use to create the user-defined function.

3. Right-click to display the short-cut menu and choose Refactor as Function:

Figure 356. Creating a User-Defined Function

Figure 357. Refactoring Code as a User-Defined Function
Stylus Studio User Guide 885

Working with XQuery in Stylus Studio
Stylus Studio displays the New Function dialog box.

A default name, udFunctionN, where ud stands for “user-defined” and N is a unique
number, appears in the Enter the name for the new function field.

4. Click OK to use the default name, or type any valid name you choose and then click
OK.

The function declaration and a call to that function are added to your XQuery code.
For example:

Figure 358. New Function Dialog Box

Figure 359. Function Declaration for User-Defined Function
886 Stylus Studio User Guide

User-Defined Functions
Working with User-Defined Functions
The Stylus Studio XQuery Editor provides several useful tools to help you work with
user-defined functions in your XQuery code.

● Find all uses

● Go to definition

● Rename

Finding Uses of a User-Defined Function

◆ To identify all uses of a user-defined function:

1. Place the pointer on the user-defined function declaration.

2. Right-click the function declaration.

3. Choose Find Function Use from the short-cut menu.

Stylus Studio displays a teal bookmark adjacent to each occurrence of the user-defined
function, including the line on which the user-defined function is declared.

Tip You can use all of these tools for variables defined in your XQuery code.
Stylus Studio User Guide 887

Working with XQuery in Stylus Studio
Locating a User-Defined Function Declaration

◆ To locate a user-defined function declaration:

1. Place the pointer on an occurrence of the user-defined function.

2. Right-click.

3. Choose Go to Function Definition from the short-cut menu.

Stylus Studio moves the focus to the function declaration and displays the function
name in reverse video.

Figure 360. Finding All Uses of a User-Defined Function
888 Stylus Studio User Guide

Working with Relational Data Sources
Renaming a User-Defined Function

When you rename a user-defined function, the name is changed throughout the current
XQuery.

◆ To rename a user-defined function:

1. Place the pointer on any instance of the user-defined function name.

2. Right-click.

3. Choose Rename from the short-cut menu.

Stylus Studio displays the Rename dialog box.

The current name appears by default.

4. Enter a new name and click OK.

The user-defined function’s name is changed throughout the XQuery.

Working with Relational Data Sources

As implemented in Stylus Studio, the XQuery collection() function allows you to
include relational database tables and views in your XQuery as if they were XML
documents. (The collection() function is implementation-specific – different vendors
have implemented it in different ways. In some implementations, for example, the
collection() function takes as its argument a URL that specifies an XML document.)

This section describes how to work with the collection() function in Stylus Studio.

Figure 361. Renaming a User-Defined Function

Support for the XQuery collection() function is available only in Stylus Studio XML
Enterprise Suite.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the XQuery Collections video.
Stylus Studio User Guide 889

http://www.stylusstudio.com/videos/ddxqdemo/datadirectxquery.html
http://www.stylusstudio.com/videos/ddxqdemo/datadirectxquery.html

Working with XQuery in Stylus Studio
A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

This section covers the following topics:

● “Using the collection() Function in Stylus Studio” on page 890

● “How the collection() Function is Processed” on page 890

● “Creating a Database Connection” on page 891

● “Creating a collection() Statement” on page 896

● “Updating Relational Databases” on page 905

● “Other Ways to Register a Database Configuration” on page 900

Using the collection() Function in Stylus Studio
The process of using the collection() function in Stylus Studio consists of these basic
steps:

1. Create a connection to the database server whose tables and/or views you want to
query. You create database connections from the File Explorer window.

2. Register the database connection with your XQuery file. This process allows the
database’s tables and views to be used in your XQuery code.

3. Invoke the collection() function in your XQuery code. You can type the
collection() statement by hand, or have Stylus Studio create it for you.

4. Ensure that the processor specified in the XQuery scenario is the DataDirect XQuery
processor.

These steps are described in greater detail later in this section.

How the collection() Function is Processed
The DataDirect XQuery processor converts the XQuery code to SQL statements and
pushes the SQL directly to the database server. Results are returned to Stylus Studio as
XML and displayed in the Preview window.

Because it processes XQuery as SQL on the database server, the DataDirect XQuery
processor can provide performance superior to that of other XQuery processors when
querying relational data as XML.
890 Stylus Studio User Guide

http://www.stylusstudio.com/xml_videos.html

Working with Relational Data Sources
Database Connections

The database connection is established when the XQuery code is executed and closed as
soon as a result is returned. Connection settings used are those associated with the data
source used to create the XQuery. See “Creating a Database Connection” on page 891 for
more information on this topic.

Handling Invalid Characters

Some characters, like spaces, are valid in SQL but are invalid in XML. Invalid characters
are escaped using SQL/XML escaping convention when the relational data is converted
to XML. For example, Stylus Studio would create an XML tag for a column named last
name as last_x0020_name.

Creating a Database Connection
Before you can execute a collection() function in an XQuery, you need to create a
database connection. This is part of the process of making the database tables and views
available to your XQuery code.

This section covers the following topics:

● Supported Databases

● The Connection Settings Dialog Box

● Using the Server URL Field

● How to Create a Database Connection

Supported Databases

Stylus Studio provides support for the following relational databases:

● IBM DB2

● Informix

● Microsoft SQL Server

● MySQL

● Oracle

● PostgreSQL

● Sybase

For specific version support, see
http://www.datadirect.com/products/xquery/matrix/ddxquery.htm.
Stylus Studio User Guide 891

http://www.datadirect.com/products/xquery/matrix/ddxquery.htm

Working with XQuery in Stylus Studio
Drivers for most of these databases are bundled with Stylus Studio. For some, like
PostgreSQL, for example, you need to specify the classpath for the database driver.

The Connection Settings Dialog Box

In Stylus Studio, you use the Connection Settings dialog box to specify database
connection properties.

Settings vary from database to database, but they typically include the following:

● You use the Database Type field to specify the database to which you want to
connect. See Supported Databases for a complete list.

● If you are using the PostgreSQL databases, you need to specify the location of the
JDBC driver for that database in the Driver Classpath field. (Drivers for other
relational databases are bundled with Stylus Studio.)

● The server URL and other connection parameters. In addition to the server’s location,
connection parameters can include the server name, the port through which the
connection is established, and other information, such as a server ID (SID). See Using
the Server URL Field for more information.

● You use the Username and Password fields to specify the database user you want to
associate with this data source.

Using the Server URL Field

You use the Server URL field to identify the server hosting the database to which you
want to connect, the port to use, and any other required or optional parameters. For

Figure 362. Connection Settings Dialog Box
892 Stylus Studio User Guide

Working with Relational Data Sources
example, the string used to connect to a Microsoft SQL Server database might look like
this:

The specific syntax of the string you enter in the Server URL field varies based on
database type. Consult your database documentation for information regarding
connectivity syntax and optional parameters.

How to Create a Database Connection

◆ To create a database connection:

1. Display the File Explorer window if it is not already open (View > File Explorer).

2. In the File Explorer window, right-click the RelationalDB icon and select New Server
from the short-cut menu.

Stylus Studio displays the Connection Settings dialog box.

3. Specify the information needed to create the database connection. See The
Connection Settings Dialog Box if you need help with this step.

//invanuccio:1521;DataBaseName=pubs

Server address Port Database name

Tip Stylus Studio populates the Server URL field with a default string appropriate for the
database you specify in the Database Type field.

Figure 363. Connection Settings Dialog Box
Stylus Studio User Guide 893

Working with XQuery in Stylus Studio
4. Did you select a database in the Database Type field for which you must specify a
driver?

If yes, go to Step 5.

If no, go to Step 6.

5. When you select a database in the Database Type field for which you must specify a
driver, the Driver Classpath field becomes enabled. To specify the driver location:

a. Click the more button ().
The Set Classpath for the JDBC Driver dialog box appears.

b. Click the browse folders () button.
A new entry field appears in the Locations list box. Two buttons appear to the
right of the entry field.

Figure 364. Set Classpath for the JDBC Driver Dialog Box
894 Stylus Studio User Guide

Working with Relational Data Sources
c. To add a JAR file to the classpath, click the browse jar files button ().
Stylus Studio displays the Browse for Jar Files dialog box.

To add a folder to the classpath, click the browse folders button ().

Stylus Studio displays the Browse for Folder dialog box.

d. When you have located the JAR file or folder you want to add to the classpath,
click OK.
The file appears in the Locations list box of the Set Classpath for the JDBC
Driver dialog box.

e. Click OK.

Figure 365. Browse for Jar Files Dialog Box

Figure 366. Browse for Folder Dialog Box
Stylus Studio User Guide 895

Working with XQuery in Stylus Studio
The JAR file or folder appears in the Driver Classpath field of the Connection
Settings dialog box.

6. Click OK on the Connection Settings dialog box.

The server connection appears in the File Explorer window.

How to Edit a Database Connection

You can edit connection settings for an existing relational database connection.

◆ To edit a database connection:

1. Display the File Explorer window if it is not already open (View > File Explorer).

2. In the File Explorer window, right-click the server connection whose settings you
want to change and select Edit Server from the short-cut menu.

Stylus Studio displays the Connection Settings dialog box. The current connection
settings are displayed.

3. Make the changes you want and click OK.

Creating a collection() Statement
This topic describes how to create a collection() statement in your XQuery code
automatically. If you prefer, you can always write the collection() statement manually.
Regardless of how you input the collection() statement in your XQuery code, Stylus
Studio will be able to execute it only if you have created a database connection for the
database associated with the table or view referenced in the collection() function calls
and have registered that connection with the XQuery.

Figure 367. New Database Server Connection
896 Stylus Studio User Guide

Working with Relational Data Sources
collection() Function Syntax

The collection() function takes as its argument a URI that identifies a specific database
table or view, such as this function referencing the title column of the books table in the
pubs2 database:

collection("pubs2.dbo.books")/books/title

You can always edit collection() functions created by Stylus Studio. As long as they
refer to an object that is available based on the database connection associated with the
XQuery, the collection() function will execute successfully. See “Choosing a Database
Object” on page 901 for more information on this topic.

What Happens When You Create a collection() Statement?

You create a collection() statement by selecting the table or view you want to query
from the File Explorer window, and dropping it on the editing pane of the XQuery Source
tab in the XQuery Editor. When you drop the table or view on the editing pane, Stylus
Studio

● Automatically creates the collection() statement in the XQuery code based on the
table or view you selected

● Registers with the XQuery the connection information for the database associated
with the selected table or view, and displays the database in the schema pane of the
XQuery Editor, as shown next.
Stylus Studio User Guide 897

Working with XQuery in Stylus Studio
Once the database connection information is registered with the XQuery, you can expand
the database nodes in the schema pane to display individual table and view columns.

Creating Multiple Connections

When you drop an object on the editing pane from the File Explorer window, Stylus
Studio displays the connection information in the schema pane of the XQuery Editor. If
you then drag and drop another object, Stylus Studio either

● Adds a new connection, if the object was from a different server or port

● Modifies the existing connection, if the object is from the same server and port

A new collection() statement is created for each object you drop on the editing pane of
the XQuery editor.

Figure 368. collection() Statements are Created Automatically

Schema paneEditing pane
898 Stylus Studio User Guide

Working with Relational Data Sources
How to Create a collection() Statement

◆ ()To create a collection() statement:

1. Open a new XQuery if one is not already open. The XQuery Source tab should be
displayed.

2. Ensure that you have established a valid database connection as described in
“Creating a Database Connection” on page 891.

3. In the File Explorer window, expand the database and tablespace to display the tables
or views you want to access in your XQuery, as shown in this example:

Optionally, display table and view columns by selecting Read Structure from the
table or view shortcut menu (right-click).

4. Drag the desired table or view and drop it on the editing pane of the XQuery Source
tab.

Optionally, drop the table or view on the schema pane of the XQuery Source tab. If
you do this, you must then drag the desired table or view from the schema pane to the
editing pane to create the collection() statement.

Figure 369. Expanded Database Connection
Stylus Studio User Guide 899

Working with XQuery in Stylus Studio
Stylus Studio creates the collection() statement based on the table or view you
selected in Step 4. It also displays the table’s or view’s database in the schema pane
of the XQuery Editor (see Figure 368).

Other Ways to Register a Database Configuration
If you choose, you can explicitly register a database connection by dropping any elements
from a database connection displayed in the File Explorer window (the connection
representation, database, schema, table, or view) on the schema pane of the XQuery
Source tab. You might want to do this when you want to view a table’s or view’s columns
prior to writing your XQuery code, so you can see what data structures are available, as
shown here:

This also gives you the ability to close the File Explorer window after creating your
database connection – providing more room to work, and simplifying the Stylus Studio
desktop display.

Figure 370. Schema Pane Shows Table and View Columns

Tip You can also gain access to column-level information about a database’s tables and views
directly from the File Explorer window by selecting Read Structure from the table or
view shortcut menu (right-click).
900 Stylus Studio User Guide

Working with Zip Archive Format Files as Data Sources
Choosing a Database Object

You can register a database connection by dragging any database object from the File
Explorer window. The object you select affects which objects you can then query in your
XQuery code:

● Server – all of the server’s databases and their child tables and views can be queried

● Database – all of the database’s tablespaces and their child tables and views can be
queried

● Tablespace – any of the tablespace’s tables or views can be queried

● Table/View – only the table or view can be queried

● Column – only the column can be queried

Once you register a database connection to the XQuery, the configuration information
remains associated with the XQuery until you explicitly delete it from the schema pane in
the XQuery Editor.

Working with Zip Archive Format Files as Data Sources
Microsoft Office Open XML, OpenDocument Format, and .zip files can all be used as
data sources in XQuery Mapper. All of these documents are based on the Zip Archive
format. The process for using any of these document types as a source in XQuery Mapper
is the same as it is for, say, an XML document – simply drag the Zip Archive formatted
document from a file system and drop it on the Add Source Document pane in XQuery
Mapper.
Stylus Studio User Guide 901

Working with XQuery in Stylus Studio
Example
Consider the books.xml file that is installed with the simpleMappings project installed
with Stylus Studio. This is what the books.xml file looks like when displayed using the
XML Editor’s Grid tab.

In this example, we’ll use a zipped copy of books.xml, books.zip, as the source for a
simple XQuery that will return information for all books with some variant of “begin” in
their title.

We start by creating a new XQuery, which we save as zip_source.xquery. To start the
mapping process, we click the Mapper tab. Next, we can select the source and target
documents required for our XQuery.

When you click the Add Source Document button, Stylus Studio displays the Open
dialog box. You can use the Files of drop-down menu to filter the types of files. As you

Figure 371. Grid View of books.xml
902 Stylus Studio User Guide

Working with Zip Archive Format Files as Data Sources
can see, Stylus Studio supports numerous document types based on the Zip Archive
format.

We’ll choose the books.zip file we created previously. (Of course, you can drag source
and target files from your file systems and drop them directly on the source and target
document panes.) Once the .zip file is added as a source, we can navigate it just as we
would any other XML file:

Next, we add catalog.xml from the simpleMappings project as our target document.

Figure 372. Stylus Studio Supports Numerous Zip Archive File Formats

Figure 373. Zipped XML Is Accessed Just Like XML
Stylus Studio User Guide 903

Working with XQuery in Stylus Studio
We’ll use a FLWOR expression to iterate over the source XML. Mapping the contents of
a zipped XML file is just like mapping plain XML – just expand the tree to locate the node
you want to map, drag, and drop. In this case, we drag the book repeating element from
the zipped books.xml and drop it on the Book repeating element in the target document.
Stylus Studio creates the FLWOR block automatically when mapping one repeating
element to another.

Next, we create a contains function to select only those books that have the string “Begin”
as part of their title. Right-click the mapper canvas and choose Function Block >
Functions on Strings > contains/2 from the short-cut menu. Stylus Studio adds the
contains function to the Mapper canvas. To specify the contains function, we map the
title element to the first input port on the contains function block ($arg1 as xs:string?).
To specify the partial string we want to search for, we double-click the second input port,
and enter “Begin” in the Value dialog box. When we’re done, we map the contains
function output port to the Where port on the FLWOR block.

Finally, we map the title element in the zipped source XML to the Title element in the
target XML. When we preview the XQuery, we can see that Stylus Studio was able to read

Figure 374. Mapping Zipped Sources
904 Stylus Studio User Guide

Updating Relational Databases
the zipped XML document and provide the titles for all the books that contain some
portion of the string “Begin.”

Updating Relational Databases
In addition to using relational database tables as data sources in XQuery Mapper, you can
use the XQuery Mapper to create XQuery code that performs SQL INSERT, UPDATE,
and DELETE operations.

This section covers the following topics:

● “Overview” on page 906

● “Using SQL Function Blocks in XQuery Mapper” on page 906

● “Creating an Insert Function Call” on page 908

● “Creating an Update Function Call” on page 913

● “Creating a Delete Function Call” on page 917

Figure 375. Finished XQuery Using Zipped Sources
Stylus Studio User Guide 905

Working with XQuery in Stylus Studio
Overview
In XQuery Mapper, simple drag-and-drop techniques create calls to built-in DataDirect
XQuery functions – ddtek:sql-insert, ddtek:sql-update, and ddtek:sql-delete – that
perform update operations on relational databases. For example, this XQuery code, which
performs an INSERT operation on the Products table, was created with a few simple
mappings:

Stylus Studio provides support for numerous relational databases, including Microsoft
SQL Server, Informix, and Oracle. For a complete list, see “Supported Databases” on
page 891.

For information on connecting to a relational database, see “Creating a Database
Connection” on page 891.

Using SQL Function Blocks in XQuery Mapper
When you create a call to a SQL update function using XQuery Mapper, a SQL function
block representing the function appears on the Mapper canvas. For example, consider the
SQL block created for a ddtek:sql-update function call on the Products table:

The first port on the left is colored because it already has a value – it is the table used to
create the SQL update block; "myServer:pubs.dbo.authors", for example. The other two
ports are column name/value pairs. They are empty because they do not contain values
when the function call is first created. You provide these values by mapping, or, in the
case of update functions, by explicitly providing a value for the port by double-clicking it.

ddtek:sql-insert("sqlserver_pcipeduzz :Northwind.dbo.Products",
 "ProductName",$Products/ProductName,
 "SupplierID",$Products/SupplierID,
 "CategoryID",$Products/CategoryID)

Figure 376. Update Function Block
906 Stylus Studio User Guide

Updating Relational Databases
To map column name/value pairs, you first expand the SQL function block by double-
clicking it. When you double-click a SQL function block, it expands to show the table
name and each of the columns that make up the table:

Each column has an associated port. You use these ports to map nodes from XML data
sources in the Add Source Document pane. Always perform mapping operations using
the ports on the expanded SQL function block when you are building your XQuery using
the XQuery Mapper.

For a summary of SQL function blocks, see “SQL Function Blocks” on page 882.

About the Output Port

All function blocks in Stylus Studio have an output port on the right side. In most cases,
output from a function is mapped to either another function (a conditional expression, for
example) or to a node on the target document.

Unlike most other XQuery source-target mappings, SQL functions do not generate any
output – any changes specified by the XQuery are performed directly on the database.
However, a link from the SQL function block’s output port to the Set Target Document
pane is required in order to commit the XQuery mapping to Stylus Studio. This link is
completed automatically for you by Stylus Studio when you create SQL insert and update
functions using drag and drop. If you create these functions using the short-cut menu
(right-click the Mapper canvas and select Function Block > DataDirect XQuery...), you
must create this link manually. The same is true for delete functions, which cannot be
created using drag-and-drop.

Further, nothing is displayed in the Output window when you preview the XQuery – any
changes resulting from the XQuery are reflected directly in the database.

Figure 377. Expanded SQL Functions Block
Stylus Studio User Guide 907

Working with XQuery in Stylus Studio
For general information on mapping, see “Building an XQuery Using the Mapper” on
page 851.

Creating an Insert Function Call
In Stylus Studio, you can create an insert function call using

● Drag-and-drop

● The short-cut menu on the Mapper canvas

When you use drag-and-drop, Stylus Studio creates the link from the insert function block
for you, which automatically commits the XQuery mapping to Stylus Studio.

How to Create an Insert Function Call

Use the following procedure to create an insert function call in XQuery Mapper. Note that
specifics will vary based on the requirements for your XQuery – you might need to use
an equal condition instead of a greater-than condition to select records, for example.

◆ To create an insert function call:

1. Connect to the relational database that contains the table or tables you want to update.
See “Creating a Database Connection” on page 891 if you need help with this step.

2. In the File Explorer, expand the database tree to expose the table you want to update.

3. Drag the table from the File Explorer and drop it on the Mapper canvas.

A short-cut menu appears with two choices: Create SQL Insert Call and Create SQL
Update Call.

4. Select Create SQL Insert Call.

The function block for the ddtek:sql-insert call appears on the Mapper canvas.

5. Create a FLWOR block to loop over the database table. See “Creating a FLWOR
Block” on page 874 if you need help with this step.

6. Map the output of the FLWOR block to the flow port on the top of the function block.

7. Expand the function block by double-clicking it.

8. Map source document nodes to the corresponding input ports on the function block.

9. Save and preview the XQuery; check results on the database table you have updated.
908 Stylus Studio User Guide

Updating Relational Databases
Alternative:

1. Right-click the Mapper canvas.

2. Select Function Block > DataDirect XQuery > sql-insert from the short-cut menu.

The insert function block appears on the Mapper canvas.

3. When you have finished defining the XQuery, map the insert function block’s output
port to the Set Target Document pane. Your XQuery mapping is not committed to
Stylus Studio until you complete this step.

Example

In this example, we use the SQL insert function call to add a new set of records to the
Products table.

In a new XQuery that we have saved as INSERT.xquery, we drag the Products table and
drop it on the XQuery Mapper canvas. After choosing Create SQL Insert Call from the
short-cut menu, the database table is automatically added as a source for the XQuery, and
that the outline for the DataDirect XQuery ddtek:sql-insert function is displayed in the
Mapper’s text pane:

Figure 378. Using a Relational Table to Create a SQL INSERT
Stylus Studio User Guide 909

Working with XQuery in Stylus Studio
Next, we create a FLWOR block (right-click on the Mapper canvas and select FLWOR
Block) to loop through all the records in the Products table. We use the Products repeating
element to specify the FLWOR block’s Where clause, and map its output to the flow port
on the SQL block. Again, notice that the XQuery code displayed in the text pane is
updated with the code for the FLWOR block:

Values for new records can come from existing records if they are mapped; otherwise,
they are created as empty records or use default values depending on how the database is
configured.

For this example, let’s use existing values for the ProductName, SupplierID, and
CategoryID columns. In order to map these values, we first expand the SQL block created

Figure 379. FLWOR Block to Loop Through Database Table Records
910 Stylus Studio User Guide

Updating Relational Databases
for the Products table by double-clicking it, and then mapping the element names in the
Add Source Document pane to the corresponding ports on the SQL block:

Figure 380. Mapped Columns Use Existing Values for New Records
Stylus Studio User Guide 911

Working with XQuery in Stylus Studio
Before we preview the XQuery, let’s take a look at the Products table on the database. If
we double click the Products table in the File Explorer, Stylus Studio renders the table as
an XML document.

Using a simple XPath expression (count(//Products)), we can see that there are 77
records in the Product table. When we preview the XQuery, we can see that 77 new
records have been added to the Products table, for a total of 154:

Figure 381. Viewing a Relational Table as XML

Figure 382. Updated Relational Table
912 Stylus Studio User Guide

Updating Relational Databases
Creating an Update Function Call
In Stylus Studio, you can create an update function call using

● Drag-and-drop

● The short-cut menu on the Mapper canvas

When you use drag-and-drop, Stylus Studio creates the link from the update function
block for you, which automatically commits the XQuery mapping to Stylus Studio.

How to Create an Update Function Call

◆ To create an update function call:

1. Connect to the relational database that contains the table or tables you want to update.
See “Creating a Database Connection” on page 891 if you need help with this step.

2. Drag the table you want to update from the File Explorer and drop it on the XQuery
Mapper canvas.

3. Map the repeating element that represents the table you want to update to the first
input port ($row-node as element()*).

4. Create a FLWOR block to locate the record you want to update in the database table.
See “Creating a FLWOR Block” on page 874 if you need help with this step.

5. Map the output of the FLWOR block to the flow port on the top of the update function
block.

6. Create a condition expression to select the records you want to update. See “Creating
a Function Block” on page 876 if you need help with this step.

7. Expand the update function block by double-clicking it.

8. Double-click the input port that corresponds to the column whose value you want to
change.

9. Save and preview the XQuery; check results on the database table you have updated.

Alternative:

1. Right-click the Mapper canvas.

2. Select Function Block > DataDirect XQuery > sql-update from the short-cut menu.

The update function block appears on the Mapper canvas.
Stylus Studio User Guide 913

Working with XQuery in Stylus Studio
3. When you have finished defining the XQuery, map the update function block’s output
port to the Set Target Document pane. Your XQuery mapping is not committed to
Stylus Studio until you complete this step.

Example

In this example, we update the Shippers table to change the telephone for the Speedy
Express company.

If we double-click the Shippers table in the File Explorer, the Shippers table is rendered
as XML. Looking at Grid tab, we can see that the Shippers table has three records, and
that the current telephone number for Speedy Express is (503) 555-9831.

To get started, we create a new XQuery and save it as UPDATE.xquery. As with the insert
function, we drag and drop the table from the File Explorer and drop it on the XQuery
Mapper canvas. After dropping the table, choose Create SQL Update Call from the short-
cut menu to add the SQL block and the corresponding code to the XQuery.

In order to update a record, we need to:

● Specify the table whose records we need to fetch

● Fetch the record we want to update

● Specify a new value for the table column we want to change

Figure 383. Shippers Table
914 Stylus Studio User Guide

Updating Relational Databases
First, we map the Shippers repeating element to the first port ($row-node as element()*)
on the SQL block created for the update function. This creates a collection based on the
Shippers table. (See “Using the collection() Function in Stylus Studio” on page 890 for
more information on collections.)

Next, we create a FLWOR expression to iterate over the Shippers table by mapping the
Shippers repeating element to the For port on the FLWOR block, and mapping the
FLWOR block’s output port to the flow port on the SQL block. At this point, our XQuery
Mapper canvas, and the resulting XQuery code, looks something like this:

Next we need to specify which record we want to update, and how we want to change it.
We’ll do this by creating a simple condition expression that locates the shipper whose
phone number we want to change (the ShipperID for Speedy Express is 1). To do this, we

● Add the Equal conditional block to the Mapper canvas

● Map the ShipperID node to the block’s first input port

● Double-click the second input port to specify the ShipperID value for the record we
want to update

Figure 384. FLWOR Expression Iterates Over the Shippers Table
Stylus Studio User Guide 915

Working with XQuery in Stylus Studio
As you can see from the resulting XQuery code, the update function still needs values
specified for the column in the Shippers table we want to update, and the new value

To specify values to update the Shippers table, we first double-click the SQL update block
to expose the ports for each of the table’s columns, and then double-click the Phone port:

Figure 385. Before the Update Block is Mapped for Values

Figure 386. Specifying the New Value for the Phone Column
916 Stylus Studio User Guide

Updating Relational Databases
If we preview the XQuery and then check open Shippers table as XML in Stylus Studio,
we can see that the telephone number has been updated from (503) 555-9831 to
(503) 555-3099:

Creating a Delete Function Call
When you create a delete function call in XQuery Mapper, you must

● Use the XQuery Mapper short-cut menu

● Map the function block’s output port to the Set Target Document pane.

How to Create a Delete Function Call

◆ To create a delete function call:

1. Right-click the Mapper canvas.

2. Select Function Block > DataDirect XQuery > sql-delete from the short-cut menu.

The delete function block appears on the Mapper canvas.

3. Drag the table you want to update from the File Explorer and drop it on the Add
Source Document pane.

Figure 387. Updated Phone Column on Shippers Table
Stylus Studio User Guide 917

Working with XQuery in Stylus Studio
4. Create a FLWOR block to iterate over the table to locate the records you want to
update. See “Creating a FLWOR Block” on page 874 if you need help with this step.

5. Create a condition expression to select the records you want to update. See “Creating
a Function Block” on page 876 if you need help with this step.

Example

In this example, we delete one of the products from the Products table, Queso Cabrales,
as it as been discontinued by the supplier. As shown in the following illustration, Queso
Cabrales corresponds to ProductID 11 in the Products table:

In a new XQuery we save as DELETE.xquery, we first add the Products table to our
XQuery by dragging it from the File Explorer and dropping it on the Add Source
Document pane. We start building the XQuery by creating a FLWOR block; we’ll use the
FLWOR expression to iterate over the Products table to locate the record we want to
delete. When the FLWOR block is added, we map the Products repeating element to the
FLWOR block’s For port.

Figure 388. Record to Be Deleted from the Products Table
918 Stylus Studio User Guide

Updating Relational Databases
Next, we add a simple condition expression that locates the Product table record by
matching the ProductID to the value of the record we want to delete (the ProductID for
Queso Cabrales is 11). We can then map the output of this condition expression to the
Where port on the FLWOR block.

Finally, we add the SQL delete function by right-clicking the Mapper canvas and
selecting Function Block > DataDirect XQuery > sql-delete from the short-cut menu.
(SQL delete functions cannot be created using drag-and drop.) We map the FLWOR
block’s output port to the flow port on the top of the SQL delete function block, and map
the Products repeating element to the SQL delete function block’s input port. At this
point, our XQuery looks something like this:

Notice that the text pane of the XQuery Mapper is blank. This is because the mapping has
not been committed to Stylus Studio. To commit a mapping to Stylus Studio, you simply
map the function block’s output port to the Set Target Document pane. This mapping,
which is completed automatically for you by Stylus Studio when you create SQL insert
and update functions using drag and drop, is needed to commit the XQuery mapping to
Stylus Studio; as with SQL insert and update functions, no output results from a SQL
delete function. Any changes specified in the XQuery occur directly on the database.

Figure 389. XQuery Mapper Before Code is Committed
Stylus Studio User Guide 919

Working with XQuery in Stylus Studio
When we commit the XQuery mapping to Stylus Studio, our XQuery code appears in the
text pane, as shown here:

Figure 390. XQuery Mapping Committed to Stylus Studio
920 Stylus Studio User Guide

Working with XQuery Library Modules
After we preview the XQuery, we can see that the record for Queso Cabrales has been
deleted from the Products table:

Working with XQuery Library Modules
In XQuery, a library module is an XQuery that contains one or more user-defined
functions. An XQuery library module cannot contain any executable code.

Creating a Library Module
An XQuery module consists of:

● The module namespace definition

● One or more function declarations for user-defined functions

Figure 391. Queso Cabrales Deleted from the Products Table
Stylus Studio User Guide 921

Working with XQuery in Stylus Studio
Consider the following example of a simple XQuery library module that contains two
user-defined functions – total-price and titleQuantity:

You create an XQuery library module by typing the module definition in the XQuery
editor. If you copy/paste user-defined functions from other XQuery, make sure to change
the namespace prefix for each user-defined function as described in the following section,
“About Namespaces” on page 922.

About Namespaces

An XQuery library module requires a namespace definition. You can specify the
namespace using

● A symbolic name, like the one shown in the previous example

● A URI, such as "http://example.com/xquery/library/book"

The prefix you assign to the namespace must be used with any user-defined functions you
declare in the XQuery library module. For example, if you create a user-defined function
using the Stylus Studio refactoring feature, you must replace the default namespace that
was created with the user-defined function (local:) with the namespace associated with
the XQuery library module (ns:, in the previous example).

module namespace ns = "urn:utils";

declare function ns:total-price($i as element) as xs:decimal
{
 let $subtotals := for $s in $i return $s/quantity * $s/USPrice
 return sum($subtotals)
};

declare function ns:titleQuantity($GROUP_28, $row)
{

<book>
<title>

{$row/title/text()}
</title>
<quantity>

{$GROUP_28/QTY/QTY01/QTY0102/text()}
</quantity>
<ISBN>

{$GROUP_28/LIN/LIN03/LIN0301/text()}
</ISBN>

</book>
};
922 Stylus Studio User Guide

Working with XQuery Library Modules
Importing a Library Module
Once you have created an XQuery library module, you can import it into another XQuery.

◆ To import a library module:

1. Open the XQuery into which you want to import the library module.

2. Click the Mapper tab.

3. Right-click the Mapper background and choose Imported Modules from the short-cut
menu.

The Imported Modules dialog box appears.

If the XQuery already has an imported library module, its information is displayed.

4. Click the Add button.

The Open dialog box appears.

5. Locate the XQuery that contains the library module definition and click OK.

Figure 392. Imported Modules Dialog Box
Stylus Studio User Guide 923

Working with XQuery in Stylus Studio
The library module appears in the Imported Modules dialog box; the Namespace field
displays the library module’s namespace; the Location field displays its path.

6. Click OK to import the module into the XQuery.

The XQuery code now contains an import statement for the newly imported library
module. For example:

Using a Library Module
Once you have created a library module and imported it into an XQuery, you can easily
add user-defined functions to your XQuery.

Earlier, we showed the creation of a library module consisting of two user-defined
functions, total-price and titleQuantity. Once the library module is imported, the user-
defined functions defined in the module are available by right-clicking the XQuery
Mapper canvas and choosing User Defined Functions from the short-cut menu.

Figure 393. Imported Library Module

import module namespace ns="urn:utils" at "file:///c:/temp/modules.xquery";
924 Stylus Studio User Guide

Working with XQuery Library Modules
All user-defined functions that are specified in any library modules you have imported are
available from the User Defined Functions short-cut menu, as shown in the following
illustration:

Removing a Library Module

◆ To remove a library module:

1. Follow Step 1 through Step 3 in the procedure “Creating a Library Module” on
page 921.

2. In the Imported Modules dialog box, select the library module you want to remove.

3. Click the Remove button.

4. Click OK.

The import statement is removed from your XQuery.

Figure 394. Adding User-Defined Functions to an XQuery
Stylus Studio User Guide 925

Working with XQuery in Stylus Studio
Alternative

To remove an imported module from your XQuery, delete the code directly in the XQuery
editor.

Debugging XQuery
Complex XQuery requires robust debugging tools.

With Stylus Studio, you can

● Set breakpoints in your XQuery

● Monitor the value of XQuery variables.

● Trace the sequence of XQuery expressions that created output. With a click anywhere
in the result, Stylus Studio Visual Backmapping technology displays the XQuery
expression responsible for creating that result.

Figure 395. Debugging XQuery in Stylus Studio
926 Stylus Studio User Guide

Debugging XQuery
This section covers the following topics:

● Using Breakpoints

● Viewing Processing Information

● Using Bookmarks

● Profiling XQuery

Using Breakpoints
The Stylus Studio debugger allows you to interrupt XQuery processing to gather
information about variables and XQuery expression execution at particular points.

Inserting Breakpoints

◆ To insert a breakpoint:

1. In the XQuery in which you want to set a breakpoint, place your cursor where you
want the breakpoint to be.

2. Click Toggle Breakpoint or press F9. Stylus Studio inserts a blank stop sign
to the left of the line with the breakpoint.

Removing Breakpoints

◆ To remove a breakpoint:

1. Click in the line that has the breakpoint.

2. Press F9 or click Toggle Breakpoint.

Alternative: In the Stylus Studio tool bar, click Breakpoints to display a list of
breakpoints in all open files. You can selectively remove one or more, remove them
all, or jump to one of them.
Stylus Studio User Guide 927

Working with XQuery in Stylus Studio
Start Debugging

When your XQuery has one or more breakpoints set, start processing by clicking Start
Debugging or pressing F5. When Stylus Studio reaches the first breakpoint, it
suspends processing and activates the debugging tools. After you examine the
information associated with that breakpoint (see Viewing Processing Information on
page 928) you can choose to

● Step into – click or press F11.

● Step over – click or press F10.

● Step out – click or press Shift+F11.

● Run to cursor – click .

● Continue processing – press F5.

● Stop processing – click Stop Debugging in the Stylus Studio tool bar, or click
Cancel in the lower right corner of the XQuery editor, or press Shift+F5.

Viewing Processing Information
Stylus Studio provides several tools for viewing processing information. The tools
become active when processing reaches a breakpoint. This section discusses the
following topics:

● Watching Particular Variables

● Evaluating XPath Expressions in the Current Processor Context

● Obtaining Information About Local Variables

● Displaying a List of Process Suspension Points

● Displaying XQuery Expressions for Particular Output

Watching Particular Variables

Use the Watch window to monitor particular variables. To display the Watch window,
click Watch in the Stylus Studio tool bar. This button is active when Stylus Studio
suspends processing because it reached a breakpoint. Stylus Studio displays the Watch
window only when processing is suspended.

Note You can also click Pause to suspend XQuery processing. Stylus Studio flags the line
it was processing when you clicked Pause.
928 Stylus Studio User Guide

Debugging XQuery
Enter the names of the variables you want to watch. You can enter as many as you like.
When Stylus Studio suspends processing, it displays the current values for any variables
listed in the Watch window. You can expand and collapse complex structures as needed.

During XQuery debugging, you can enter XPath expressions in the Watch window fields.
Stylus Studio uses the current context to evaluate these expressions, and displays the
results with the same kind of interface Stylus Studio uses for nodeList and node variables.

Evaluating XPath Expressions in the Current Processor Context

When you suspend processing, you can evaluate an XPath expression in the context of the
suspended process. You do this in the Watch window. Click in the Stylus Studio tool
bar to display the Watch window. Click in an empty name field and enter an XPath
expression. As soon as you press Enter, Stylus Studio displays the results of the
evaluation in the Value field of the Watch window.

Obtaining Information About Local Variables

Display the Variables window to obtain information about local variables. To display the
Variables window, click Variables in the Stylus Studio tool bar. This button is active
when Stylus Studio suspends processing because it reached a breakpoint. Stylus Studio
displays the Variables window only when processing is suspended.

Information displayed in the Variables window includes:

● Information about how the return value (displayed in the Variables window as
__Return_Value_3, for example) is being built

● Local and global XQuery variable values

Also, you can navigate the structure associated with a variable, a parameter, or the current
context if it is a node list or a node.

Displaying a List of Process Suspension Points

Display the Call Stack window to view a list of the locations at which processing was
suspended. For XQuery files, Stylus Studio displays the XQuery file name and line
number.

To display the Call Stack window, click Call Stack in the Stylus Studio tool bar. This
button is active when Stylus Studio suspends processing because it reached a breakpoint.
Stylus Studio displays the Call Stack window only when processing is suspended.

When processing is complete, the call stack is empty.
Stylus Studio User Guide 929

Working with XQuery in Stylus Studio
When execution is suspended you can use the Call Stack window to jump directly to the
XQuery source. Double-click on a stack line to go to that location. A green triangle
appears to indicate this location in the source file.

Displaying XQuery Expressions for Particular Output

After you create an XQuery, or during XQuery debugging, Stylus Studio can display the
XQuery expression that generated a particular part of a result document. This can be
particularly helpful when the result is not quite what you want.

In the Preview window, click on the output for which you want to display the XQuery
expression. You can do this while either the text view or the browser view is active. Stylus
Studio flags the line in the XQuery source that contains the expression that generated the
output you selected.

Using Bookmarks
When you are editing or debugging a long file, you might want to repeatedly check certain
lines in the file. To quickly focus on a particular line, insert a bookmark for that line. You
can insert any number of bookmarks. You can insert bookmarks in any document that you
can open in Stylus Studio.

Inserting

◆ To insert a bookmark:

1. Click in the line that you want to have a bookmark.

2. Click Toggle Bookmark in the Stylus Studio tool bar. Stylus Studio inserts a
turquoise box with rounded corners to the left of the line that has the bookmark.

Removing

◆ To remove a bookmark:

1. Click in the line that has the bookmark you want to remove.

2. Click Toggle Bookmark in the Stylus Studio tool bar. Stylus Studio removes the
turquoise box.
930 Stylus Studio User Guide

Debugging XQuery
◆ To remove all bookmarks in a file, click Clear All Bookmarks .

Moving Focus

◆ To move from bookmark to bookmark, click Next Bookmark or Previous
Bookmark .

Profiling XQuery

In addition to debugging tools for XQuery, Stylus Studio provides the XQuery Profiler, a
tool that helps you evaluate the efficiency of your XQuery. By default, the performance
metrics gathered by the XQuery Profiler are displayed in a preformatted report, like the
one shown here:

XQuery profiling is available only in Stylus Studio XML Enterprise Suite.

Figure 396. XQuery Profiler Report
Stylus Studio User Guide 931

Working with XQuery in Stylus Studio
The report format is controlled by the default XSLT stylesheet, profile.xsl, in the \Stylus
Studio\bin directory. You can customize this stylesheet as required. You can save
XQuery Profiler reports as HTML.

In addition to generating the standard XQuery Profiler report, you can save the raw data
generated by the Profiler and use this data to create your own reports. See Enabling the
Profiler for more information about this procedure.

A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

About Performance Metrics

The XQuery Profiler can record three different levels of performance metrics:

● A call tree of execution times

● Execution times by XQuery expression, and

● A detailed log of step-by-step expression execution

Enabling the Profiler

The XQuery Profiler is off by default. You enable the Profiler on the Profiling Options
tab of the XQuery Scenario Properties dialog box.

Note XQuery and XSLT Profiler reports use the same XSLT stylesheet.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the XQuery Profiling video.

Note Displaying the report for a step-by-step log can take significantly longer than evaluating
the XQuery itself. Consider using the Profiler with the first two performance metric
options. You can also use the Limit Trace To fields to further restrict the Profiler’s scope.
If you find you need still more detail (while troubleshooting a performance bottleneck,
for example), use the step-by-step setting.
932 Stylus Studio User Guide

http://www.stylusstudio.com/videos/profiler/profiler.html
http://www.stylusstudio.com/videos/profiler/profiler.html
http://www.stylusstudio.com/xml_videos.html

Debugging XQuery
◆ To enable the XQuery Profiler:

1. Open the Scenario Properties dialog box for the XQuery. (Click Browse at the
top of the XQuery editor window.)

2. Click the Profiling Options tab.

3. Select the settings for the performance metrics you want the Profiler to capture.

4. Optionally, save the raw Profiler data to a separate file.

5. Click OK.

The next time you preview the XQuery results, the performance metrics you selected
are available to you in the XQuery Profiler report (and as raw data if you selected that
setting and specified a file).

Figure 397. XQuery Profiler Options

Note This option is available only after you select one or more performance metrics
settings.
Stylus Studio User Guide 933

Working with XQuery in Stylus Studio
Displaying the XQuery Profiler Report

◆ To display the XQuery Profiler report:

1. Ensure that the Profiler is enabled. (See Enabling the Profiler if you need help with
this step.)

2. Click the Preview Result button ().

3. Click the Show Profiling Report button ().

The XQuery Profiler report appears in the Preview window.

Using DataDirect XQuery® Execution Plans

DataDirect XQuery generates an XQuery execution plan so that you can see how
DataDirect XQuery will execute your query. For example, if your query accesses a
relational data source, the plan will include the SQL statements that DataDirect XQuery
will send to the database.

One of the main benefits of using this feature is that you can tune your queries for the best
performance possible.

Query Plans in Stylus Studio
In Stylus Studio, a query plan for the DataDirect XQuery® processor becomes available
as soon as your XQuery code is well-formed. (Query plans are created only by the
DataDirect XQuery® processor.) The query plan changes with your XQuery code – if you
add a new data source, for example, the query plan is modified to reflect the new source.

You can view query plans in Stylus Studio to gain insight into how the DataDirect
XQuery® processor will execute your XQuery code, including seeing the type of SQL
statements that are used to access relational data, when XML streaming is being used,
which temporary tables are being created, when variables are being called, and so on.
Query plans are displayed on the Plan tab of the XQuery Editor. An example of a query
plan is shown in Figure 398.

DataDirect XQuery execution plan support is available only in Stylus Studio XML
Enterprise Suite.
934 Stylus Studio User Guide

Using DataDirect XQuery® Execution Plans
Example of a Query Plan
The example query plan shown in Figure 398 provides information about how DataDirect
XQuery translates the following query, which accesses one relational data source, into a
SQL Select statement and how XML results are constructed.

In the following query plan, notice how the Relational Data Source node includes details
about the SQL Select statement, as well as information about how the result ($PT) is
constructed.

declare option ddtek:plan-explain 'format=xhtml';
<myHoldings> {
for $holdings in collection("pubs.dbo.holdings")/holdings
where $holdings/userid = "Minollo"
return <holding
quantity="{$holdings/shares}">{$holdings/stockticker/text()}</holding>
}
</myHoldings>

Figure 398. Example of a Query Plan Displayed in the XQuery Editor
Stylus Studio User Guide 935

Working with XQuery in Stylus Studio
Parts of a Query Plan
The graphic representation of a query plan is a tree structure that provides the details of
how DataDirect XQuery will execute the query for which the plan was generated. The
query plan tree diagram is read-only, though it does provide navigation and formatting
features. You can also print and save the query plan as HTML.

In addition to the Plan node, the query plan tree can include Adaptors, Global Variables,
and Local Functions nodes. These nodes are described in the following table.

Navigation

You can navigate the tree to check where variables are defined and where they are
referenced. For example, you can navigate from one adaptor’s definition to its references
and vice-versa.

To navigate the tree, you can

● Use the toolbar displayed at the top of the tree

● Right-click an item in the tree and use the context-sensitive menu

● Scroll through the nodes on the tree diagram individually

Table 106. Query Plan Nodes

Node Description

Adaptors This node contains a list of database resources that will be involved
in the execution of the query. These resources can include JDBC
connections, temporary tables, and deferred SQL statements used in
the context of DataDirect XQuery update functionality.

Global Variables This node contains a list of global variables that are available to the
query plan, such as external variables defined by the query and
variables defined as part of the generation of the execution plan.

Local Functions This node contains a list of user-defined functions used during the
query evaluation. Each user-defined function listed in this node has
a plan description associated with it. Plan descriptions are described
next.

Plan This node contains the description of the query execution plan. It
contains the nodes of the plan, for example, FLWOR nodes and the
nodes within the FLWOR nodes such as for, let, and return.
936 Stylus Studio User Guide

Using DataDirect XQuery® Execution Plans
Query Plan Toolbar

The query plan toolbar has buttons that help you navigate the variables defined in your
XQuery code. These buttons are described in the following table.

Formatting

You can change the font size used to display query plan text and symbols by right-clicking
a tree node and selecting the font size you wish to use. Changes to font size affect the
entire query plan, but they are not saved when you save the query plan as HTML.

Saving a Query Plan as HTML

You can save a query plan as an HTML document; you might wish to do this for review
or presentation purposes, for example.

◆ To save a Query plan as HTML:

1. Select XQuery > Save Plan as HTML from the Stylus Studio menu.

Alternative: Click the Save Plan button on the Plan tab.

The Save As dialog box appears.

2. Choose a path and name for the HTML file.

3. Click Save.

Table 107. Query Plan Toolbar Buttons

Button Description

Go to definition: given a selected variable reference, go to the
position in the plan where the variable is defined.

Go to first reference: given a selected variable definition, go to its
first reference in the plan.

Go to next reference: given a selected variable reference, go to the
next reference of the same variable (if any).

Go to previous reference: given a selected variable reference, go to
the previous reference of the same variable (if any).
Stylus Studio User Guide 937

Working with XQuery in Stylus Studio
Displaying a Query Plan
This section describes the prerequisites and procedure for displaying a query plan in
Stylus Studio.

Prerequisites

In order to display a query plan in Stylus Studio, you need to specify the DataDirect
XQuery processor for your XQuery. See Selecting an XQuery Processor for more
information.

How to display a query plan

◆ To display a Query plan:

1. Open the XQuery whose query plan you want to view in the Stylus Studio XQuery
Editor.

2. Make sure your XQuery’s processor is set to the DataDirect XQuery processor. See
Selecting an XQuery Processor if you need help with this step.

3. Click the Plan tab in the XQuery Editor.

Stylus Studio displays the query plan.

Optimizing Your XQuery
One of the main benefits of the query plan is that you can use it when tuning your queries
for the best performance possible. After viewing the query plan and executing the
XQuery, you might wish to make some changes to the XQuery code to see how they affect
the query plan and, consequently, how the XQuery code is processed.

See the DataDirect XQuery User’s Guide and Reference for more information on
optimizing your XQuery code for data access.

Tip The Stylus Studio Profiler generates an HTML report that contains performance metrics
for your XQuery code. You might want to run and view this report before making changes
to your XQuery code. See Profiling XQuery for more information.
938 Stylus Studio User Guide

http://media.datadirect.com/download/docs/ddxquery/ddxqug/title.htm

Creating an XQuery Scenario
Creating an XQuery Scenario
An XQuery scenario is a group of settings you associate with an XQuery. Examples of
scenario settings include a main input document, XQuery processors, and whether or not
you want to perform validation on the XML that results from your XQuery. Each time
you preview an XQuery, Stylus Studio uses settings from the currently active scenario.
For example, if the currently active scenario specifies the DataDirect XQuery processor,
Stylus Studio executes the XQuery using that processor when you click the Preview
Result button ().

You can create multiple scenarios for a single XQuery, and choose different settings for
each. This flexibility can aid the XQuery development process as it enables you to easily
test the XQuery against different input documents and using different processors before
making the XQuery available.

This section covers the following topics:

● Specifying XML Input

● Selecting an XQuery Processor

● Setting Default Options for Processors

● Setting Values for External Variables

● Performance Metrics Reporting

● How to Run a Scenario

● Working with Relational Data Sources

● How to Create a Scenario

● How to Run a Scenario

● How to Clone a Scenario

Specifying XML Input
When you create an XQuery scenario, you can optionally specify inputs – XML
documents or other sources of XML that set the context for the XPath expressions in your
XQuery code. This XML source is referred to as the main input.

The main input is a URL for a specific XML document. Specifying a main input is an
alternative to using the XQuery doc() function in your XQuery code. When you specify a
main input document, expressions like \books\book in your XQuery code are evaluated in
the context of that document.
Stylus Studio User Guide 939

Working with XQuery in Stylus Studio
You specify XML input on the General tab of the Scenario Properties dialog box.

Figure 399. XQuery Scenario General Properties

Note If you build your XQuery using the XQuery Mapper, Stylus Studio uses the first source
document you select as the main input XML document, though you can override this
default at any time. See Data Sources to learn more about the process of selecting and
working with XQuery source documents in XQuery mapper.
940 Stylus Studio User Guide

Creating an XQuery Scenario
Selecting an XQuery Processor
You use the Processors tab of the Scenario Properties dialog box to specify the
processor you want to use to process your XQuery code.

You can use

● The DataDirect XQuery processor

● The Saxon processor, which supports XQuery debugging and backmapping

● The Raining Data™ TigerLogic™ XDMS XQuery processor, which runs on the
TigerLogic XDMS server

● Any custom processor you specify

Using the Saxon Processor

Stylus Studio lets you execute XQuery using either the Saxon-B (basic) or Saxon-SA
(schema-aware) processor. You specify which processor you want to use with the
Execution mode property in the Saxon XQuery Settings dialog box. Settings that have

Figure 400. XQuery Scenario Processor Properties

Tip You can define default settings for XQuery processors, and you can also choose to use
one of them as the default XQuery processor. See “Setting Default Options for
Processors” on page 946.
Stylus Studio User Guide 941

Working with XQuery in Stylus Studio
command line equivalents in Saxon show the command in parentheses following the
property name. Some settings are available only if you are using Saxon-SA.

Stylus Studio’s Sense:X syntax coloring and auto-completion provides full support for
Saxon syntax, so long as the Saxon XQuery processor is either associated with the current
XQuery scenario or has been set as the default XQuery processor.

If you want to use the Saxon processor:

1. On the Processors tab, click Saxon.

The Settings button becomes active.

2. Click the Settings button.

The Saxon XQuery Settings dialog box appears.

3. Complete the settings as desired. Press F1 to access the Stylus Studio online help, or
refer to the Saxon documentation for more information.

4. Click OK.

Using the TigerLogic XDMS Processor

Stylus Studio’s Sense:X syntax coloring and auto-completion provides full support for
TigerLogic XDMS syntax, so long as the TigerLogic XDMS XQuery processor is either
associated with the current XQuery scenario or has been set as the default XQuery
processor.

Support for Saxon-SA is available only in Stylus Studio XML Enterprise Suite.

Figure 401. Saxon XQuery Settings Dialog Box
942 Stylus Studio User Guide

http://www.saxonica.com/documentation/index/intro.html

Creating an XQuery Scenario
If you want to use the TigerLogic XDMS processor:

1. Click TigerLogic XDMS.

The Settings button becomes active.

2. Click the Settings button.

The TigerLogic XDMS Server Settings dialog box appears.

3. Enter the host, port, username, and password information for the server on which the
TigerLogic XDMS is running.

4. Click OK.

Using Custom URI Resolvers
Stylus Studio supports several URI types, such as http://, file://, and ftp://. If you use the
DataDirect XQuery processor to process your XQuery, you can also create custom URI
resolvers that allow the DataDirect processor to recognize custom URI types. Custom
URI resolvers can be created for use with DataDirect XQuery doc and collection
functions, and import module statements.

The process for using custom URI resolvers in Stylus Studio involves:

1. Using the DataDirect XQuery and Java APIs to implement a Java interface for each
of the custom URI resolver types you intend to use.

2. Registering the Java class for each custom URI resolver with Stylus Studio. You can
do this on a per-XQuery basis using the XQuery Scenario Properties dialog box, or
as a default setting for all XQuery code you write in Stylus Studio using the
Processor Settings page of the Options dialog box.

Figure 402. TigerLogic XDMS Server Settings Dialog Box
Stylus Studio User Guide 943

Working with XQuery in Stylus Studio
Implementing a Custom URI Resolver Interface

You use either the DataDirect XQuery API or the Java API to implement a custom URI
resolver interface, as summarized in the following table.

For more information on implementing a custom URI resolver interface, see the
DataDirect XQuery User’s Guide and Reference.

Registering a Custom URI Resolver

Use this procedure to register a custom URI resolver for an individual XQuery.

◆ To register a custom URI resolver for an XQuery:

1. Open the XQuery for which you want to register a custom URI resolver in the Stylus
Studio XQuery Editor.

2. Click the Edit scenario properties button (.

The Scenario Properties dialog box appears.

3. Click the Processor tab.

4. If DataDirect XQuery is not specified as the processor, use the Processor drop-down
field to change it.

Table 108. URI Resolver Interfaces

For This Custom URI Resolver Type Use This Interface

Document – doc function javax.xml.transform.URIResolver

Collection – collection function com.ddtek.xquery.CollectionURIResolver

Module – import module statement com.ddtek.xquery.ModuleURIResolver
944 Stylus Studio User Guide

http://www.datadirect.com/techres/xqueryproddoc/index.ssp

Creating an XQuery Scenario
5. Click the Settings button.

The DataDirect XQuery Options dialog box appears.

6. Click the more button () for the custom URI resolver type you want to register.

The Java Class Browser dialog box appears.

7. Navigate the available folders to locate the file that implements the interface for the
type of custom URI resolver you are registering.

8. Click OK to register the custom URI resolver.

9. Click OK to close the Scenario Properties dialog box.

Figure 403. DataDirect XQuery Options Dialog Box

Figure 404. Java Class Browser
Stylus Studio User Guide 945

Working with XQuery in Stylus Studio
Registering a Default Custom URI Resolver

Use this procedure when you want to register a custom URI resolver that will be used by
default for all XQuery code you create in Stylus Studio. You can always override the
default setting for individual XQuery.

◆ To register a default custom URI resolver:

1. In Stylus Studio, click Tools > Options on the menu bar.

The Options dialog box appears.

2. Navigate to the Module Settings > XQuery > Processor Settings folder.

3. Follow Step 4 through Step 8 in the procedure “Registering a Custom URI Resolver”
on page 944.

Setting Default Options for Processors
You can set default values for all XQuery processors on the Processor Settings page of
the Options dialog box. In addition, you can select the processor you want to use as your
default XQuery processor.

Figure 405. XQuery Processor Settings

Tip You can always override the default processor and default processor settings at the
scenario level.
946 Stylus Studio User Guide

Creating an XQuery Scenario
◆ To set defaults for XQuery processors:

1. From the Stylus Studio menu, select Tools > Options.

Stylus Studio displays the Options dialog box.

2. Select Module Settings > XQuery > Processor Settings.

3. Select the processor for which you want to specify default settings from the
Processor drop-down list.

4. If required, complete processor-specific settings. (Click the Settings button.)

5. If you want to use this processor as the default processor for all XQuery scenarios,
click the Use as default processor check box.

6. Click OK.

Setting Values for External Variables
The Parameter Values tab of the Scenario Properties dialog box displays any external
variables you have defined in the XQuery source. You can specify the parameter value
you want to use for any external variables when you run the scenario. For example,
imagine your XQuery code contains the following:

Figure 406. Options for XQuery Processors

declare variable $part_num external
Stylus Studio User Guide 947

Working with XQuery in Stylus Studio
This variable is displayed on the Parameters tab as follows:

When you run the scenario, you can specify the parameter value you want to use by
double-clicking the Expression field and typing a value. Valid values are XPath
expressions and must be entered using single or double quotes.

Performance Metrics Reporting
See Enabling the Profiler to learn more about the different ways in which Stylus Studio
can provide you with XQuery performance metrics.

Validating XQuery Results
You can optionally validate the XML document that results from XQuery processing.
You can validate using any of the customizable processors supported by Stylus Studio,
such as the .NET XML Parser and XSV, or using the built-in Stylus Studio validation
engine.

Figure 407. XQuery Scenario Parameters
948 Stylus Studio User Guide

Creating an XQuery Scenario
◆ To validate XQuery scenario result documents:

1. Open the XQuery whose results you want to validate.

2. In the XQuery Editor, in the scenario name field, click the down arrow and click the
name of the scenario for which you want to perform validation.

3. Click Browse to open the Scenario Properties dialog box.

4. Click the Validation tab.

5. Click Validate query result.

6. If you are using Stylus Studio’s built-in validation engine, optionally, specify the
XML Schemas against which you want to validate the XML result document.
Otherwise, go to Step 7

a. Click the Open file button ().
The Open dialog box appears.

b. Select the XML Schema you want to use for validation.

c. Click the Open button to add the XML Schema to the Validation tab.

d. Optionally, add other XML Schemas.

e. Go to Step 8.

Figure 408. Validation Tab for XQuery Scenarios
Stylus Studio User Guide 949

Working with XQuery in Stylus Studio
7. Click the Use custom validator button, and select the validation engine you want to
use from the drop-down list box.

8. Click OK.

How to Create a Scenario

◆ To create a scenario:

1. In the XQuery editor tool bar, click .

Alternative: Select Create Scenario from the scenario drop-down list at the top of the
editor window.

Stylus Studio displays the Scenario Properties dialog box.

2. In the Scenario name: field, type the name of the new scenario.

3. In the Main input: field, type the name of the XML file to which you want to apply
the XQuery, or click Browse to navigate to an XML file and select it.

4. If you are using DataDirect XQuery, specify one or more defined collections as input.
See Specifying XML Input if you need help with this step.

5. In the Output URL field, optionally type or select the name of the result document you
want the XQuery to generate. If you specify the name of a file that does not exist,
Stylus Studio creates it when you preview the XQuery.

6. If you want Stylus Studio to store paths relative to the XQuery path, ensure that the
Use relative paths option is checked.

7. If you check Preview result in an external application, Stylus Studio displays the
result Internet Explorer. In addition, Stylus Studio always displays XQuery results in
the Preview window.

8. If you want to specify values for XQuery parameters, click the Parameter Values tab.
Click the Variable Name field for the parameter – Stylus Studio places the text cursor
in the Expression field, allowing you to type a value for the parameter.

9. If you want Stylus Studio to capture performance metrics, enable the XQuery Profiler
on the Profiling Options tab. See Profiling XQuery on page 931.

Note If the first document you added to the XQuery is an XML document, Stylus Studio
uses that document as the XML source for the scenario and displays it in this field.
950 Stylus Studio User Guide

Creating an XQuery Scenario
10. To define another scenario, click Add and enter the information for that scenario. You
can also copy scenarios. See How to Clone a Scenario on page 951.

11. Click OK.

If you start to create a scenario and then change your mind, click Delete and then OK.

How to Run a Scenario

◆ To run a scenario:

1. Select a scenario from the scenario drop-down list at the top of the editor window.

Alternative:

a. In the XQuery editor tool bar, click .
Stylus Studio displays the Scenario Properties dialog box.

b. On the General tab, select the scenario you want to run from the Existing
Scenarios list.

c. Click OK.

2. Click the Preview Result button ().

How to Clone a Scenario
When you clone a scenario, Stylus Studio creates a copy of the scenario except for the
scenario name. This allows you to make changes to one scenario and then run both to
compare the results.

◆ To clone a scenario:

1. Display the XQuery in the scenario you want to clone.

2. In the XQuery editor tool bar, click to display the Scenario Properties dialog
box.

3. In the Scenario Properties dialog box, in the Existing preview scenarios field, click
the name of the scenario you want to clone.

4. Click Clone.

5. In the Scenario name field, type the name of the new scenario.
Stylus Studio User Guide 951

Working with XQuery in Stylus Studio
6. Change any other scenario properties you want to change. See How to Create a
Scenario on page 950.

7. Click OK.

If you change your mind and do not want to create the clone, click Delete and then OK.

Generating XQuery Documentation
Stylus Studio allows you to generate HTML documentation for your XQuery using
xqDoc, from http://www.xqdoc.org. This section describes how to generate XQuery
documentation, and how to annotate your XQuery code for reporting purposes.
952 Stylus Studio User Guide

http://www.xqdoc.org

Generating XQuery Documentation
Documentation Defaults
By default, xqDoc generates Module URI, Function Summary, and Function Detail
sections for each XQuery, as shown in the following illustration.

If you want, you can add your own comments using the syntax described in the following
section, “Syntax and Usage” on page 953.

Syntax and Usage
Comments for xqDoc must start with (:~ and end with :). Comments can span multiple
lines. New lines do not need to be introduced with a special character. You can use

to force a line break, which you might want to do to aid readability. Comments that start
with (: (standard XQuery syntax) are ignored by xqDoc.

The first comment in an XQuery is interpreted by xqDoc as the Module Description.
Within that comment, xqDoc recognizes certain keywords preceded by the at (@) sign.

Figure 409. Default xqDoc Report
Stylus Studio User Guide 953

Working with XQuery in Stylus Studio
Examples include @author and @version. See the xqDoc documentation at
http://www.xqdoc.org for more information. Here is a report for the same document
shown in Figure 409 with a user-defined module and function descriptions.

All other comments must precede function declarations. xqDoc uses the text you enter to
provide a description for each function listed in the Function Summary. The same

Figure 410. xqDoc Report with Additional Module and Function Descriptions
954 Stylus Studio User Guide

http://www.xqdoc.org

Generating XQuery Documentation
description is used in the Function Detail. Here is an illustration of the XQuery in the
XQuery Editor; the xqDoc comments are highlighted:

Save the XQuery

When you annotate an XQuery using xqDoc comments, make sure to save the XQuery
before generating documentation. Unsaved work is not detected by the report generating
mechanism.

ActiveX Controls

xqDoc reports use ActiveX controls for navigation and code sample generation. Make
sure to enable ActiveX controls for the browser displaying the xqDoc report.

Figure 411. xqDoc Comments as Seen in XQuery Source
Stylus Studio User Guide 955

Working with XQuery in Stylus Studio
Viewing Code Samples

You can view code samples from an xqDoc report by clicking the view code hyperlink,
as shown in the following illustration.

The XQuery code sample appears in a separate Web browser.

How to Generate XQuery Documentation

◆ To generate XQuery documentation:

1. Optionally, annotate your XQuery code as described in “Syntax and Usage” on
page 953.

2. Save the XQuery.

Figure 412. Viewing an XQuery Code Sample
956 Stylus Studio User Guide

Generating XQuery Documentation
3. Click XQuery > Generate xqDoc.

Stylus Studio displays the Browse for Folder dialog box, which allows you to choose
where you want to save the XQuery documentation.

By default, Stylus Studio selects the directory to which the XQuery is saved. After
that, Stylus Studio uses the last location to which you saved the XQuery
documentation.

4. Optionally, change the location to which you want to save the XQuery
documentation.

5. Click OK.

Stylus Studio displays processing information in the Output window. A new Internet
browser is launched; the XQuery documentation is displayed in this browser.

6. If you have not already done so, enable ActiveX controls for the browser window
displaying the xqDoc report.

Figure 413. Browse for Folder Dialog Box
Stylus Studio User Guide 957

Working with XQuery in Stylus Studio
Using XQuery to Invoke a Web Service

This section describes how to use the XQuery code that Stylus Studio creates from a Web
service call. To learn more about creating XQuery from a Web service call, see “Creating
XQuery from a Web Service Call” on page 999.

This section covers the following topics:

● “Choosing an XQuery Processor” on page 958

● “Invoking a SOAP Request in an XQuery” on page 958

● “Invoking Multiple SOAP Requests” on page 959

Choosing an XQuery Processor
The XQuery code created by Stylus Studio is compliant with the DataDirect XQuery
processor.

Invoking a SOAP Request in an XQuery

◆ To invoke a SOAP request in an XQuery:

1. Create a new Web service call and configure the SOAP request as required. See “How
to Compose a Web Service Call” on page 985 if you need help with this step.

2. Create XQuery code from the Web service call. See “How to Create XQuery from a
Web Service Call” on page 1000 if you need help with this step.

As a result of this step, XQuery code is copied to your system’s clipboard.

3. Open a new XQuery (File > New > XQuery File). Make sure you use the Saxon or
DataDirect XQuery processor. See “Selecting an XQuery Processor” on page 941 if
you need help with this step.

4. Paste the clipboard contents into the XQuery.

Web Service support is available only in Stylus Studio XML Enterprise Suite
.

958 Stylus Studio User Guide

Using XQuery to Invoke a Web Service
5. Preview the XQuery by clicking the Preview Result button at the top of the XQuery
Editor.

The results of the SOAP request contained in the XQuery appear in the Preview
window.

6. If you are satisfied with the results, save the XQuery.

Invoking Multiple SOAP Requests
You can invoke multiple SOAP requests in the same XQuery. These SOAP requests can
be from the same Web service, or from different Web services if they use the same
parameters.

Rules

When invoking multiple SOAP requests in the same XQuery, bear in mind the following
rules:

● The XQuery must contain only one instance of the header that declares the namespace
used by the Web service. For example:

● Separate each ddtek:wscall() function with a comma, to create a sequence.

How to Invoke Multiple SOAP Requests in the Same XQuery

◆ To invoke multiple SOAP requests in the same XQuery:

1. Make sure you understand the rules for including multiple SOAP requests in the same
XQuery code as described in the previous section, “Rules” on page 959.

2. Create the Web service call, and use Web Service Call > Copy XQuery Call to
Clipboard to create XQuery code for the SOAP request as described in “Creating
XQuery from a Web Service Call” on page 999.

The XQuery code created by Stylus Studio is copied to your system’s clipboard.

3. Create a new XQuery, and paste the contents of your system clipboard into it.

4. Type a comma at the end of the ddtek:wscall() function.

5. Repeat Step 2 for the next Web service SOAP request you want to invoke from your
XQuery.

declare namespace tns = "http://swanandmokashi.com";
Stylus Studio User Guide 959

Working with XQuery in Stylus Studio
6. Paste the new XQuery code into the XQuery you created in Step 3. Before pasting,
place the text cursor after the comma you typed in Step 4.

7. From the XQuery code you just pasted, delete the namespace declaration that
precedes the ddtek:wscall() function.

Using Web Services in XQuery

The ddtek:wscall function allows you to use a Web service as a data source in XQuery.
This section describes how to create a ddtek:wscall function in XQuery Mapper, and
provides a simple example on how to create an XQuery to retrieve Web service data.

This section covers the following topics:

● “Choosing a ddtek:wscall Function” on page 960

● “Creating a ddtek:wscall Function” on page 961

● “Examining the ddtek:wscall Function Block” on page 963

● “Mapping ddtek:wscall Functions” on page 966

● “Example: Querying a Web Service” on page 967

Choosing a ddtek:wscall Function
The XQuery Mapper provides two ddtek:wscall functions from the Mapper canvas
shortcut menu: wscall/2 and wscall/3. Both ddtek:wscall types provide location and
payload input ports. The wscall/3 type also include a header port, which you can use to
specify header information if your Web service requires it.

See “Examining the ddtek:wscall Function Block” on page 963 for more information.

Support for the ddtek:wscall function is available only in Stylus Studio XML
Enterprise Suite.

Figure 414. Port Types for the wscall Function block
960 Stylus Studio User Guide

Using Web Services in XQuery
Creating a ddtek:wscall Function
There are two ways to create a ddtek:wscall function in XQuery Mapper:

● Automatically, by dragging and dropping a Web service call (.wscc file) on the
Mapper canvas. This method creates the ddtek:wscall function in a single operation
that does not require you to specify the WSDL URL or Web service operation.

Use this method when you have created a Web service call using the Stylus Studio
Web Service Call Composer. See , , on page 983 for more information on this topic.

● Manually, by choosing the ddtek:wscall function from the XQuery Mapper canvas
short-cut menu (right-click to display). This method requires you to enter the URL for
the WSDL file, which you can do by typing or navigating a file system, and selecting
the Web service operation you want your XQuery code to execute.

Use this method when you want to use Web service operations that have not been
exposed using a Stylus Studio Web service call.

◆ To create a ddtek:wscall function automatically:

1. Open an XQuery and click the Mapper tab.

2. Open the Stylus Studio File Explorer or some other tool that allows you to navigate a
file system.

3. Locate the Web service call (.wscc file) for the Web service whose operations you
want to include in your XQuery code.

4. Drag the .wscc file and drop it on the XQuery Mapper canvas.

Stylus Studio adds the ddtek:wscall function glyph to the Mapper canvas and code
for the ddtek:wscall function to your XQuery code.

If the Web service exposes multiple operations, the ddtek:wscall function is created with
the operation that was exposed in the Web Service Call Composer when the .wscc file was
last saved. You can choose the operation you want your XQuery code to execute by
modifying the Web service call in XQuery Mapper:

1. Double-click the ddtek:wscall function glyph.

The Choose the WSDL Operation dialog box (see Figure 416) appears.
Stylus Studio User Guide 961

Working with XQuery in Stylus Studio
2. Click the down arrow in the Operation Name field to display the available Web
service operations, as shown here:

3. Select the operation you want and click OK.

◆ To create a ddtek:wscall function manually:

1. Open an XQuery and click the Mapper tab.

2. Right-click the Mapper canvas and select Function Block > DataDirect XQuery >
wscall/2.

Stylus Studio displays the Choose the WSDL Operation dialog box.

3. Enter the URL of the WSDL whose operation you want your XQuery to execute in
the WSDL File field.

Example:
http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL

Figure 415. Selecting a Web Service Operation

Note There are two predefined wscall functions – wscall/2 provides location and payload
input ports; wscall/3 also provides a header input ports.

Figure 416. Choose the WSDL Operation Dialog Box

Tip You can use Stylus Studio to help locate WSDL documents. See Obtaining WSDL
URLs on page 987 for more information.
962 Stylus Studio User Guide

Using Web Services in XQuery
Stylus Studio displays the operations associated with the Web service represented by
the WSDL in the Operation Name field.

4. Choose the Web service operation you want your XQuery to execute from the
Operation Name field.

Example: GetStockQuotes.

5. Click OK.

Stylus Studio displays the wscall function block on the XQuery Mapper canvas.

The illustration shown in Figure 417 shows a wscall defined with location and
payload input ports.

Examining the ddtek:wscall Function Block
The previous procedure, Creating a ddtek:wscall Function on page 961, provided an
example Web service (Swanand Mokashi’s StockQuote WSDL
(http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL), and
an example of an operation (GetStockQuotes). This Web service, given a stock ticker
value, returns information about that stock, including the company name, a current stock
quote, daily high and low values, and related information.

Imagine we chose the GetStockQuotes operation for our wscall. Let’s take a closer look at
the wscall function block created by Stylus Studio.

As seen in Figure 417, our ddtek:wscall function block was created with two input ports
(we could have created a ddtek:wscall function block with three input ports), a flow port,
and an output port. (See Parts of a Function Block on page 876 for general information
about function blocks in XQuery Mapper.)

Location Input Port

The location input port for the ddtek:wscall function describes information about the
Web service whose operation we selected for the XQuery, including its location (as a
URL) and operation (as a SOAP action). This port is on all ddtek:wscall function blocks.

Figure 417. wscall Function Block on the XQuery Mapper Canvas
Stylus Studio User Guide 963

Working with XQuery in Stylus Studio
If you double-click the port, Stylus Studio displays a configurable information box, as
shown in Figure 418. (The same is true for other input ports and the output port.)

If we right-click the address node and choose Set Text Value, the Value dialog box
displays the URL for the Swanand Mokashi Web service WSDL, as shown in Figure 419:

Similarly, we would see GetStockQuotes if we looked into the soapaction node.

Payload Input Port

The payload input port for the ddtek:wscall function describes the data the Web service
requires in order to execute the SOAP action. This port is on all ddtek:wscall function
blocks. (It is the second input port for functions added to XQuery Mapper using the
wscall/2 menu choice. It is the third input port if you used the wscall/3 menu choice.)

Figure 418. ddtek:wscall Location Input Port

Figure 419. Value for ddtek:wscall location
964 Stylus Studio User Guide

Using Web Services in XQuery
The “payload” for the Swanand Mokashi StockQuotes Web service, for example, is a
ticker value – PRGS, GOOG, or EBAY, for example.

By default, no text value is defined for the payload port.

Header Input Port

The header port for the ddtek:wscall function appears on function blocks defined using
the wscall/3 menu choice. You use the header port to provide authentication and
authorization information, like a username and password, for example.

Output Port

The output port for the ddtek:wscall function displays the output of the Web service
represented by the ddtek:wscall function. In the case of the Swanand Mokashi
StockQuote Web service, available output includes company name, stock quote, change,
opening price, and so on, as shown in Figure 419.

Figure 420. ddtek:wscall Payload Input Port

Figure 421. ddtek:wscall Output Port
Stylus Studio User Guide 965

Working with XQuery in Stylus Studio
Displaying Port Information

◆ To display port information, double-click the port.

Note that you can display information for only one input port at a time.

Moving Port Information

When you move a port information box, the ddtek:wscall function block moves with it,
and vice versa.

Mapping ddtek:wscall Functions
In most typical XQuery mapping operations, you map source and target document nodes
to function block ports, as shown in Figure 422.

Figure 422. Mapping Typical Function Blocks in XQuery Mapper
966 Stylus Studio User Guide

Using Web Services in XQuery
When use a ddtek:wscall function, however, you map source and target document nodes
to schema nodes in the port information blocks, as shown in Figure 422.

Example: Querying a Web Service
In this example, we’ll use the ddtek:wscall function to query the Swanand Mokashi
StockQuotes Web service.

◆ To query the Swanand Mokashi Web Service:

1. Get started by creating a wscall/2 function as described in “Creating a ddtek:wscall
Function” on page 961. As in that procedure, we

■ Use this value for the WSDL URL in Step 3:
http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL

■ Select GetStockQuote for the WSDL operation in Step 4.

2. For our source document, we’ll use a simple XML document that contains only a
ticker value – PRGS.

For the target, we’ll create a root node (right-click the Set Target Document pane and
choose Create Root Element), and a child element, my_quote.

Figure 423. Mapping a ddtek:wscall Function Block
Stylus Studio User Guide 967

Working with XQuery in Stylus Studio
When we’re done, our Mapper canvas looks like this:

3. Before continuing, let’s make a quick change to the source document – because we’d
like to use this XQuery with other sources, we can define the source as a global
variable:

a. Right-click the source document URL, and choose Associate with > Global

b. In the Associate Schema with Variable dialog box, we enter ticker_source and
click OK.

Now the document URL appears as $ticker_source, allowing us to easily substitute
other source documents for use with this XQuery.

Stylus Studio specified location, payload, and output ports based on the Web service
we used to create the wscall function block. (Double-click the ports to display this
information.) However, not all of the values required to generate the output we need
– the specific company stock ticker we want to look up, and what information about
that stock we want Swanand Mokashi to provide – has been specified. We’ll do that
now.

4. Double-click the payload port, and map the ticker node from the source document to
the tns:QuoteTicker node in the payload port information box.

The Web service will be given the value of the ticker element from our source
document when the XQuery is run.

Figure 424. Adding Source and Target Documents

Figure 425. Specifying a Payload Value
968 Stylus Studio User Guide

Using Web Services in XQuery
5. Close the payload information box.

Next, let’s specify the information we want from the Swanand Mokashi Web service.

6. Since we’ll want multiple pieces of information from the Web service (we want to see
the company name, ticker value, and current stock price in our output), we define a
FLWOR block so that we make one call to the Web service.

Right-click the Mapper canvas and choose FLWOR Block.

Stylus Studio adds a FLWOR block to the XQuery Mapper.

7. Double-click the output port and fully expand the output port information box.

8. Map the repeating tns:Quote element to the for port on the FLWOR block.

Figure 426. Selecting Output
Stylus Studio User Guide 969

Working with XQuery in Stylus Studio
9. Next, map the FLWOR block’s output port to the my_quote node we created in the
target document.

10. Now we can choose the output provided by the Web service we want to include in our
XQuery. For the tns:CompanyName, tns:StockTicker, and tns:StockQuote Web service
nodes, we do this drag-and-drop operation:

a. Using the right mouse button (mouse button 2), drag the node to the my_quote
node in the target document.

b. When we release the mouse button to drop the Web service node, we choose Add
Child Element and Map It.

c. We rename the target node, dropping the tns: prefix, in the Name dialog box
when the target document element is created.

d. When finished, close the output port information box.

When we’re done with this step, our output mappings look like this:

Figure 427. Mapping the Web Service to a FLWOR Block

Figure 428. Finished Mapping
970 Stylus Studio User Guide

Using Web Services in XQuery
Sample XQuery Code

Here’s the XQuery code that Stylus Studio created for us, based on the XQuery mapping:

And when we preview the code, this is our result:

Figure 429. XQuery Code Created by the Mapper

Figure 430. Result of Web Service Used in an XQuery
Stylus Studio User Guide 971

Working with XQuery in Stylus Studio
Generating Java Code for XQuery

You can generate Java code for XQuery in Stylus Studio. This section describes the
generated code, scenario settings that affect the generated code, as well as procedures for
generating, compiling, and running generated code.

A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

This section covers the following topics:

● What Does Stylus Studio Generate?

● Scenario Properties Used for Generating Code

● Java Code Generation Settings

● How to Generate Java Code for XQuery

● Compiling Generated Code

● Deploying Generated Code

What Does Stylus Studio Generate?
Stylus Studio generates a complete Java application that implements the XQuery
represented by the current XQuery using settings from the current scenario. The Java code
can be compiled and run within Stylus Studio.

Scenario Properties Used for Generating Code
When you generate code for XQuery, Stylus Studio uses some of the information
associated with the active XQuery scenario, as specified in the Scenario Properties
dialog box.

Java code generation is available only in Stylus Studio XML Enterprise Suite
.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the Java Code Generation video.

Tip You can also generate:

● C# code for XQuery. See Generating C# Code for XQuery

● Java code for XSLT. See Generating Java Code for XSLT
972 Stylus Studio User Guide

http://www.stylusstudio.com/videos/code-generation1/code-generation1.html
http://www.stylusstudio.com/videos/code-generation1/code-generation1.html
http://www.stylusstudio.com/xml_videos.html

Generating Java Code for XQuery
The following tables summarizes the scenario properties that affect code generation.

Table 109. Scenario Properties that Affect Code Generation

Tab Comment

General The Code Generation wizard uses only the Source XML URL and the
Output URL field, if specified. All other properties on this page are
ignored.

Processor You can use the following XQuery processors for generating Java code:

● DataDirect XQuery

● Saxon

If the Stylus Studio URI Resolver property is selected, the generated
code includes lines that import and register ConverterFactory and
ConverterResolver classes from DataDirect XML Converters.

Note: If the scenario specifies an XQuery processor for which Java code
generation is not supported, Stylus Studio uses the DataDirect XQuery
processor for code generation purposes. The processor specified in the
scenario is not changed.

Parameter Values Parameters are always treated as XQuery expressions; they appear in the
generated code just as they are entered in the Expression field.

Profiling Options Ignored.

Validation You can use the following validation engines for validating your XQuery
Java code:

● Saxon

● Java built-in

If you choose a validation engine that is not supported, Stylus Studio uses
the Java built-in validation engine.

Post-process Only post-processing using Apache FOP and RenderX XEP is specified in
the generated code. Resulting PDF is written to the output URL specified
on the General tab.
Stylus Studio User Guide 973

Working with XQuery in Stylus Studio
Java Code Generation Settings
When you generate Java code for an XQuery, Stylus Studio displays the Java Code
Generation dialog box.

You use this dialog box to specify

● The target directory in which you want the Java code created. c:\temp\myJavaCode,
for example. If the directory you name does not exist, Stylus Studio creates it when
you run the Code Generation wizard.

The default is a \sources directory created in your Windows user data directory –
C:\Documents and Settings\sula\My Documents\Stylus Studio\sources , for
example.

● Optionally, a package name. If you specify a package name, this name is used for a
subfolder created in the target directory you specify. If you specify myPackage as the
package name, for example, the generated code is written to
c:\temp\myJavaCode\myPackage. (Though optional, it is considered good practice to
create a package name.)

● The class name. Stylus Studio also uses the class name for the .java file created by
the Code Generation wizard. For example, if you provide the name myClass, Stylus
Studio creates c:\temp\myJavaCode\myPackage\myClass.java.

The default class name is taken from the XQuery file name.

Figure 431. Java Code Generation Dialog Box
974 Stylus Studio User Guide

Generating Java Code for XQuery
● Whether or not you want to add the generated code to the current Stylus Studio
project. If you choose to add the generated code to the project, it creates a folder using
the package name you specify and places the .java file in that folder. If you do not
specify a package name, the .java file is added directly below the project root in the
Project window.

● Whether or not you want to embed the XQuery source in the Java code. Embedding
the XQuery source allows the Java code to run without referencing any external
sources.

How to Generate Java Code for XQuery

◆ To generate Java code for XQuery:

1. Open the XQuery for which you want to generate Java code.

2. Define at least one scenario for the XQuery. The scenario must use the Saxon or
DataDirect XQuery processor. See Scenario Properties Used for Generating Code for
more information.

3. Select the scenario for which you want to generate Java code.

4. Close the Scenario Properties dialog box.

5. Select XQuery > Generate Code > Generate Java Code from the Stylus Studio menu.

The Generate Java Code dialog box appears.

Figure 432. Java Code Generation Dialog Box
Stylus Studio User Guide 975

Working with XQuery in Stylus Studio
6. Specify the settings you want for the target directory, package and class names, and
so on. See Java Code Generation Settings if you need help with this step.

7. Click OK.

Stylus Studio generates Java code for the XQuery. When the code generation is
complete, the resulting file (classname.java) is opened in the Stylus Studio Java
Editor.

Compiling Generated Code
In order to compile generated code, these JAR files must be in your system classpath:
● Saxonsa.jar

● ddxq.jar

These files are in the \bin directory where you installed Stylus Studio.

In addition, if your XQuery or XLST code uses DataDirect XML Converters™, these
JAR files must also be in your system classpath:
● /Components/XML Converters for Java/lib/XMLConverters.jar

● /Components/XML Converters for Java/lib/codehaus/wstx-asl.jar

Stylus Studio ensures that these files are added to your classpath when you generate code.
If you plan to compile the generated code outside Stylus Studio, you need to modify your
system classpath yourself.

How to Compile and Run Java Code in Stylus Studio

◆ To compile Java code in Stylus Studio:

1. Make sure the Java Editor is the active window.

2. Click the Compile button ().

Alternatives: Press Ctrl + F7, or select Java > Compile from the Stylus Studio menu.

Stylus Studio compiles the Java code. Results are displayed in the Output window.

◆ To run Java code in Stylus Studio:

1. Make sure the Java Editor is the active window.

2. Click the Run button ().

Alternatives: Press Ctrl + F5, or select Java > Run from the Stylus Studio menu.
976 Stylus Studio User Guide

Generating C# Code for XQuery
If the code has not been compiled, Stylus Studio displays a prompt asking if you want
to compile the code now. Otherwise, Stylus Studio runs the Java code. Results are
displayed in the Output window.

Deploying Generated Code
If your XQuery uses built-in DataDirect XML Converters – to convert CSV or EDI to
XML, for example – you need to purchase licenses for the DataDirect XML Converters
you wish to use if you wish to deploy your code in any environment on a machine (such
as a test or application server) that does not have a license for the DataDirect XML
Converters. Licenses for DataDirect XML Converters are purchased separately from
Stylus Studio XML Enterprise Suite.

Similarly, if you use the DataDirect XQuery processor, you must acquire additional
licences if you wish to deploy your XQuery code.

Write Stylus Studio at stylusstudio@stylusstudio.com, or call 781.280.4488 for more
information.

Generating C# Code for XQuery

You can generate C# code for XQuery in Stylus Studio. This section describes the
generated code, scenario settings that affect the generated code, as well as procedures for
generating, compiling, and running generated code.

This section covers the following topics:

● What Does Stylus Studio Generate?

● Scenario Properties Used for Generating Code

● C# Code Generation Settings

● How to Generate C# Code for XQuery

● Compiling Generated Code

● Deploying Generated Code

C# code generation is available only in Stylus Studio XML Enterprise Suite
.

Tip You can also generate:

● Java code for XQuery. See Generating Java Code for XQuery

● C# code for XSLT. See Generating C# Code for XSLT
Stylus Studio User Guide 977

Working with XQuery in Stylus Studio
What Does Stylus Studio Generate?
Stylus Studio generates a C# application that implements the XQuery represented by the
current XQuery using settings from the current scenario. The C# code can be compiled
and run within Stylus Studio.

Scenario Properties Used for Generating Code
When you generate code for XQuery, Stylus Studio uses some of the information
associated with the active XQuery scenario, as specified in the Scenario Properties
dialog box.

The following tables summarizes the scenario properties that affect code generation.

Table 110. Scenario Properties that Affect Code Generation

Tab Comment

General The Code Generation wizard uses only the Source XML URL and the
Output URL field, if specified. All other properties on this page are
ignored.

Processor Only the Saxon processor supports C# code generation for XQuery.

Note: If the scenario specifies an XQuery processor for which C# code
generation is not supported, Stylus Studio uses the Saxon processor for
code generation purposes. The processor specified in the scenario is not
changed.

Parameter Values Parameters are always treated as XQuery expressions; they appear in the
generated code just as they are entered in the Expression field.

Profiling Options Ignored.
978 Stylus Studio User Guide

Generating C# Code for XQuery
C# Code Generation Settings
When you generate C# code for an XQuery, Stylus Studio displays the C# Code
Generation dialog box.

Validation You can use the following validation engines for validating your XQuery
C# code:

● .NET XML Parser

● Saxon

If you choose a validation engine that is not supported, Stylus Studio uses
the .NET XML parser.

Post-process Only post-processing using Apache FOP and RenderX XEP is specified in
the generated code. Resulting PDF is written to the output URL specified
on the General tab.

Table 110. Scenario Properties that Affect Code Generation

Tab Comment

Figure 433. C# Code Generation Dialog Box
Stylus Studio User Guide 979

Working with XQuery in Stylus Studio
You use this dialog box to specify

● The target directory in which you want the C# code created.
c:\temp\myPipelineC#Code, for example. If the directory you name does not exist,
Stylus Studio creates it when you run the Code Generation wizard.

The default is a \sources directory created in your Windows user data directory –
C:\Documents and Settings\sula\My Documents\Stylus Studio\sources, for example.

● Optionally, a namespace name. If you specify a namespace name, this name is used
for a subfolder created in the target directory you specify. If you specify
myNamespace as the package name, for example, the generated code is written to
c:\temp\myC#Code\myNamespace. (Though optional, it is considered good practice to
create a namespace name.)

● The class name. Stylus Studio also uses the class name for the .cs file created by the
Code Generation wizard. For example, if you provide the name myClass, Stylus
Studio creates c:\temp\myC#Code\myNamespace\myClass.cs.

The default class name is taken from the XQuery file name.

● The location of Saxon .NET on your system. Stylus Studio adds this URL to the
Microsoft Visual Studio 2005 project, allowing the generated C# code for .NET to
compile.

● Whether or not you want the resulting .cs file to contain a static void Main(String
[] args) method.

● Whether or not you want to open the generated code file. If selected, the generated
C# file is opened in whatever application is registered to open .cs files.

● Whether or not you want to embed the XQuery source in the generated C# code. This
option is available when using either the Saxon XQuery or DataDirect XQuery
processors.

Note: This option appears only if you are generating XQuery code.

● Whether or not you want to either create a new Visual Studio 2005 project or update
an existing one. If a new project is created, it is automatically opened with whatever
application is registered to open .csproj files. The .csproj file contains all the
necessary references to the generated .cs file, as well as all the .dll files that the .cs
file requires.

To run the .cs file, simply press Ctrl+F5 in Visual Studio.
980 Stylus Studio User Guide

Generating C# Code for XQuery
How to Generate C# Code for XQuery

◆ To generate C# code for XQuery:

1. Open the XQuery for which you want to generate C# code.

2. Define at least one scenario for the XQuery document. The scenario must use the
Saxon processor. See Scenario Properties Used for Generating Code for more
information.

3. Select the scenario for which you want to generate C# code.

4. Close the Scenario Properties dialog box.

5. Select XQuery > Generate Code > Generate C# Code from the Stylus Studio menu.

The Generate C# Code dialog box appears. (See Figure 433 on page 979.)

6. Specify the settings you want for the target directory, namespace and class names,
and so on. See C# Code Generation Settings if you need help with this step.

7. Click OK.

Stylus Studio generates C# code for the XQuery. When the code generation is
complete, the resulting file (classname.cs) is opened in a third-party editor if you
chose the Open the generated file option.

Compiling Generated Code
The generated code contains a commented list of the DLL files required in order to
compile.

Deploying Generated Code
If your XQuery uses built-in DataDirect XML Converters – to convert CSV or EDI to
XML, for example – you need to purchase licenses for the DataDirect XML Converters
you wish to use if you wish to deploy your code in any environment on a machine (such
as a test or application server) that does not have a license for the DataDirect XML
Converters. Licenses for DataDirect XML Converters are purchased separately from
Stylus Studio XML Enterprise Suite.

Similarly, if you use the DataDirect XQuery processor, you must acquire additional
licences if you wish to deploy your XQuery code.
Stylus Studio User Guide 981

Working with XQuery in Stylus Studio
Write Stylus Studio at stylusstudio@stylusstudio.com, or call 781.280.4488 for more
information.
982 Stylus Studio User Guide

Chapter 12 Composing Web Service Calls
Using Stylus Studio’s Web service call composer, you can design, compose, and test a
Web service call without writing any code. Once Stylus Studio composes the Simple
Object Access Protocol (SOAP) request and you have successfully tested it, you can use
the SOAP response returned by the Web service as an XML source wherever you use
XML documents in Stylus Studio.

A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

This chapter covers the following topics:

● “Overview” on page 984

● “Obtaining WSDL URLs” on page 987

● “Modifying a SOAP Request” on page 991

● “Testing a Web Service” on page 994

● “Saving a Web Service Call” on page 995

● “Querying a Web Service” on page 999

● “Creating XQuery from a Web Service Call” on page 999

● “Creating a Web Service Call Scenario” on page 1001

The Web services features described in this chapter are available only in Stylus
Studio XML Enterprise Suite.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the Introduction to the Web Service
Call Composer video.
Stylus Studio User Guide 983

http://www.stylusstudio.com/videos/wscc/wscc.html
http://www.stylusstudio.com/videos/wscc/wscc.html
http://www.stylusstudio.com/videos/wscc/wscc.html
http://www.stylusstudio.com/xml_videos.html

Composing Web Service Calls
Overview
The process of composing a Web service call in Stylus Studio involves the following
steps:

1. Specify the Web Services Description Language (WSDL) URL associated with the
Web service you want to use. See “Obtaining WSDL URLs” on page 987.

2. Compose the Simple Object Access Protocol (SOAP) request.

a. Select the operation described by the WSDL for which you want Stylus Studio to
compose a SOAP request.

b. Provide values for the SOAP request parameters.

See “Modifying a SOAP Request” on page 991.

3. Test the Web service. You can test a Web service call as you composed it, or you can
create a scenario to test the Web service call using parameters of your choosing. See
“Testing a Web Service” on page 994.

Once you are satisfied with the Web service call, you can optionally

● Save the Web service call for later use. See “Saving a Web Service Call” on page 995.

● Create a Web service scenario. See “Creating a Web Service Call Scenario” on
page 1001.
984 Stylus Studio User Guide

Overview
How to Compose a Web Service Call

◆ To compose a Web Service call:

1. From the Stylus Studio menu bar, select File > New > Web Service Call.

Stylus Studio opens a new document in the Web Service Call Composer.

2. Type a WSDL address in the WSDL URL field, or use the UDDI button to browse
UDDI registries for published Web services. See “Obtaining WSDL URLs” on
page 987 for help with this step. (Any WSDL URLs that you have used previously
are displayed in the WSDL URL drop-down list.)

Web service operations for the WSDL you select are displayed in the Operations
field.

3. Select the Web service operation for which you want to create a SOAP request from
the Operations field.

Figure 434. Web Service Call Composer
Stylus Studio User Guide 985

Composing Web Service Calls
Parameters for the operation you select are displayed in the Name field; the datatype
for each parameter is displayed in the Type field. The SOAP request is displayed
beneath the fields you use to define the operation’s parameters.

4. Set values for the parameters:

a. Click the parameter name.

b. Type a value in the Value field.
Stylus Studio updates the SOAP request to reflect the parameter values you enter.

Alternative: You can manually edit the XML in the SOAP request. If you do, the
Value field is updated automatically.

See “Modifying a SOAP Request” on page 991 for help with this step.

5. When you have provided values for all of the parameters, click the Send Request
button () to test the Web service.
986 Stylus Studio User Guide

Obtaining WSDL URLs
If it is not already open, Stylus Studio opens the Preview window and displays the
SOAP response returned by the Web service, as shown in Figure 435:

6. Optionally, save the Web service call. See “Saving a Web Service Call” on page 995
for help with this step.

Obtaining WSDL URLs
Every Web service is described by a Web Services Description Language (WSDL). The
WSDL defines the format of the SOAP messages used to send requests to and receive
responses from the Web service, the transfer protocol used, namespace declarations, and
other information. Several vendors, such as IBM, Microsoft, and SAP, have established
Universal Description, Discovery, and Integration (UDDI) registries, to make Web
services publicly available.

Figure 435. SOAP Response
Stylus Studio User Guide 987

Composing Web Service Calls
You can locate WSDLs on your own, or you can use Stylus Studio to search UDDI
registries for published Web services.

Browsing UDDI Registries
You browse UDDI registries and search for published Web services (and the WSDLs that
describe them) using the UDDI Browser dialog box.

The UDDI Registry field displays a list of public UDDI registries. You use the Query field
(obscured by the UDDI Registry drop-down list in the preceding illustration) to specify the
keywords you want to use to search a UDDI registry from this list. For example, if you
are building a weather application, you might type weather in the Query field to search for
weather-related Web services. Keywords are matched against the Web service and
company information available in the UDDI registry, not against the WSDL itself.
Generally speaking, the same search executed against different UDDI registries will yield
different results.

Figure 436. UDDI Browser Dialog Box
988 Stylus Studio User Guide

Obtaining WSDL URLs
In addition to specifying keywords, the UDDI Browser dialog box allows you to

● Specify whether you want to search by Web service (the default) or by provider

● Limit the search results to a number or rows (the default is 100)

When you execute the search (by clicking the Search button), Stylus Studio displays
search progress in a status bar. You can stop the search at any time by clicking the Stop
button.

When the search is complete, the URLs for any WSDLs that meet your search criteria are
displayed in the Result field. For example, if you search the XMethods UDDI registry for
Web services related to weather, the Stylus Studio UDDI Browser returns the following
results:

When you select a WSDL URL, Stylus Studio displays the operations supported by the
Web service in the Web Service Call Composer. The first operation is selected by default,
and the SOAP request that defines it is displayed in the XML editing area. Web services
can provide multiple operations. See “Modifying a SOAP Request” on page 991.

Figure 437. UDDI Browser result
Stylus Studio User Guide 989

Composing Web Service Calls
If you do not see a suitable WSDL URL in the UDDI registry you searched, modify your
query in the UDDI Browser and try your search again, or search a different UDDI registry.

How to Browse UDDI Registries

◆ To browse UDDI registries:

1. In the Web Service Call Composer, click the UDDI button.

The UDDI Browser dialog box appears.

2. In the UDDI Registry field, type the URL of a UDDI registry, or select a UDDI
registry from the drop-down list.

3. In the Query field, enter the string you want to use to search the selected UDDI
registry for available Web services.

4. Optionally, change the following:

❍ Max Rows – the maximum number of results you want displayed in the Results
field.

❍ Search By – whether you want to search the UDDI registry by company or by
Web service (the default).

5. Click the Search button.

Search progress is displayed in a status bar. When the search is complete, WSDLs that
match the search criteria you specified are displayed in the Results field.

6. Select the WSDL that defines the Web service operation for which you want to
compose a SOAP request and click OK.

The UDDI Browser dialog box closes and you are returned to the Web Service Call
Composer.
990 Stylus Studio User Guide

Modifying a SOAP Request
Modifying a SOAP Request
When you select a WSDL from the Result field in the UDDI Browser and click OK, the
operations exposed by the Web service are displayed in the Stylus Studio Web Service
Call Composer.

When you select an operation from the Operations pane, Stylus Studio displays

● Parameters associated with that operation, including their datatype and a field in
which you can enter a value for testing purposes.

● The XML that describes the SOAP request associated with that operation. You can
edit the SOAP request, but for initial testing you should restrict changes to providing
parameter values, and you can use the parameter’s Value field for this purpose.

Figure 438. Modifying a SOAP request
Stylus Studio User Guide 991

Composing Web Service Calls
Understanding Parameters
Stylus Studio displays the datatype for SOAP request parameters. It is not possible to
determine all of the details for parameters, however. A zipCode parameter might take the
following:
12309, 02134, 90210

Or it might take only a single value. Sometimes this type of information is provided in the
WSDL itself. In some cases, however, you might have to contact the Web service
provider to obtain this information.

Displaying a WSDL Document

You can easily display a WSDL document within Stylus Studio once you have specified
the WSDL URL. You might want to look at a WSDL document to learn more about the
structure of the SOAP request, or to see if the Web service provider commented the XML
to include information for developers using their Web service.
992 Stylus Studio User Guide

Modifying a SOAP Request
How to display a WSDL document

◆ To display a WSDL document, click the Open WSDL Document button () near the
top of the Web Service Call Composer.

Stylus Studio displays the WSDL document in its own XML editor, as shown in
Figure 439:

How to Modify a SOAP Request

◆ To modify a SOAP request:

1. Select the Web service operation for which you want to compose a SOAP request
from the Operations pane.

The SOAP request for the Web service operation appears in the XML editing area.

2. In the Name field, select a parameter and enter a value for it in the Value field.

3. Repeat Step 2 for any remaining parameters.

Figure 439. WSDL document editor
Stylus Studio User Guide 993

Composing Web Service Calls
Once you have specified values for the SOAP request’s parameters, you can test the Web
service. See “Testing a Web Service” on page 994.

Testing a Web Service
You can test a Web service from within Stylus Studio. Testing allows you to quickly and
easily

● Verify whether or not the Web service is available

● Understand whether or not the Web service provides the type of information you
expect and require

● Learn about the SOAP response returned by the Web service

● Learn how parameters you might choose to specify in a Web service call scenario
affect the Web service operation

What Happens When You Test a Web Service
When you test a Web service, Stylus Studio submits the SOAP request to the WSDL URL
specified in the Web service call. The result, when it is returned, is displayed in the
Preview window of the Web Service Call Composer.

By default, Stylus Studio uses the HTTP transport protocol to submit the SOAP request
to the WSDL server. Stylus Studio uses the proxy server specified on the local machine
if one has been configured.

Other Options for Testing a Web Service

In addition to testing a Web service as described in this section, you can also create a Web
service call scenario. Web service call scenarios allow you to

● Use transport protocols besides HTTP

● Specify overrides to the WSDL (changing the SOAP action, for example)

● Change default settings (such as the time out value for executing SOAP requests)

See “Creating a Web Service Call Scenario” on page 1001 to learn more about Web
service call scenarios.
994 Stylus Studio User Guide

Saving a Web Service Call
How to Test a Web Service

◆ To test a Web service, click the Send Request button () to submit the SOAP
request.

Stylus Studio displays the SOAP response in the Preview window as shown in
Figure 440:

Saving a Web Service Call
You can save the Web service call composed by Stylus Studio. The file created when you
save a Web service call includes the WSDL URL and the last Web service operation that
you configured (including parameter values) prior to saving the file. For example, if you
are using a Web service that provides separate operations for temperature conversions

Figure 440. Testing a Web service
Stylus Studio User Guide 995

Composing Web Service Calls
(one for Celsius to Fahrenheit and one for Fahrenheit to Celsius, for example), only the
last one you test is saved.

Saving a Web service call gives you the ability to easily recall a preconfigured SOAP
request for additional testing – allowing you to modify the SOAP request and test it
without having to locate the WSDL.

This section covers the following topics:

● Using Web Service Calls as XML on page 996

● Querying a Web Service on page 999

● How to Save a Web Service Call on page 998

Using Web Service Calls as XML
In addition to opening a Web service call in the Web Service Call Composer for testing
purposes, you can open a Web service call as an XML document anywhere in Stylus
Studio – in the XML editor, or as a source document in the XQuery mapper for example.
When you open a Web service call as an XML document, Stylus Studio automatically
executes the SOAP request and displays the SOAP response.

Consider the following Web service call, stock.wsc. The Web service operation used in
this example returns current stock quote and other information based on the ticker
symbols provided as parameters. Here is the SOAP request composed by Stylus Studio:

<?xml version="1.0" standalone="no"?>
<SOAP-ENV:Envelope xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"
xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

SOAP-ENV:Body>
<s0:GetStockQuotes xmlns:s0="http://swanandmokashi.com/">

<s0:QuoteTicker>prgs</s0:QuoteTicker>
</s0:GetStockQuotes>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
996 Stylus Studio User Guide

Saving a Web Service Call
And here is the SOAP response returned by the Web service:

<soap:Body>
<GetStockQuotesResponse xmlns="http://swanandmokashi.com/">

<GetStockQuotesResult>
<Quote>

<CompanyName>PROGRESS SOFT</CompanyName>
<StockTicker>PRGS</StockTicker>
<StockQuote>20.10</StockQuote>
<LastUpdated>10:17am</LastUpdated>
<Change>+0.03</Change>
<OpenPrice>20.05</OpenPrice>
<DayHighPrice>20.40</DayHighPrice>
<DayLowPrice>20.00</DayLowPrice>
<Volume>13200</Volume>
<MarketCap>695.1M</MarketCap>
<YearRange>11.50 - 24.06</YearRange>

</Quote>
</GetStockQuotesResult>

</GetStockQuotesResponse>
</soap:Body>

</soap:Envelope>

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
Stylus Studio User Guide 997

Composing Web Service Calls
The saved Web service call can be used as the source document for an XQuery in the
XQuery mapper, as shown in Figure 441:

XQueries composed using a Web service call as a source document return real-time data
from the Web service as a result.

How to Save a Web Service Call

◆ To save a Web service call:

1. Select File > Save from the Stylus Studio menu bar.

The first time you save a Web service call, the Save As dialog box appears; for
subsequent save operations, Stylus Studio displays the Save dialog box.

2. Change the default name (Untitled.wscc, for example), and click Save.

Figure 441. Using a Web Service Call to Compose an XQuery
998 Stylus Studio User Guide

Querying a Web Service
Querying a Web Service
You can use the ddtek:wscall function in XQuery Mapper to query Web services. See
Using Web Services in XQuery on page 960 for more information.

Creating XQuery from a Web Service Call
You can use Stylus Studio to create XQuery from a Web service call, and then use that
XQuery to invoke the Web service. The XQuery created by Stylus Studio uses a Java
extension function, ddtek:wscall(), that allows the built-in or DataDirect XQuery®
processor to execute the Web service call.

This section covers the following topics:

● “Example” on page 999

● “What Happens When You Create XQuery” on page 1000

● “How to Create XQuery from a Web Service Call” on page 1000

Example
Consider the following StockQuotesSoap SOAP request defined using the Swan and
Mokashi WSDL:

This SOAP request was created using the Stylus Studio Web Service Call Composer, as
described in “How to Compose a Web Service Call” on page 985.

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<tns:GetQuotes xmlns:s0="http://swanandmokashi.com">

<tns:QuoteTicker>prgs</tns:QuoteTicker>
</tns:GetQuotes>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Stylus Studio User Guide 999

Composing Web Service Calls
The XQuery created by Stylus Studio for this Web service call looks like this:

What Happens When You Create XQuery
When you create XQuery from a Web service call, Stylus Studio copies the resulting
XQuery to your system’s clipboard. From there, you can paste it into a new or existing
XQuery document.

See “Using XQuery to Invoke a Web Service” on page 958 for more information on
working with XQuery created from a Web service call.

How to Create XQuery from a Web Service Call

◆ To create XQuery from a Web service call:

1. Create a Web service call as described in “How to Compose a Web Service Call” on
page 985.

2. Test the SOAP request by clicking the Preview Result button, and verify that it
returns the results you require.

3. Click WebServiceCall > Copy XQuery to Clipboard on the Stylus Studio menu.

Stylus Studio creates XQuery based on the SOAP request and copies the XQuery
code to your system’s clipboard.

4. Open a new XQuery document (File > New > XQuery File), and paste the clipboard
contents into the new document.

declare namespace tns = "http://swanandmokashi.com";

ddtek:wscall(
<ddtek:location

 address="http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx"
 soapaction="http://swanandmokashi.com/GetQuotes"/>,

<tns:GetQuotes xmlns:tns="http://swanandmokashi.com">
 <tns:QuoteTicker/>
</tns:GetQuotes>
)

1000 Stylus Studio User Guide

Creating a Web Service Call Scenario
Creating a Web Service Call Scenario
A Web service call scenario is a group of customizable settings associated with a Web
service call composition. Stylus Studio uses these settings when you test a Web service
using a scenario. If you don’t define a scenario, or don’t test the Web service call using a
scenario, Stylus Studio uses the settings described in the WSDL. Examples of Web
service call scenario settings include the client used to perform the Web service call; a
username and password for Web services requiring authentication; and the length of time
Stylus Studio will try to access the Web service before timing out.

You should consider creating a Web service call scenario only after you have defined the
Web service call itself. This allows Stylus Studio to inherit values for the scenario from
the WSDL you select for your Web service call.

You can create multiple scenarios that use the same Web service call, and define different
settings for each. This flexibility can aid the Web service call development process as it
enables you to easily test different Web service parameters before making the Web
service call available in your XML applications. A scenario can be associated with only
one Web service call.

This section covers the following topics:

● Overview of Scenario Features

● How to Create a Scenario

● How to Run a Scenario

● How to Clone a Scenario

Overview of Scenario Features
This section describes the main features of Web service call scenarios. It covers the
following topics:

● Scenario Names

● Transport Protocol and Client Settings

● Other Transport Setttings
Stylus Studio User Guide 1001

Composing Web Service Calls
Scenario Names

You specify a name for a Web service call scenario on the Binding tab of the Scenario
Properties dialog box.

When you create a Web service call scenario, specify a name that makes it easy to
distinguish one scenario from another.

Transport Protocol and Client Settings

You specify the transport protocol you want to use when testing the Web service on the
Binding tab of the Scenario Properties dialog box.

When you use HTTP as the transport protocol, the Web service call client can be any one
of the following:

● Microsoft .NET

● Apache Axis

Other Transport Setttings

Once you specify the client, Stylus Studio displays a list of additional settings that you
can use to define properties for the scenario. Some values, such as the time out, are system

Figure 442. Binding Tab of the Web Service Call Scenario Properties Dialog Box
1002 Stylus Studio User Guide

Creating a Web Service Call Scenario
defaults. Others, such as the SOAP action, are taken directly from the WSDL specified in
the Web Service Call Composer.

HTTP Settings

The following table describes the scenario settings associated with the HTTP transport
protocol.

Note Values you specify on the Binding tab override those in the WSDL displayed in the Web
Service Call Composer.

Table 111. HTTP Settings

Setting Description

end point The server on which the Web service is executed. For example:
http://glkev.webs.innerhost.com/glkev_ws/WeatherFetcher

.asmx.

This value is taken from the current Web service call. Required.

SOAPAction The SOAP action described by the WSDL you selected for the Web
service call. For example:
http://www.myasptools.com/GetWeather

This value is taken from the current Web service call. Required.

user The username used to access the Web service if authentication is
required. Optional.

password The password used to access the Web service if authentication is
required. Optional.

time out The time in milliseconds until the connection to the Web service
server is dropped due to inactivity. The default is 300000 (300
seconds). Required.
Stylus Studio User Guide 1003

Composing Web Service Calls
How to Create a Scenario

◆ To create a scenario:

1. Create a Web service call if you haven’t already. See How to Compose a Web Service
Call if you need help with this step.

2. Display the Scenario Properties dialog box by clicking in the Web service
editor tool bar.

Alternative: Select Create Scenario from the scenario drop-down list at the top of the
editor window:

3. On the General tab, specify a name for the Web service call scenario.

4. Click the Binding tab.

5. Select the appropriate transport protocol from the Transport drop-down list.

6. Specify the binding properties you want to associate with this Web service call
scenario.

7. Click OK.

The Web service call scenario is saved with the name and settings you specified.

Figure 443. Creating a Scenario
1004 Stylus Studio User Guide

Creating a Web Service Call Scenario
How to Run a Scenario

◆ To run a scenario:

1. Select a scenario from the scenario drop-down list at the top of the editor window:

Alternative:

a. In the Web Service Call Composer tool bar, click .
Stylus Studio displays the Scenario Properties dialog box.

b. On the General tab, select the scenario you want to run from the Existing preview
scenarios list.

c. Click OK.

2. Click the Send Request button () .

How to Clone a Scenario
When you clone a scenario, Stylus Studio creates a copy of the scenario except for the
scenario name. This allows you to make changes to one scenario and then run both to
compare the results.

◆ To clone a scenario:

1. Display the Scenario Properties dialog box by clicking in the Web Service Call
Composer tool bar.

2. In the Existing preview scenarios field, click the name of the scenario you want to
clone.

3. Click Clone.

Figure 444. Picking a Saved Scenario
Stylus Studio User Guide 1005

Composing Web Service Calls
4. In the Scenario name field, type the name of the new scenario.

5. Change any other scenario properties you want to change. See Overview of Scenario
Features on page 1001.

6. Click OK.

If you change your mind and do not want to create the clone, click Delete and then
OK.
1006 Stylus Studio User Guide

Chapter 13 Working with WSDL Documents
The Stylus Studio WSDL Editor lets you create, review, and modify Web Services
Description Language (WSDL) documents using graphic or text interfaces. A WSDL
document is a document written using XML that describes a Web service.

This chapter covers the following topics:

● “Creating a WSDL Document in Stylus Studio” on page 1007

● “Opening WSDL Documents” on page 1008

● “Using the WSDL Editor” on page 1009

● “Working with WSDL Elements” on page 1018

● “Importing WSDL Documents” on page 1034

● “Printing a WSDL Document” on page 1037

● “Saving the WSDL Diagram as an Image” on page 1037

Creating a WSDL Document in Stylus Studio
◆ To create a WSDL document, select File > New > WSDL Document from the Stylus

Studio menu.

Stylus Studio displays an untitled WSDL document (untitled1.wsdl, for example) in the
WSDL Editor. (See Figure 445.) WSDL documents in Stylus Studio are saved with a
.wsdl extension.

The Web services features described in this chapter are available only in Stylus
Studio XML Enterprise Suite.
Stylus Studio User Guide 1007

Working with WSDL Documents
To learn more about the WSDL Editor, see “Using the WSDL Editor” on page 1009.

To begin defining a WSDL, see “Working with WSDL Elements” on page 1018.

Opening WSDL Documents
You can open WSDL documents you create in Stylus Studio (.wsdl files), as well as
WSDL documents for existing Web services, like this one from Swanand Mokashi, for
example:
http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL

◆ To open a WSDL document:

1. Select File > Open from the Stylus Studio menu.

2. In the Open dialog box, enter the URL for the Stylus Studio .wsdl file or the WSDL
document you want to open.

3. Click OK.

Note If you are opening a WSDL document that does not use a .wsdl extension, Stylus
Studio prompts you to specify the editor you want to use to open the document.
1008 Stylus Studio User Guide

Using the WSDL Editor
Using the WSDL Editor
The WSDL Editor is a graphical and text editor that lets you review, compose, and edit
WSDL documents in Stylus Studio.

The WSDL Editor consists of a

● Diagram pane, which contains graphical representations of the elements, attributes,
and other nodes that make up your WSDL document.

● Text pane, which displays the code for the WSDL document.

● Properties window, which shows properties for the selected WSDL element.

● Definition browser, which allows you to quickly navigate to a specific WSDL
element or embedded XML Schema.

This section covers the following topics:

● Uses for the WSDL Editor on page 1010

● Similarities to the XML Schema Editor on page 1010

● Diagram Pane on page 1011

Figure 445. WSDL Editor
Stylus Studio User Guide 1009

Working with WSDL Documents
● Text Pane on page 1011

● Properties Window on page 1012

● Symbols for WSDL Elements on page 1013

● Displaying Documentation on page 1017

● Error Detection on page 1017

● Back-Mapping on page 1017

● Background Color on page 1018

● Moving Around the Diagram on page 1018

Uses for the WSDL Editor
You can use the WSDL Editor to

● Create your own WSDL documents. You might want to use the WSDL Editor during
the design stage for a new Web service to describe the services the Web service will
expose, the Web service’s location, and other information.

● Examine WSDL documents that describe existing Web services, to see what services
are exposed, the bindings they use, the types of messages used, and so on.

These and other features of the WSDL Editor are described in greater detail in the
following sections.

Similarities to the XML Schema Editor
The WSDL Editor shares a great deal of functionality with the XML Schema Editor
Diagram tab. Main points of interest concerning the WSDL Editor are covered here. See
these topics for additional information about diagram functionality:

● Introduction to the XML Schema Editor Diagram Tab

● Editing Tools of the XML Schema Diagram Tab

● Working with XML Schema in Stylus Studio

Note Drag-and-drop editing is not supported in the WSDL Editor.
1010 Stylus Studio User Guide

Using the WSDL Editor
Diagram Pane
The diagram pane contains graphical representations of the elements, attributes, and other
nodes that make up a WSDL document, including elements from any XML Schema
associated with the WSDL.

Text Pane
The text pane appears below the diagram pane. The two panes are separated by a
horizontal splitter, as shown in Figure 447.

Figure 446. WSDL Diagram Pane
Stylus Studio User Guide 1011

Working with WSDL Documents
If you want, you can display WSDL document text and the diagram at the same time,
using the splitter to change the relative size of the text and diagram panes. You use the
splitter controls to hide either the text pane or the diagram pane with single click.

As you edit the document, using either the diagram or text area, Stylus Studio displays
informational messages as changes are being made and when the two views are
synchronized. Text and diagram views are synchronized automatically.

The default font for text is Courier New, but you can change it to whatever font you want
by clicking the Change Font button ().

Properties Window
You use the Properties window to set values for WSDL elements.

Figure 447. Diagram and Text Panes in the WSDL Editor

Tip You can control font and other aspects of the text pane, like line numbers, using the Editor
General page of the Options dialog box.

Figure 448. Properties Window
1012 Stylus Studio User Guide

Using the WSDL Editor
Not all element values can be set using the diagram pane – the Binding element’s transport
type, for example. You can write the necessary XML by hand in the text pane if you
choose, but it can be easier, faster, and less error-prone to set these values using the drop-
down lists for Values fields in the Properties window.

Symbols for WSDL Elements
Each element in a WSDL document displayed in the diagram pane is represented by its
own symbol; tool tips, which are displayed when you hover over a node in the diagram,
identify the node’s type (binding, service, and so on). The symbols used in the diagram
are summarized in Table 112.

Tip The Properties window is a docking window you can move anywhere on the desktop.

Table 112. Symbols Used in the WSDL Diagram

Symbol Represents Description

Service (wsdl:service) Names a Web service.

See “The Service Element.”

Types (wsdl:types) Data type definitions required by WSDL
Messages. Typically defined using an XML
Schema (either local or referenced).

See “The Types Element.”

Port (wsdl:port) Defines a single address (SOAP or HTTP) for
a Binding.

See “The Port Element.”

Message (wsdl:message) The messages used by the Web service.
Contains one or more parts elements.

See “The Message Element.”

Part (wsdl:part) The name and type of parameters associated
with a Message.

See “The Part Element.”

portType (wsdl:portType) Describes the Messages in a Web service
operation.

See “The PortType Element.”
Stylus Studio User Guide 1013

Working with WSDL Documents
Nodes can be expanded and collapsed using the plus and minus symbols, respectively,
that appear on the right side of the node. In Figure 446, for example, the Part1 Message
Part has been expanded; the certifyContactRequestMessage Message has not.

Symbols for XML Schema Elements

The WSDL Editor diagram pane displays symbols for XML Schema elements if you have
a Schema element defined in your WSDL document. See Table 1 for more information

Operation (wsdl:operation) A service (a stock quote service, for example)
hosted on the Internet.

See “The Operation Element.”

Binding (wsdl:binding) Specifies the protocol (SOAP or HTTP) used
to communicate with the operation.

See “The Binding Element.”

Input (wsdl:input) Describes the input required by the Operation
with which the Input is associated. (A text
string representing a stock ticker, for example.)

See “The Input Element.”

Output (wsdl:output) Describes the output returned by the Operation
with which the Output is associated. (A text
string representing a stock value, for example.)

See “The Output Element.”

Fault (wsdl:fault) Provides error handling for a Web service
Operation. An Operation can have one or more
Faults defined for it.

See “The Fault Element.”

Documentation
(wsdl:documentation)

Text that describes the element. You can
associate a documentation element with any
WSDL element.

See “The Documentation Element.”

Table 112. Symbols Used in the WSDL Diagram

Symbol Represents Description
1014 Stylus Studio User Guide

Using the WSDL Editor
about symbols for XML Schema elements. See The Types Element to learn more about
using XML Schema in a WSDL.

Displaying Element Details

To streamline the diagram, most elements are displayed with their details hidden by
default. You can change the settings

● For all WSDL documents using the WSDL Details page on the Options dialog box.

● For the current WSDL document using the Schema Diagram Properties dialog box.
Using the Schema Diagram Properties dialog box overrides the default settings set
using the Options dialog box.

The mechanics of changing display settings are the same, regardless of where you change
them. For each node property, you can choose to

● Show the property

● Show the property only if it is not empty (that is, it has not been defined)

● Hide the node

If all of an element’s properties have the same show/hide setting, that value is displayed
in the Inline Visibility in Diagram field. If no value is displayed in the Inline Visibility in
Diagram field, it means that two or more properties have different show/hide settings.

You can change the display for classes of elements (all Message Parts, for example) using
the Schema Diagram Properties dialog box, shown in Figure 449. (The Properties
Stylus Studio User Guide 1015

Working with WSDL Documents
window, which appears to the left of the Diagram tab, displays all the properties for any
node you select.)

◆ To display the WSDL Details page of the Options dialog box:

1. Select Tools > Options from the Stylus Studio menu.

2. Navigate the Module Settings > WSDL Editor branch and click WSDL Details.

◆ To display the Schema Diagram Properties dialog box:

● Select Diagram > Properties from the Stylus Studio menu.

● Select Properties from the diagram shortcut menu.

◆ To change element properties display:

1. Display the either the Schema Diagram Properties dialog box, or the WSDL Details
page of the Options dialog box.

2. Select the element whose properties display you want to change.

3. Click OK.

Figure 449. Schema Diagram Properties Dialog Box

Tip To hide all properties, click the Hide All button. To restore defaults, click the Restore
Defaults button.
1016 Stylus Studio User Guide

Using the WSDL Editor
Displaying Documentation
By default, text associated with documentation elements (wsdl:documentation) is hidden.
You can expand documentation elements in the diagram by clicking the Show
Documentation () button, or by selecting Diagram > Show Documentation from the
Stylus Studio menu. When you do, the text associated with all documentation elements
defined in the WSDL document appears.

Error Detection
Stylus Studio flags any WSDL or XML Schema errors in the text pane – lines that contain
errors are identified with a red triangle, and the type and location of the error is displayed
in the status area at the top of the text pane, as shown here:

When you click the error message, Stylus Studio jumps to that part of the WSDL
document containing the error. When you correct one error, information about the next
error detected by Stylus Studio (if any) is displayed in the status area.

Back-Mapping
Stylus Studio supports back-mapping between the text pane and the diagram pane – if you
click an element in the diagram, Stylus Studio scrolls the text pane to display the line of
the WSDL document that defines the element you clicked. A blue triangle is displayed to
the left of the exact line of code.

Figure 450. Text Pane Highlights WSDL Errors
Stylus Studio User Guide 1017

Working with WSDL Documents
Background Color
Background color is used as another visual cue for information about the WSDL
document or the XML Schema it might contain:

● A tan, or light brown, color identifies global nodes – these are elements that are
defined as children of the WSDL (wsdl:definitions). In Figure 451, the
gryphonWSFault Message is an example of a such a node.

● A light yellow background identifies local instances of globally defined types. In
Figure 451, the GryphonWSFault element is a local instance of that type.

Moving Around the Diagram
There are several ways to move around the diagram pane:

● To move from node to node in the diagram, press the arrow keys. (A node must
already be selected.)

● You can use the scroll bars to explore the diagram; the zoom slider lets you change
the magnification.

● Click Go to Definition () on the shortcut menu to display a new page that shows
just the type definition.

● Click Display Definition () on the shortcut menu to jump to the place in the XML
Schema where the type is defined.

Working with WSDL Elements
This section describes how to create and manage elements in a WSDL document. It
covers the following topics:

● Sample WSDL – A Stock Quote Service

● The Definitions Element

● The Types Element

Figure 451. Background Colors Show Global and Local Types
1018 Stylus Studio User Guide

Working with WSDL Elements
● The Service Element

● The Port Element

● The Message Element

● The Part Element

● The PortType Element

● The Operation Element

● The Binding Element

● The Input Element

● The Output Element

● The Fault Element

● The Documentation Element

Sample WSDL – A Stock Quote Service
The examples in this section refer to the Swanand Mokashi StockQuotes Web service.
You can find the WSDL for this Web service at:

http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL

The Definitions Element
The Definitions element (wsdl:definitions) is the root element of a WSDL document.
Stylus Studio creates the Definitions element for you when you create a new WSDL
document. (See Creating a WSDL Document in Stylus Studio.) The Definitions element
defines the set of services that the Web service offers.

You can use the Diagram > Add or the Definitions element’s short-cut menu (right-click,
select Add) to define the following elements as children of the Definitions element:

● Types (wsdl:types)

● Service (wsdl:service)

● Message (wsdl:message)

● Port type (wsdl:portType)

Tip Use this URL to open the Swanand Mokashi StockQuotes WSDL in Stylus Studio.
Stylus Studio User Guide 1019

http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL

Working with WSDL Documents
● Binding (wsdl:service)

● Documentation (wsdl:documentation)

Importing a WSDL Document

You can import one WSDL document into another. You might want to do this, for
example, if you have established a WSDL document as a repository for Messages you
want to be able to across different Web services. Once you do this, you can use elements
defined in the imported WSDL as you would locally defined elements.

See Importing WSDL Documents on page 1034 for more information.

Definitions Element Properties

The following table describes the properties of the Definitions element.

The Types Element
You use the Types element to specify the XML Schema (xsd:schema) that is used to
describe the structure of a WSDL Part.

A WSDL document can have only one Types element; it must be named “types.”

How to Create a Types Element

◆ To create a Types element:

1. Select the Definition (root) element.

2. Select Diagram > Add > Types from the Stylus Studio menu.

Alternative: Right-click the Definition element and choose Add > Types from the
shortcut menu.

Stylus Studio adds a Service element to the WSDL.

Table 113. Definitions Element Properties

Name Description

Target Namespace The target namespace you want to associate with the Web service
described by the WSDL.
1020 Stylus Studio User Guide

Working with WSDL Elements
Types Element Properties

The Types element has no editable properties.

Adding a Schema Element

Once you add the Types element to the WSDL, you then add one or more Schema
elements. A Schema element represents an XML Schema, and is created using the xsd
namespace by default:

Once it is part of the WSDL definition, you work on a Schema element as if it were an
XML Schema in Stylus Studio. For example, you can either define the XML Schema’s
elements, attributes, global types, and so on directly in the WSDL, as shown in
Figure 452, or you can use the Schema element to reference existing XML Schemas
(Diagram > Reference Schemas).

See Working with XML Schema in Stylus Studio on page 621 for more information about
creating XML Schema elements from scratch. See Referencing External XML Schemas
on page 674 to learn about importing and including existing XML Schemas.

How to Create a Schema Element

◆ To create a Schema element:

1. Select the Types element.

2. Select Diagram > Add > Schema from the Stylus Studio menu.

 <wsdl:types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"/>
 </wsdl:types>

Figure 452. XML Schema Editing Features Available for Schema Elements
Stylus Studio User Guide 1021

Working with WSDL Documents
Alternative: Right-click the Types element and choose Add > Schema from the
shortcut menu.

Stylus Studio adds a Schema element to the WSDL.

Schema Element Properties

See About xsd:schema Properties on page 687 for more information.

The Service Element
The Service element defines the Web service, and typically consists of one or more Port
elements, and an optional Documentation element. You can define a name= attribute for a
Service element (the default name is Service-0). Service elements are always created as
children of the Definitions element.

How to Create a Service Element

◆ To create a Service element:

1. Select the Definitions (root) element.

2. Select Diagram > Add > Service from the Stylus Studio menu.

Alternative: Right-click the Definitions element and choose Add > Service from the
shortcut menu.

Stylus Studio adds a Service element to the WSDL. The default name is Service-0,
but you can change it.

How to Rename a Service Element

◆ To rename a Service element:

1. Double-click the Service element symbol in the WSDL diagram.

The name becomes editable.

2. Type a new name and press Enter.

Alternative: Using the Properties window

1. Display the Properties window if it is not already open. (View > Properties).

2. Change the Service name in the Value field in the Properties window.
1022 Stylus Studio User Guide

Working with WSDL Elements
Alternative: You can change the Service name directly in the WSDL text.

Service Element Properties

The following table describes the properties of the Definitions element.

The Port Element
The Port element defines a single address for a Binding. Port elements are always defined
as children of the Service element. By default, Port elements are created with a SOAP
address type, but you can change it to HTTP.

How to Create a Port Element

◆ To create a Port element:

1. Select the Service element for which you want to describe a port.

2. Select Diagram > Add > Port from the Stylus Studio menu.

Alternative: Right-click the Service element and choose Add > Port from the shortcut
menu.

Stylus Studio adds a Port element to the WSDL. The default name is Port-0, but you
can change it. Port names must be unique within a given Service element.

How to Rename a Binding Element

◆ To rename a Port element:

1. Double-click the Port element in the WSDL diagram.

The name becomes editable.

2. Type a new name and press enter.

Table 114. Service Element Properties

Name Description

Name The service name. Must be unique within a WSDL document.
Stylus Studio User Guide 1023

Working with WSDL Documents
Alternative: Using the Properties window

1. Display the Properties window if it is not already open. (View > Properties).

2. Change the Port name in the Value field in the Properties window.

Alternative: You can change the Port name directly in the WSDL text.

Port Element Properties

The following table describes the properties of the Port element.

The Message Element
The Message element consists of one or more Part elements, which describe the content
of a Message using element or type attributes. Message elements are always created as
children of the Definitions element.

How to Create a Message Element

◆ To create a Message element:

1. Select the Definitions (root) element.

2. Select Diagram > Add > Message from the Stylus Studio menu.

Alternative: Right-click the Definitions element and choose Add > Message from the
shortcut menu.

Table 115. Port Element Properties

Name Description

Name The Port name. Must be unique within a given Service element.

Binding The name of a Binding element defined in the current or an
imported WSDL. You can select existing Binding elements using
the drop-down list in the Value field in the Properties window.

Address Type The address type (SOAP or HTTP) associated with the binding.
Creates a child element, soap:address or http:address. The
default is SOAP.

Address Specifies the location= attribute for the Address Type element –
that is, the SOAP or HTTP endpoint.
1024 Stylus Studio User Guide

Working with WSDL Elements
Stylus Studio adds a Message element to the WSDL as a child of the Definitions
element. The default name is Message-0, but you can change it. Message names must
be unique within a WSDL document.

How to Rename a Message Element

◆ To rename a Message element:

1. Double-click the Message element in the WSDL diagram.

The name becomes editable.

2. Type a new name and press enter.

Alternative: Using the Properties window

1. Display the Properties window if it is not already open. (View > Properties).

2. Change the Message name in the Value field in the Properties window.

Alternative: You can change the Message name directly in the WSDL text.

Message Element Properties

The following table describes the properties of the Message element.

The Part Element
The Part element is used to describe the content of a Message element using an XML
Schema element (tns:getQuoteResponse) or as an XML Schema type (xsd:string, for
example).

How to Create a Part Element

◆ To create a Part element:

1. Select the Message element whose Part elements you wish to describe.

2. Select Diagram > Add > Message Part from the Stylus Studio menu.

Table 116. Message Element Properties

Name Description

Name The Message name. Must be unique within a WSDL document.
Stylus Studio User Guide 1025

Working with WSDL Documents
Alternative: Right-click the Definitions element and choose Add > Message Part
from the shortcut menu.

Stylus Studio adds a Part element to the WSDL as a child of the Message element.
The default name is Part-0, but you can change it. Part names must be unique within
a given Message.

How to Rename a Part Element

◆ To rename a Part element:

1. Double-click the Part element in the WSDL diagram.

The name becomes editable.

2. Type a new name and press enter.

Alternative: Using the Properties window

1. Display the Properties window if it is not already open. (View > Properties).

2. Change the Part name in the Value field in the Properties window.

Alternative: You can change the Part name directly in the WSDL text.

Part Element Properties

The following table describes the properties of the Part element.

The PortType Element
The PortType element describes one or more Operation elements. PortType elements are
always created as children of the Definitions element.

Table 117. Part Element Properties

Name Description

Name The Part name. Must be unique within a given Message element.

Element Defines the Part using an XML Schema element
(tns:getQuoteResponse, for example).

Type Defines the Part using an XML Schema (xsd:string, for
example).
1026 Stylus Studio User Guide

Working with WSDL Elements
How to Create a PortType Element

◆ To create a PortType element:

1. Select the Definitions (root) element.

2. Select Diagram > Add > PortType from the Stylus Studio menu.

Alternative: Right-click the Definitions element and choose Add > PortType from the
shortcut menu.

Stylus Studio adds a PortType element to the WSDL as a child of the Definitions
element. The default name is portType-0, but you can change it. PortType names must
be unique within a WSDL document.

How to Rename a PortType Element

◆ To rename a PortType element:

1. Double-click the PortType element in the WSDL diagram.

The name becomes editable.

2. Type a new name and press enter.

Alternative: Using the Properties window

1. Display the Properties window if it is not already open. (View > Properties).

2. Change the PortType name in the Value field in the Properties window.

Alternative: You can change the PortType name directly in the WSDL text.

PortType Element Properties

The following table describes the properties of the PortType element.

Table 118. PortType Element Properties

Name Description

Name The PortType name. Must be unique within a WSDL document.
Stylus Studio User Guide 1027

Working with WSDL Documents
The Operation Element
The Operation element typically consists of an Input element and an Output element,
though they can be used individually and in different orders to support different types of
operations. For example, if you are describing

● A request-response Operation (a user provides a stock quote ticker, and the Web
service returns information about that stock, for example), the Operation would
contain both Input (the stock ticker) and Output (the Web service response) elements.

● A one-way Operation (a user submits information to the Web service, without a
response from the Web service), the Operation would contain an Input element.

● A solicit-response Operation (the Web service contacts a client, who provides the
requested input), the Operation would contain both Output (the Web service request)
and Input (the client response) elements.

● A notification Operation (the Web service emits output, with no response required or
expected), the Operation would have a single Output element.

An optional Fault element can be used for error handling in both request-response and
solicit response Operation models.

Operation Element Code Sample

The structure of an Operation element might look like this:

How to Create an Operation Element

◆ To create an Operation element:

1. Select the PortType element.

2. Select Diagram > Add > Operation from the Stylus Studio menu.

Alternative: Right-click the PortType element and choose Add > Operation from the
shortcut menu.

Stylus Studio adds an Operation element to the WSDL as a child of the PortType
element. The default name is Operation-0, but you can change it. Operation names
are not required to be unique.

 <wsdl:operation name="Operation-0">
 <wsdl:input/>
 <wsdl:output/>
 <wsdl:fault/>
 </wsdl:operation>
1028 Stylus Studio User Guide

Working with WSDL Elements
How to Rename an Operation Element

◆ To rename an Operation element:

1. Double-click the Operation element in the WSDL diagram.

The name becomes editable.

2. Type a new name and press enter.

Alternative: Using the Properties window

1. Display the Properties window if it is not already open. (View > Properties).

2. Change the Operation name in the Value field in the Properties window.

Alternative: You can change the Operation name directly in the WSDL text.

Operation Element Properties

The following table describes the properties of the Operation element.

The Binding Element
The Operation element typically consists of an Input element and an Output element,
which, using Message and Part elements, describe the input required by the operation (a
ticker symbol, for example) and the output returned by it (a stock value, for example).

How to Create a Binding Element

◆ To create a Binding element:

1. Select the Definitions (root) element.

2. Select Diagram > Add > Operation from the Stylus Studio menu.

Alternative: Right-click the Definitions element and choose Add > Operation from
the shortcut menu.

Table 119. Operation Element Properties

Name Description

Name The Operation name.
Stylus Studio User Guide 1029

Working with WSDL Documents
Stylus Studio adds a Binding element to the WSDL as a child of the Definitions
element. The default name is Binding-0, but you can change it. Binding names must
be unique within a WSDL document.

How to Rename a Binding Element

◆ To rename a Binding element:

1. Double-click the Binding element in the WSDL diagram.

The name becomes editable.

2. Type a new name and press enter.

Alternative: Using the Properties window

1. Display the Properties window if it is not already open. (View > Properties).

2. Change the Binding name in the Value field in the Properties window.

Alternative: You can change the Binding name directly in the WSDL text.

Binding Element Properties

The following table describes the properties of the Binding element. Note that properties
vary based on the binding type.

Table 120. Binding Element Properties

Name Description

Name The Binding name. Must be unique within a WSDL document.

Type The PortType element associated with this Binding.

Binding Type The communication protocol to be used by the binding. Valid
values are soap or http.

Transport The WSDL binding for the SOAP protocol. The default value is
http://schemas.xmlsoap.org/soap/http. Sets the transport=
attribute for the soap:binding sub-element.

Note: This field is visible only the Binding Type property is set
to soap.
1030 Stylus Studio User Guide

Working with WSDL Elements
The Input Element
Within an Operation element, the Input element is the message that is sent to the Web
service from the client. (The Output element is the message returned to the client in
request-response Operations.) An Operation may have only one Input element.

See The Operation Element for more information.

How to Create an Input Element

◆ To create an Input element:

1. Select the Operation element whose Input element you want to describe.

2. Select Diagram > Add > Input from the Stylus Studio menu.

Alternative: Right-click the Operation element and choose Add > Input from the
shortcut menu.

Stylus Studio adds an Input element to the WSDL as a child of the Operation element.
The default name is Input, and you cannot change it.

Style The structure for the contents of the SOAP body. Valid values are
document (unstructured) or rpc (Remote Procedure Style). Sets
the style= attribute for the soap:binding sub-element.

Note: This field is visible only the Binding Type property is set
to soap.

Method The type of HTTP method used by the binding. Valid values are
GET and POST. Sets the verb= attribute for the http:binding sub-
element.

Note: This field is visible only the Binding Type property is set
to http.

Table 120. Binding Element Properties

Name Description
Stylus Studio User Guide 1031

Working with WSDL Documents
Input Element Properties

The following table describes the properties of the Input element.

The Output Element
Within an Operation element, the Output element is the message that is returned to the
client from the Web service. (The Input element is the message sent by the client to the
Web service, typically initiating a request in a request-response Operation.) An Operation
may have only one Output element.

See The Operation Element for more information.

How to Create an Output Element

◆ To create an Output element:

1. Select the Operation element whose Output element you want to describe.

2. Select Diagram > Add > Output from the Stylus Studio menu.

Alternative: Right-click the Operation element and choose Add > Output from the
shortcut menu.

Stylus Studio adds an Output element to the WSDL as a child of the Operation
element. The default name is Output, and you cannot change it.

Output Element Properties

The following table describes the properties of the Output element.

Table 121. Input Element Properties

Name Description

Message The Message associated with this Input element.

Table 122. Output Element Properties

Name Description

Message The Message associated with this Output element.
1032 Stylus Studio User Guide

Working with WSDL Elements
The Fault Element
Within an Operation element, the Fault element is used for error handling, typically with
the Web service sending a message to the client.

See The Operation Element for more information.

How to Create a Fault Element

◆ To create a Fault element:

1. Select the Operation element whose Fault element you want to describe.

2. Select Diagram > Add > Fault from the Stylus Studio menu.

Alternative: Right-click the Operation element and choose Add > Fault from the
shortcut menu.

Stylus Studio adds a Fault element to the WSDL as a child of the Operation element.
The default name is Fault, and you cannot change it.

Fault Element Properties

The following table describes the properties of the Fault element.

The Documentation Element
The Documentation element is an optional element you can use to provide human-
readable information about any element in a WSDL. You might use a Documentation
element to describe an Operation or Message, for example.

How to Create a Documentation Element

◆ To create a Documentation element:

1. Select the WSDL element you want to document.

2. Select Diagram > Add > Documentation from the Stylus Studio menu.

Table 123. Output Element Properties

Name Description

Message The Message associated with this Fault element.
Stylus Studio User Guide 1033

Working with WSDL Documents
Alternative: Right-click the element and choose Add > Documentation from the
shortcut menu.

Stylus Studio adds a Documentation element to the WSDL element you selected in
Step 1. It appears in the Text pane as:
<wsdl:documentation>Documentation goes here</wsdl:documentation>

3. Change “Documentation goes here” to whatever you choose.

Documentation Element Properties

The Documentation element has no editable properties.

Importing WSDL Documents
By importing one WSDL document into another, you can easily reuse elements that have
been defined in other WSDLs, rather than redefining elements locally.

You import WSDLs at the Definitions (root) element.

◆ To import a WSDL document:

1. Select the Definitions (root) element.

2. Select Diagram > Imported Files from the Stylus Studio menu.

Alternative: Right-click the Definitions element and choose Imported Files from the
shortcut menu.

Stylus Studio displays the Imported Files dialog box.

If the WSDL you are editing already has imported WSDL documents (wsdl:import),
they are listed here.

Figure 453. Imported Files Dialog Box
1034 Stylus Studio User Guide

Importing WSDL Documents
3. Click the Add button.

Stylus Studio displays the Import File dialog box.

4. Enter a URL for the WSDL document you want to import, or use the more button
() to display the Open dialog box, which allows you to navigate your file systems.

5. Click OK.

The Import Files dialog box closes, and you are returned to the Imported Files dialog
box. The WSDL document you selected appears in the Files imported by the
document list box.

6. Click the Add button to import another WSDL; otherwise, click OK.

The Imported Files dialog box closes.

Making Imported WSDL Elements Available
In order to make elements of an imported WSDL available in the local WSDL document,
you need to load them into the local WSDL.

◆ To make an imported WSDL available, select Diagram > Load All Schemas.

All imported XML Schema and WSDL documents are now available in the local WSDL.

Figure 454. Import File Dialog Box
Stylus Studio User Guide 1035

Working with WSDL Documents
Example
In this example, we have imported the WSDL my_StockQuotes.wsdl into our local WSDL.
This WSDL is a copy of the Swanand Mokashi StockQuotes.wsdl. When imported, Stylus
Studio creates the following:

In addition to the default xmlns:xsd and xmlns:wsdl namespaces created with the
Definitions elements, notice that the xmlns:auto9 namespace has been added.

Now, if we load the imported WSDL and then create a Binding element, we see that the
Type property drop-down list contains several types with the auto9 namespace prefix:

<?xml version="1.0"?>
<wsdl:definitions xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:auto9="http://swanandmokashi.com">
 <wsdl:import namespace="http://swanandmokashi.com"
 location="file:///w:/testing/my_StockQuotes.wsdl"/>
</wsdl:definitions>

Figure 455. Elements Defined in an Imported WSDL
1036 Stylus Studio User Guide

Printing a WSDL Document
In addition, the imported WSDL now appears in the definitions browser.

Printing a WSDL Document
Stylus Studio allows you to print either the graphics in the diagram pane, or the raw XML
in the text pane. If one pane is collapsed, Stylus Studio prints the visible pane. If both
panes are visible, Stylus Studio prints the pane that currently has focus.

◆ To print a WSDL document:

1. Select the pane in the WSDL Editor you want to print.

2. Click Print .

Alternative: Select File > Print from the Stylus Studio menu.

Saving the WSDL Diagram as an Image
You can save a graphical image of your WSDL diagram as a JPEG (.jpg) file or as an
Extended Meta File (.emf). When you save a WSDL as an image, Stylus Studio includes
the entire WSDL diagram, not just what is currently visible.

Stylus Studio uses a standard zoom level when saving the image; application zoom level
settings are ignored.

Figure 456. Definition Browser Shows Imported WSDL

Tip Select File > Print Preview to verify the output before you print.
Stylus Studio User Guide 1037

Working with WSDL Documents
◆ To save a WSDL diagram as an image:

Select Diagram > Export Image from the menu, or select Export Image from the
shortcut menu on the diagram pane (right-click).

Stylus Studio displays the Save As dialog box.

3. Select the file format (.jpg or .emf) from the Files of type drop-down list.

4. Specify a name and location for the file and click the Save button. The default name
is the name of the WSDL document; the default location is the folder in which the
WSDL document has been saved.
1038 Stylus Studio User Guide

Chapter 14 Building XML Pipelines
This chapter describes XML pipelines, and how to use the Stylus Studio XML Pipeline
Editor to create, debug, and maintain XML pipelines. It also describes how to generate
Java code you can use to embed XML pipelines in Java applications.

A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

This chapter covers the following topics:

● “What is an XML Pipeline?” on page 1040

● “The XML Pipeline Editor” on page 1043

● “Steps for Building an XML Pipeline” on page 1047

● “Planning an XML Pipeline” on page 1047

● “Use Case: Building order.pipeline” on page 1054

● “Working with Nodes” on page 1079

● “Working with the XML Pipeline Diagram” on page 1098

● “Debugging an XML Pipeline” on page 1103

● “Generating Code for an XML Pipeline” on page 1107

● “XML Pipeline Node Properties Reference” on page 1114

Support for XML pipelines is available only in Stylus Studio XML Enterprise Suite.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the Introduction to the XML Pipeline
Editor video.
Stylus Studio User Guide 1039

http://www.stylusstudio.com/videos/pipeline2/pipeline2.html
http://www.stylusstudio.com/videos/pipeline2/pipeline2.html
http://www.stylusstudio.com/videos/pipeline2/pipeline2.html
http://www.stylusstudio.com/xml_videos.html

Building XML Pipelines
What is an XML Pipeline?
In Stylus Studio, an XML pipeline is an application that performs a series of operations
based on the inputs, transformations, and outputs described in the XML Pipeline Editor.
In Stylus Studio, an XML pipeline has a

● Graphical representation consisting of nodes that represent data sources, processing
operations, and pipes that represent the processing flow (shown in Figure 457)

● A code representation (once you generate code for it) for these data sources, nodes,
and pipes

Example of an XML Pipeline in Stylus Studio
Figure 457 shows the diagram that represents getHoldings.pipeline, which is in the
pipelines\stocks folder in the examples project installed with Stylus Studio.

This particular XML pipeline:

● Aggregates two XML input sources

● Validates the output of the XQuery using XML Schema and then either

Figure 457. Diagram of getHoldings.pipeline
1040 Stylus Studio User Guide

What is an XML Pipeline?
■ Terminates if the validation fails or

■ Passes the output to an embedded pipeline for additional processing

● Using XSLT, transforms the embedded pipeline’s output to HTML

● Using XQuery, transforms the same output to PDF using XSL-FO processing

XML Pipeline Terminology
Understanding the following terms will help you work with XML pipelines in Stylus
Studio.

Table 124. XML Pipeline Terminology

Term Description Example

Node Generally, an XML pipeline operation. In an
XML pipeline diagram, the glyph that
represents an XML pipeline operation.
Examples include XSLT, XQuery, Pipeline, and
Validate.

Input
port

The circle on top of some nodes used to receive
a pipe from an output port. A node can have
more than one input port.
Stylus Studio User Guide 1041

Building XML Pipelines
XML Pipeline Semantics
The following semantics govern the behavior of an XML pipeline:

● A node is executed only when all its input ports are “filled”.

● A node’s input port is “filled” either when it contains a default value that is a reference
to a URL or a literal value, or when it is connected to another node’s output port and
this node provides data that is available. Default values are used only if no pipe is
present for that port.

● When data is available on a node’s output port, it is provided to the input ports of all
the nodes to which it is connected.

● A node’s input port can be filled by 0 or 1 value. If more than one value becomes
available, this is an error and XML pipeline processing aborts.

Output
port

The triangle on the bottom of some nodes used
to connect to an input port using a pipe. A node
can have more than one output port.

Pipe The conceptual name for the line that connects
two nodes, from the output port on one, to the
input port on the other.

Table 124. XML Pipeline Terminology

Term Description Example
1042 Stylus Studio User Guide

The XML Pipeline Editor
The XML Pipeline Editor
The XML Pipeline Editor is the visual editing tool you use to create, execute, and debug
XML pipelines in Stylus Studio.

You build an XML pipeline in the XML Pipeline Editor using simple drag-and-drop
actions – to add an XQuery query to an XML pipeline, for example, you can drag an
XQuery file from the Project window and drop it on the XML Pipeline Editor canvas. You
can also use tools from the Toolbox pane to add nodes to your XML Pipeline. The
Properties window allows you to specify settings for the node (default input and output
values, for example).

You can also use the XML Pipeline Editor to

● Execute the XML pipeline and preview its output

● Generate Java code for an XML pipeline

● Create an image of the XML pipeline diagram

Figure 458. Example of an XML Pipeline in the XML Pipeline Editor
Stylus Studio User Guide 1043

Building XML Pipelines
This section covers the following topics:

● “Parts of the XML Pipeline Editor” on page 1044

● “XML Pipeline Editor Toolbar” on page 1045

● “Menu Actions” on page 1046

Parts of the XML Pipeline Editor
The XML Pipeline Editor has three main parts, shown in Figure 458:

● The XML pipeline canvas, on which you compose the operations and the flow of your
XML pipeline and work with the resulting XML pipeline diagram. See “Working
with the XML Pipeline Diagram” on page 1098 for more information.

● The Toolbox pane contains the tools you use to add transformation, flow control, and
data source operations to your XML pipeline. Operations you add using toolbox tools
are not yet tied to an implementation – you need to specify them by setting values in
the Properties window. See “Adding Nodes to an XML Pipeline” on page 1079 for
more information.

● The Properties window, which displays information about the operations in your
XML pipeline. Some default values are provided by Stylus Studio; if you create an
operation by dragging a document from the Project window and dropping it on the
canvas, however, some of that document’s information is used to specify property
settings for the operation. For example, if you drag and drop an XQuery document in
the XML pipeline, the .xquery file property is based on the document’s URL. See
“XML Pipeline Node Properties Reference” on page 1114 for more information on
properties for individual nodes.
1044 Stylus Studio User Guide

The XML Pipeline Editor
XML Pipeline Editor Toolbar
The XML Pipeline Editor toolbar provides easy access to operations you are likely to
perform while building XML pipelines and working with XML pipeline diagrams in
Stylus Studio. Figure 459 identifies the toolbar’s tools.

Many of these operations are also available from the XMLPipeline menu and canvas short-
cut menu (right-click to display). See “Menu Actions” on page 1046 for more
information.

Figure 459. XML Pipeline Editor Toolbar Buttons

Table 125. Toolbar Button Descriptions

Toolbar Button Description

Execute Executes the current XML pipeline and displays the results in the
Preview window. Output (error and warning messages, for
example) appear in the Output window.

Generate Java Code Generates Java code for the current XML pipeline.

Select Scenario Allows you to choose the XML pipeline scenario for execution and
code generation.

Display Scenario
Properties

Displays the Scenario Properties dialog box, which allows you to
create and define properties for XML pipeline scenarios.

Show Grid Shows (or hides) the grid that appears on the XML Pipeline Editor
canvas.
Stylus Studio User Guide 1045

Building XML Pipelines
Menu Actions
In addition to the actions you can perform using the toolbar (see “XML Pipeline Editor
Toolbar” on page 1045), the XMLPipeline menu and canvas short-cut menu provide the
following actions.

Snap to Grid Allows you to choose whether you want objects to be placed
automatically on the closest grid line (snap), or whether you want to
be able to place them anywhere on the grid you choose. Snap to grid
is off by default.

Rotate Ports Counter-
Clockwise

Allows you to rotate the ports on the selected node counter-
clockwise.

Rotate Ports Clockwise Allows you to rotate the ports on the selected node clockwise.

Zoom Zooms the XML Pipeline diagram on the canvas.

Save Image Saves the entire XML Pipeline diagram (not just what is visible on
the canvas) to an image file.

Table 125. Toolbar Button Descriptions

Toolbar Button Description

Table 126. Menu Action Descriptions

Menu Action Description

Add Label/Remove
Label

Allows you to add (and remove) labels from the XML pipeline
diagram.

Edges Style Lets you choose line, orthogonal, or spline styles for the pipes in the
XML pipeline diagram.

Remove Selection Removes the selected node or pipe from the XML pipeline.
1046 Stylus Studio User Guide

Steps for Building an XML Pipeline
Steps for Building an XML Pipeline
The process for building an XML pipeline consists of these basic steps:

1. Gather the requirements for the XML pipeline and select a design approach. You need
to understand the XML pipeline’s desired output, and perhaps which XML
technologies (XQuery or XSLT, for example) need to be used. See “Planning an
XML Pipeline” on page 1047.

2. Identify and/or define the source documents and resources required to execute your
XML pipeline.

3. Create an XML pipeline document. See “Getting Started: Creating a New XML
Pipeline” on page 1055.

4. Optionally, set deployment and processor properties. See “XML Pipeline Scenarios”
on page 1056.

5. Create and specify the XML pipeline nodes. You can create empty nodes and specify
them manually, or you can create them using XQuery, XSLT, XML Schema, and
other documents. See “Working with Nodes” on page 1079.

6. Use pipes to connect the nodes in your XML pipeline.

7. Test the XML pipeline. See “Testing the XML Pipeline” on page 1069.

8. Debug the XML pipeline as needed. See “Debugging an XML Pipeline” on
page 1103.

Once you are satisfied that the XML pipeline is running as it should, you can optionally
generate Java code. See “Generating Code for an XML Pipeline” on page 1107 for more
information.

Planning an XML Pipeline
This section describes some of the considerations you might want to make when planning
an XML pipeline – which design approach to take, the components you can include in a
pipeline, and more.

This section covers the following topics:

● “Design Approaches” on page 1048

● “XML Pipeline Components” on page 1050

Note You can do this step any time prior to previewing and debugging the XML pipeline.
Stylus Studio User Guide 1047

Building XML Pipelines
● “Identifying Resources” on page 1053

● “Deployment Considerations” on page 1053

● “Steps for Building an XML Pipeline” on page 1047

Design Approaches
Stylus Studio supports bottom-up and top-down approaches to designing XML pipelines.
The approach you take depends largely on personal preference, but it can also be
influenced by factors such as whether, for example, your XML pipeline will use existing
transformations (like XQuery or XSLT) or you will build them specifically for use in the
XML pipeline.

The following section is intended to give you some ideas for XML pipeline design.

Understand the Requirements

Regardless of which approach you choose, you should understand the goal of the XML
pipeline before you start building it. For example, you should know

● What the desired output is. Is it HTML? XSL-FO? Both? Or will the XML pipeline
return data to a format other than XML?

● If the XML pipeline is intended to stand alone, or whether it will be included in other
XML pipelines.

For the purposes of describing bottom-up and top-down design approaches in this section,
imagine that the requirement for our XML pipeline is to reder data in a text file as PDF.

Bottom-Up Design

In a bottom-up design approach, you already have the individual components, or most of
them, that you will link together to form your XML pipeline. If we were using a bottom-
up design approach to create an XML pipeline for the use case described in “Understand
the Requirements” on page 1048, we would:

● Have a source .txt file (a comma-separated values file) identified.

● Use a built-in Stylus Studio converter to convert this file to XML.

● Have an XQuery file that transforms this XML to XSL-FO and performs FO post-
processing to create PDF.
1048 Stylus Studio User Guide

Planning an XML Pipeline
Using a bottom-up design approach, we would then use these source files to build our
XML pipeline using the following steps:

1. Create a new XML pipeline document.

2. Create a ConvertToXML node to handle the conversion of CSV to XML. We would
specify the source .txt file as the ConvertToXML node’s input, and choose the
Comma-Separated Values built-in converter to convert the text to XML.

3. Drag our XQuery document from the File Explorer or Project window and drop it on
the XML pipeline canvas. This would automatically create and specify the XML
pipeline’s XQuery node for our XML pipeline. Also, because the XQuery was
defined to perform XSL-FO post-processing, Stylus Studio automatically would
create an XSL-FO node in the XML pipeline.

4. Connect the output port from the ConvertToXML node to the input port of the
XQuery node. This instructs the XML pipeline to use the converted text file (now
XML) as input for the XQuery transformation.

5. Specify a URL for the XSL-FO node’s output port.

When you use a bottom-up approach, Stylus Studio leverages as much of the existing
information in the documents you use to build the XML pipeline as possible. Depending
on your design environment, you might need to alter the paths specified for input and
output nodes, source documents, and so on, and you will typically have to link the nodes
in your XML pipeline by creating pipes between appropriate output and input nodes.

Top-Down Design

When you use a top-down design approach, you do not have any pre-existing components
– XSLT or XQuery documents, for example – or they might not be completely specified.
In this situation, you use the XML Pipeline Editor to sketch a design, and then fill in the
details once you have them. Returning to the use case described in “Understand the
Requirements” on page 1048, we would sketch our XML pipeline by:

1. Creating a new XML pipeline document.

2. Dragging a ConvertToXML icon from the Toolbox pane and dropping it on the
canvas.

3. Dragging an XQuery icon from the Toolbox pane and dropping it on the canvas.

4. Dragging an XSL-FO icon from the Toolbox pane and dropping it on the canvas.
Stylus Studio User Guide 1049

Building XML Pipelines
5. Connecting the ConvertToXML’s output port to the input port of the XQuery node.

6. Connecting the XQuery node’s output port to the input port of the XSL-FO node.

The top-down approach results in a rough outline of placeholder nodes of the desired
XML pipeline – an abstract or conceptual representation of the code we want to generate
to perform XML processing. The next steps would be to:

1. Identify the source document for the ConvertToXML node, and selecting the built-in
Stylus Studio converter to be used to convert that source file’s data to XML.

2. Creating an XQuery document that

■ Transforms the XML input from the ConvertToXML node to PostScript

■ Generates the XSL-FO grammar to convert the PostScript to PDF

Once these documents are created, they can be used to define nodes that represent them
in the XML pipeline. You can do this

● Manually, by specifying node properties in the Properties window

● Automatically, by dragging and dropping documents onto the placeholder nodes that
represent them

XML Pipeline Components
Every XML pipeline consists of a number of components that represent some aspect of
XML processing. Typically, an XML pipeline will contain components that represent

● XML transformations (such as XQuery or XSLT)

● Source documents and data (an XML, or XML data provided by a Web service, for
example)

● A flow that identifies the processing stages performed in the XML pipeline (whether
XML output goes directly to an XSLT transformation for processing, or is first
validated using XML Schema, for example)

You also specify values for the input and output ports on these nodes, which determines
the flow of the processing defined in the XML pipeline.

This section reviews the components you can include in an XML pipeline.

Transformations

A transformation is an operation that takes an input, performs an action on it, and returns
an output. Examples of XML transformations include XQuery and XSLT. Transformation
1050 Stylus Studio User Guide

Planning an XML Pipeline
output can be a finished product – XSLT that creates an HTML report, for example – or
it can be something that is passed along to another operation for additional processing –
XQuery that specifies FO post-processing of the XML it generates, or output passed to an
XML Schema for validation, for example.

You can include the following transformations in an XML pipeline in Stylus Studio:

● XQuery – standard XQuery query, including scenario properties

● XSLT – standard XSLT transformation, including scenario properties

● XSL-FO – XSL-FO processing of XML using Apache FOP or RenderX XEP

● Pipeline – include one pipeline in another

● XML Parser – converts text input to XML

● XML Serializer – converts XML input to text

Flow Control

Flow control nodes control the flow of an XML pipeline. For example, you might choose
to use a Stop node to display a message when the XML pipeline encounters an error
condition – such as when it requires an XML document fails validation against its XML
Schema.

You can use the following nodes to control the flow of an XML pipeline in Stylus Studio

● Choose – one or more IF conditions, and an ELSE condition

● Stop – stops XML pipeline processing, if, for example, generated XML does not
validate against a given XML Schema

● Validate – uses XML Schema to validate XML

● Warning – displays a warning message in output, but allows XML pipeline processing
to continue

Data Sources

Data source nodes are used to specify the XML data that is to be processed. For example,
your XML pipeline might begin by processing raw XML, or it might require that non-
XML data (such as a text file or a relational table) first be converted to XML prior to
additional processing.
Stylus Studio User Guide 1051

Building XML Pipelines
You can use the following nodes to specify data sources in an XML pipeline:

● ConvertToXML – specifies an operation that converts a flat file (CSV, binary, and so
on) or EDI message type to XML.

● ConvertFromXML – specifies an operation that converts XML to some other format
(CSV, binary, and so on).

● Pipeline Input – specifies an external input to an XML pipeline that includes the XML
pipeline in which this node is defined.

● Pipeline Output – specifies an external outout to an XML pipeline that includes the
XML pipeline in which this node is defined.

Input and Output Ports

XML pipeline nodes are connected to each other by one or more pipes. The pipes
represent the flow of XML data from one operation or transformation in the XML
pipeline to another. Pipes connect to a node’s input and output ports, which are found on
most nodes representing XML pipeline components. (Not all nodes have both input and
output ports.)

● You use the input port to specify the expected source for the node. You can specify a
default value, or you can connect another node’s output port to it with a pipe. For
example, you might specify the input port for an XQuery node using the URL for an
XML document, or as the output from a ConvertToXML node. If a pipe is connected
to an input port, any default value is ignored.

● You use the output port to specify what to do with result from the node’s processing.
You can also specify output ports explicitly or implicitly. For example, you might
specify the URL to which you want the output of a node be copied, you might link
the output to a Validate node’s input port, or you might do both.

You specify the flow of an XML pipeline’s processing by linking one node’s output port
to another node’s input port.

Tip You can also provide a data source by specifying the Default Value property on that
node’s input port. For example, you could specify the URL of an XML document in this
way.
1052 Stylus Studio User Guide

Planning an XML Pipeline
Identifying Resources
When planning your XML pipeline, you should consider the resources you will require in
order to build it. These include

● Source documents for any XQuery and XSLT transformations the XML pipeline will
use, XML Schema used for validation, and so on

● Data sources, whether an XML document, data converted from a relational database
or flat file to XML, or XML data returned by a Web service, for example

You should pay particular attention to where these resources will be relative to the
finished XML pipeline when it is being run in its production environment. For example,
if you are using a Web service or relational database that requires some type of
authentication, you need to ensure that the finished application that makes use of your
XML pipeline code includes some means of providing authentication. Similarly, you
need to ensure that the paths of source documents, data sources, and output URLs will be
accessible to the finished application, or that your application provides a way to enter this
information at run-time.

Deployment Considerations
When you are finished building and testing your XML pipeline, you will want to generate
the code that executes the XML pipeline so that you can incorporate it in an application
that uses the XML processing it defines.

In order to do this, you need to understand the environment in which the XML pipeline’s
application will be run and model that environment in Stylus Studio. For example, your
XML pipeline might be required to use a given XML Schema validation engine, or a
specific XQuery or FO processor, so you should plan for these requirements when
designing your XML pipeline.

You choose the processors you want the components in your XML pipeline to use by
specifying the Execution Framework settings on the Deployment page of the Scenario
Properties dialog box.

See “Specifying an Execution Framework” on page 1056 for more information.

Tip You can create multiple scenarios for the same XML pipeline and specify different
execution frameworks for each.
Stylus Studio User Guide 1053

Building XML Pipelines
Use Case: Building order.pipeline
This section describes the steps you might use to build the XML pipeline order.pipeline.
This XML pipeline is in the pipelines\order folder in the examples project installed with
Stylus Studio.

This section covers the following topics:

● “order.pipeline Requirements” on page 1054

● “Getting Started: Creating a New XML Pipeline” on page 1055

● “XML Pipeline Scenarios” on page 1056

● “Specifying an Execution Framework” on page 1056

● “Configuring Data Sources” on page 1057

● “Using XQuery to Merge Source File Data” on page 1062

● “Adding an XQuery Node” on page 1067

● “Setting the XQuery Node Data Sources” on page 1068

● “Testing the XML Pipeline” on page 1069

● “Setting a Value for an Output Port” on page 1069

● “Designing a Report from the XML Document” on page 1071

● “Adding XSLT and XQuery Transformations” on page 1073

● “Finishing Up” on page 1078

order.pipeline Requirements
An organization in our enterprise has requested a report listing book orders, like the one
shown in Figure 460. The report must be available in both HTML and PDF formats. The
source for the book order data is an EDIFACT message; inventory information is
contained in a text file.

Figure 460. Sample Report Output Required for order.pipeline
1054 Stylus Studio User Guide

Use Case: Building order.pipeline
The report consists of a table that lists the ISBN, title, and quantity of books that have
been ordered from inventory.

Getting Started: Creating a New XML Pipeline
This section describes how to create a new XML pipeline document and some of the
default behaviors for new XML pipelines.

◆ To create an XML pipeline, select File > New > XML Pipeline from the Stylus Studio
menu.

When you create an XML pipeline, Stylus Studio displays a new .pipeline document in
the XML Pipeline Editor. The document has a name of untitledn.pipeline, where n is a
unique number.

Save the XML Pipeline

Click the Save button () and save the new XML pipeline (as myOrders.pipeline, for
example).

Figure 461. New XML Pipeline Document
Stylus Studio User Guide 1055

Building XML Pipelines
XML Pipeline Scenarios
The XML pipeline document is associated with a default scenario, Scenario1. A scenario
contains default deployment and processor settings that are used when

● Executing the XML pipeline in Stylus Studio

● Debugging the XML pipeline in Stylus Studio

● Generating code for the XML pipeline

You can define multiple scenarios using different settings to see how each affects XML
pipeline processing.

Specifying an Execution Framework
To help you manage processor settings for the XQuery, XSLT, XML Schema validation,
and FO processing operations in your XML pipeline, Stylus Studio lets you specify an
execution framework in the Scenario Properties dialog box.

Each execution framework is associated with a pre-set collection of compatible
processors. You can

● Change the execution framework to use a different set of processors.

● Change the settings for individual processors within an execution framework. Any
changes you make to settings within an execution framework affect the current
pipeline only, and not the execution framework’s default settings.

Figure 462. Execution Framework Settings for an XML Pipeline

Tip Stylus Studio displays information about whether or not it can generate code based on the
current processor settings.
1056 Stylus Studio User Guide

Use Case: Building order.pipeline
When to Specify the Execution Framework

If the production or deployment environment anticipated for the XML pipeline uses
different processors than those specified in the default execution framework, you should
consider changing these settings early in the XML pipeline’s development phase. Doing
so will enable you to preview and debug the XML pipeline’s performance and output in
an environment that models the production environment as closely as possible. In any
event, you need to make sure that the Processor settings on the Deployment page of the
Scenario Properties dialog box are set appropriately prior to generating code for your
XML pipeline. See “Generating Code for an XML Pipeline” on page 1107 for more
information on this topic.

Configuring Data Sources
The source for the information required for the desired report comes from two files:

● A flat file, booksXML.txt, that contains ISBN, title, manufacturer, and release date
information for every book in inventory.

● An EDI file, order.edi, that contains title, ISBN, and quantity information for every
book currently on order.

Neither of these files provides data in XML format, so they will have to be converted to
XML. We will use built-in DataDirect XML Converters for this task.

Ways to Configure Non-XML Data Sources

You use ConvertToXML nodes to specify a non-XML data source in an XML pipeline.
There are two ways to do this:

● Convert the source file using a built-in DataDirect XML Converter or a user-defined
custom XML conversion, and then drag the resulting document and drop it on the
XML pipeline canvas.

● Create the ConvertToXML node in the XML pipeline using the Toolbox, and then
specify the source file and the DataDirect XML Converter or user-defined custom
XML conversion you want to use to convert it to XML.

While both require a similar number of steps, converting a source file can be more
economical as it creates a resource that you can reuse in the XML pipeline, and elswhere
in Stylus Studio. Both procedures are described in the following sections.
Stylus Studio User Guide 1057

Building XML Pipelines
Convert booksXML.txt Using a Built-in XML Converter

◆ To convert booksXML.txt using a built-in XML Converter:

1. Select File > Open from the menu.

The Open dialog box appears.

2. Navigate to the examples\pipeline\order folder where you installed Stylus Studio.

3. Change the Files of type field to All Files.

4. Select booksXML.txt.

5. Select the Open using XML Converter check box at the bottom of the Open dialog
box.

6. Click Open.

Stylus Studio displays the Select XML Converter dialog box.

7. Select the Comma-Separated Values converter.

The booksXML.txt source file happens to use a vertical bar (|) as its separator character.

8. Change the value in the Separator property to a vertical bar (|).

9. Change the value in the First row contains field names to Yes.

Tip To view the source .txt and .edi files, double-click them in the Project window to
display them in a Stylus Studio editor.

Figure 463. Select XML Converter Dialog Box
1058 Stylus Studio User Guide

Use Case: Building order.pipeline
10. Click OK.

The booksXML.txt file appears in the Other Documents folder in the Project window.
If you hover the mouse pointer over the file name, you will see the full specification
of the XML Converter URL used to convert it.

11. Drag booksXML.txt and drop it on the XML pipeline canvas.

Stylus Studio creates a ConvertToXML node with its input port already specified.

12. Go to “Create a ConvertToXML Node for order.edi” on page 1061.

Create a ConvertToXML Node for booksXML.txt

◆ To create XML data from a non-XML Source in the XML Pipeline Editor:

1. Drag the ConvertToXML icon from the Toolbox pane and drop it on the XML
pipeline canvas.

Stylus Studio creates a ConvertToXML node and displays it in the XML pipeline
diagram.

2. Display the Properties window (View > Properties) if it is not already open.

3. Display the Project window (View > Project) if it is not already open.

4. Click the input port on the ConvertToXML node.

The properties for the input port are displayed in the Properties window.

5. Click the Default Value field; click the more button () when it appears.

Stylus Studio displays the Default Value dialog box.

6. Click the Read default value from this URL radio button, and then navigate to
examples\pipelines\order\ folder where you installed Stylus Studio and select
booksXML.txt.

Figure 464. Default Value Dialog Box
Stylus Studio User Guide 1059

Building XML Pipelines
7. Click OK.

The input port on the ConvertToXML Node turns green, indicating that a source
document has been specified as the input.

Next, we need to specify which built-in converter to use to convert booksXML.txt to
XML.

8. Click the ConvertToXML node in the XML pipeline diagram.

9. Click the XML Converter URL field in the Properties window; click the more button
() when it appears.

Stylus Studio displays the Select XML Converter dialog box.

10. Select the Comma-Separated Values converter.

The booksXML.txt source file happens to use a vertical bar (|) as its separator character.

11. Change the value in the Separator property to a vertical bar (|).

12. Change the value in the First row contains field names to Yes.

13. Click OK.

The ConvertToXML node representing the conversion of the booksXML.txt file to
XML is now completely specified, except for the output. We will address that in the
section “Setting the XQuery Node Data Sources” on page 1068.

Tip To view the source .txt and .edi files, double-click them in the Project window to
display them in a Stylus Studio editor.

Figure 465. Select XML Converter Dialog Box
1060 Stylus Studio User Guide

Use Case: Building order.pipeline
Create a ConvertToXML Node for order.edi

Next, using the procedure described in either “Convert booksXML.txt Using a Built-in
XML Converter” on page 1058 or “Create a ConvertToXML Node for booksXML.txt”
on page 1059, create a ConvertToXML node for the order.edi file. Note the following
changes:

● Use select order.edi as the source document.

● Select Electronic Data Interchange (EDI) from the Select XML Converter dialog box.
Accept all default values.

Renaming Nodes

When you add a second node of the same type using the Toolbox, Stylus Studio gives the
second node the same name as the first, with a number to make it unique. If you create a
node by dragging a document and dropping it on the canvas, Stylus Studio gives the node
the same name as the file.

Depending on how you created the ConvertToXML nodes in the XML pipeline, they are
named either:

● Convert to XML and Convert to XML #2, or

● booksXML.txt and order.edi

You can reame nodes using the following procedure:

◆ To rename a node:

1. Select the node you want to rename in the XML pipeline diagram.

2. Click the value in the Name field in the Properties window.

3. Type the new name and press Enter.

Tip Node names are displayed as tooltips in the XML pipeline diagram when you hover the
pointer over the node. You can also create labels for the diagram and for nodes within the
diagram. See “Labeling” on page 1098 for more information.
Stylus Studio User Guide 1061

Building XML Pipelines
The XML Pipeline So Far

At this point, we have defined the converters to be used to convert our non-XML data
sources to XML. The resulting XML pipeline, myOrders.pipeline, looks something like
this:

In the next stage of the process, we will specify the XQuery file that we will use to join
the data from these two files.

Using XQuery to Merge Source File Data
As described in “order.pipeline Requirements” on page 1054, the data required for our
report comes from two files – a text file, booksXML.txt, and an EDI file, order.edi. Both
files have the book’s ISBN, and we will use that number to select matching data. This will
provide us with the following information required by our report:

● Book title (from booksXML.txt)

● ISBN and quantity (from order.edi)

To join data from these different documents we will use an XQuery document created
using the XQuery Mapper. Once we have defined that XQuery document, we can add the
XQuery node to our XML pipeline.

Using Variables to Reference Data Sources

Because we want our XQuery to be easy to parameterize, we will create it using external
variables to reference our two data sources, booksXML.txt and order.edi. Once the data
sources for the XQuery are defined, we can use the XQuery Mapper to map desired nodes

Figure 466. myOrders.pipeline After Defining Non-XML Data Sources
1062 Stylus Studio User Guide

Use Case: Building order.pipeline
from these source documents to nodes in the XML Schema that represents the structure
to which the resulting XML must conform.

If you open createFullOrder.xquery, which is in the pipelines\order folder of the
examples project where you installed Stylus Studio, you can see how this was done. As
shown in Figure 467, createFullOrder.xquery uses variable declarations, $ediOrder and
$allBooks, for the non-XML data sources. DataDirect XML Converters, which are built
into Stylus Studio 2010 or higher XML Enterprise Suite, convert these data sources to
XML on-the-fly, any time the XQuery (or an XML pipeline that uses the XQuery) is
executed. Thus, if the data in either booksXML.txt and order.edi changes, the report
resulting from the XML pipeline will change, too.

◆ To use non-XML as a source document for XQuery Mapper:

To specify a non-XML data source as an XML source for the XQuery Mapper, you

1. Click the Add Source Document button at the top of the XQuery Mapper tab.

This displays the Open dialog box.

Figure 467. Variables Created for Non-XML Data Sources
Stylus Studio User Guide 1063

Building XML Pipelines
2. You select the file you want to open, and then select the Open using XML Converter
check box.

3. When you click Open, Stylus Studio displays the Select XML Converter dialog box
(see Figure 465), which you use to select the built-in DataDirect XML Converter you
want to use to convert your non-XML file to XML. Note that this is the same
procedure we used to identify the data sources for the XML pipeline’s two
ConvertToXML nodes.

4. When you click OK on the Select XML Converter dialog box, Stylus Studio adds it as
a data source in the Add Source Document pane of the XQuery Mapper.

Next, we need to create global variables for the two source documents. This way, the
XQuery code that Stylus Studio generates will use variable declarations instead of
document functions to reference our data sources.

Figure 468. Using Non-XML Data as an XQuery Data Source
1064 Stylus Studio User Guide

Use Case: Building order.pipeline
◆ To associate the source schema with a global variable:

1. Right click the source document name and select Associate With > Global Variable.

Stylus Studio displays the Associate Schema with Variable dialog box.

2. Enter the value you want to use for the variable, and click OK.

When a variable is created (allBooks, for example), Stylus Studio creates a
declaration like the following in the XQuery source code:

Looking at the XQuery Code

Before moving on with the XML pipeline creation, let’s a quick look at the XQuery code
in createFullOrder.xquery:

Figure 469. Associate Schema with Variable Dialog Box

declare variable $allBooks as document-node() external;

declare variable $ediOrder as document-node() external;
declare variable $allBooks as document-node() external;

<root>
{
for $GROUP_28 in $ediOrder/EDIFACT/ORDERS/GROUP_28,
 $row in $allBooks/table/row
where $GROUP_28/LIN/LIN03/LIN0301/text() = $row/isbn/text()
return
<book>

<title>
{$row/title/text()}

</title>
<quantity>

{$GROUP_28/QTY/QTY01/QTY0102/text()}
</quantity>
<ISBN>

{$GROUP_28/LIN/LIN03/LIN0301/text()}
</ISBN>

</book>
}

</root>
Stylus Studio User Guide 1065

Building XML Pipelines
The first two lines contain the variable declarations for booksXML.txt and order.edi, our
two source files. A FLWOR block (For, Let, Where, Order by, Return) matches ISBN
numbers from order.edi with those in books.xml, and when it finds a match, it returns

● The title (from booksXML.txt)

● The quantity (from order.edi)

● The ISBN (from order.edi)

All of this code was created automatically as a result of mapping nodes from our source
documents to nodes in an XML Schema, fullOrder.xsd, which was provided by the
organization in our enterprise that requested the inventory report – all XML resulting
from the createFullOrder.xquery must conform to this XML Schema.

See “Building an XQuery Using the Mapper” on page 851 for more information on using
the XQuery Mapper.

Figure 470. XQuery Mapper Used to Generate createFullOrder.xquery
1066 Stylus Studio User Guide

Use Case: Building order.pipeline
Adding an XQuery Node
Now that we understand how the XQuery code in createFullOrder.xquery uses a
FLWOR expression to join data from our data sources, we can add it to our XML pipeline.

◆ To add an XQuery node to an XML pipeline:

1. Drag the XQuery icon from the Toolbox pane and drop it on the XML pipeline
canvas.

Stylus Studio creates an XQuery node and displays it in the XML pipeline diagram.

2. Display the Properties window (View > Properties) if it is not already open.

3. Display the Project window (View > Project) if it is not already open.

4. Drag createFullOrder.xquery and drop it on either

■ The XQuery node on the XML pipeline diagram

■ The Value field for the .xquery file property

The XQuery node now has two additional input ports, one named allBooks, and the
other named ediOrder.

These input ports are colored green, indicating that each has a default value specified
for it. These default values correspond to the two data sources we specified as source
documents in the XQuery Mapper.

5. Change the XQuery node’s default name, XQuery operator, to Extract full order
information. (See “Renaming Nodes” on page 1061 if you need help with this step.)

Figure 471. XQuery Node for createFullOrder.xquery

Tip If you drop createFullOrder.xquery directly on the XML pipeline canvas, Stylus
Studio automatically creates the ConvertToXML nodes that represent the data
sources it uses. See “An Alternate Way to Create ConvertToXML Nodes” on
page 1069.
Stylus Studio User Guide 1067

Building XML Pipelines
Changes to Source Documents

XML pipelines reference external documents, like the createFullOrder.xquery document
we just added. They do not create copies of these documents. Therefore, when changes to
a source document are saved, the XML pipeline picks up these changes the next time it is
executed.

Setting the XQuery Node Data Sources
Although the XQuery code was specified with default data sources, we want the XQuery
to use the data sources we defined in the two ConvertToXML nodes we created in
“Configuring Data Sources” on page 1057. We do this by connecting the output ports on
the ConvertToXML nodes to the input ports on the XQuery node.

◆ To set an XQuery node’s data sources:

1. With the pointer over the Get books catalog from txt file ConvertToXML node,
drag and drop the output port on the allBooks input port on the Extract full order
information XQuery node.

Stylus Studio creates a pipe connecting the two nodes, shown in Figure 472.

2. Repeat this procedure, connecting the output port from the Get order from EDIFACT
request ConvertToXML node to the ediOrder input port on the Extract full order
information XQuery node.

Figure 472. The XML Pipeline’s First Pipe
1068 Stylus Studio User Guide

Use Case: Building order.pipeline
Default and Specified Port Values

As you can see in Figure 472, an input port can have both a default value, and a value
provided by another node’s output port. Note, however, that an output port’s default value
is never used if a pipe is connected to the port – the pipe either supplies a value or it does
not, but the default value is ignored.

An Alternate Way to Create ConvertToXML Nodes

It should be noted that when you add an XQuery or an XSLT document to an XML
pipeline, Stylus Studio creates other nodes required to support the resulting XQuery or
XSLT node, based on the XQuery or XSLT definition. For example, since
createFullOrder.xquery was defined to use Stylus Studio’s built-in converters to create
XML data source documents, simply dragging and dropping the createFullOrder.xquery
on the XML pipeline canvas would have automatically created the XQuery node and both
ConvertToXML nodes, one for each data source specified in the XQuery code.

We will see this functionality in action later, when we add another XQuery document to
the XML pipeline. (See “Add createReport.xquery” on page 1075 for more information.)

Testing the XML Pipeline
The XML pipeline as it is defined now creates an XML document containing a book
parent node, with title, quantity, and ISBN child nodes. Let’s test it before continuing.

◆ To test an XML pipeline, click the Execute button ():

In this case, Stylus Studio displays a message indicating that the XML pipeline, as it is
currently defined, does not have an output. And if we examine our XML pipeline, we see
that this is true – processing terminates with the XQuery node, but its output port is empty.

Setting a Value for an Output Port
To quickly verify that our XML pipeline works as expected, we can create an output for
the XQuery node’s output port.

◆ To set a value for an output port:

1. Click the output port.

2. Specify a value for the Copy To URL property (myFullOrderSample.xml, for example).

The output port changes color, indicating that it has a value specified for it.
Stylus Studio User Guide 1069

Building XML Pipelines
If we test the XML pipeline again, we can see that the XML pipeline runs to completion.
Stylus Studio displays the Preview window, the Main tab of which displays an execution
log that describes the processing steps executed in the XML pipeline.

Figure 473. XML Pipeline Execution Messages in Preview Window

Tip If you click an entry in the execution log, Stylus Studio’s back-mapping feature
highlights node responsible for that processing step.
1070 Stylus Studio User Guide

Use Case: Building order.pipeline
If we click the next tab in the Preview window, we can see the XML output by our XML
pipeline in text view. If we click the Preview in Tree button (), we can verify that the
XML document is of the structure we expect.

Designing a Report from the XML Document
Now that we have an XML document that represents our joined data sources, we need to
develop finished reports in HTML and PDF. The Stylus Studio XML Publisher helps you
design reports based on XML documents or XML Schema, and then generate XQuery or
XSLT code to create that report in HTML+CSS or XSL-FO document formats.

Figure 474. Tree View of XML Pipeline Output

Tip You could also click the XQuery node’s output port to display this tab.
Stylus Studio User Guide 1071

Building XML Pipelines
As shown in Figure 475, the XML Publisher createReport.report uses the XML
document resulting from our XML pipeline, myFullOrderSample.xml, as the data source to
design a simple book order report.

The table, and the values in its columns, was created by simply dragging nodes from the
source document tree and dropping them on the XML Publisher canvas. Additional
formatting was specified using XPath expressions (to control row color and quantity
color, for example).

When the report design was complete, we used XML Publisher to generate XQuery and
XSLT code using the Generate Transformation dialog box.

Figure 475. XML Publisher Report Designer

Figure 476. XML Publisher Generate Transformation Dialog Box
1072 Stylus Studio User Guide

Use Case: Building order.pipeline
We created createReport.xquery in one generate pass, and createReport.xsl in another.
We will add these transformations to our XML pipeline next.

See Chapter 15, “Publishing XML Data,” to learn more about designing reports using the
XML Publisher.

Adding XSLT and XQuery Transformations
The next step in building our XML pipeline is to add the XSLT and XQuery
transformations generated using XML Publisher. These transformations will render the
XML document resulting from the Extract full order information XQuery,
myFullOrderSample.xml, as HTML and PDF, respectively.

Of course, if we wanted to, we could have used XQuery to generate the HTML and XSLT
to generate the XSL-FO; or we could have used just XQuery or XSLT to generate both
document formats. The technology you choose is largely a matter of personal preference,
though some are better suited to certain tasks (like data aggregation, HTML formatting,
and so on) than others.

Add createReport.xsl

◆ To add createReport.xsl to the XML pipeline:

1. Display the Project window (View > Project) if it is not already open.

2. Drag createReport.xsl from the pipelines/order folder and drop it on the XML
pipeline canvas.
Stylus Studio User Guide 1073

Building XML Pipelines
Stylus Studio add an XSLT node to the XML pipeline.

The colored input port indicates that this XSLT node already has a default input and
value defined for it. We will specify our own input value (the XML document created
by the Extract full order information XQuery node).

3. Drag a pipe from the output port on the Extract full order information XQuery
node to the input port on the new XSLT node.

4. Next, specify a value for the output port (order.html, for example). See “Setting a
Value for an Output Port” on page 1069 if you need help with this step.

Figure 477. New XSLT Node

Tip Stylus Studio uses the file name for the node name when you create the node by
dragging and dropping a document on the XML pipeline canvas.

Tip Since we know the XQuery node generates the XML document we require, we can
delete the Copy to URL for its output port. Otherwise, output will continue to be
written to that URL.
1074 Stylus Studio User Guide

Use Case: Building order.pipeline
5. Test the XML pipeline by clicking the Execute button ().

As currently defined, our XML pipeline should create an HTML report based on the
myFullOrderSample.xml document, and this is what appears in the Preview window.

Add createReport.xquery

All that remains for our XML pipeline definition is to specify the XQuery node that will
transform myFullOrderSample.xml into PDF. For this purpose, we will use the
createReport.xquery generated by the XML Publisher.

◆ To add createReport.xquery to the XML pipeline:

1. Display the Project window (View > Project) if it is not already open.

2. Drag createReport.xquery from the pipelines/order folder and drop it on the XML
pipeline canvas.

Stylus Studio may display a warning message, indicating that the processor specified
for the createReport.xquery document differs from that specified for the XML
pipeline.

Figure 478. Preview of the XML Pipeline’s HTML Output

Tip Click the Preview in Browser button to see the XML pipeline output rendered in
HTML.
Stylus Studio User Guide 1075

Building XML Pipelines
3. Click OK to accept the default recommendation. (See “Managing Processor
Conflicts” on page 1084 for more information on this topic.)

Stylus Studio adds a new XQuery and associated XSL-FO node to the XML pipeline.

The XSL-FO node is the result of the post-processing specified for the XQuery –
when we generated the XQuery code from XML Publisher, we chose XSL-FO for the
Document Type (see Figure 476). Stylus Studio automatically selected the default FO
processor, RenderX XEP, to process the FO generated by createReport.xquery.

4. Drag a pipe from the output port on the Extract full order information XQuery
node to the input port on the new XQuery node.

5. Next, specify a value for the output port (order.pdf, for example) of the XSL-FO
node. See “Setting a Value for an Output Port” on page 1069 if you need help with
this step.

Figure 479. New XQuery Node with Automatically Created XSL-FO Node
1076 Stylus Studio User Guide

Use Case: Building order.pipeline
6. Test the XML pipeline one last time by clicking the Execute button ().

Stylus Studio reopens the Preview, which displays an execution log for the XML
pipeline’s operations. New statements appear for the new XQuery and XSL-FO
nodes.

It also reopens the Output window, which shows output from the XSLT processor and
the RenderX FO post-processor.

Figure 480. Pipeline Execution Log and FO Processor Output
Stylus Studio User Guide 1077

Building XML Pipelines
7. Click the second tab in the Preview window to display the PDF document created by
the nodes we just added to the XML pipeline.

Finishing Up
Now that the XML pipeline has been tested and we have seen that it successfully
generates the order report in both HTML and PDF document formats. we can generate
Java code for the entire XML pipeline. This code could then be incorporated in, say, a
Java application.

See “Generating Code for an XML Pipeline” on page 1107 for more information on this
topic.

Figure 481. PDF Created by the XQuery and XSL-FO Nodes

Note If you receive an error during this step, it might mean that Adobe Acrobat Reader was
not properly installed on your system. Go to http://www.adobe.com and resinstall
Acrobat Reader.
1078 Stylus Studio User Guide

http://www.adobe.com/

Working with Nodes
Working with Nodes
This section describes how to work with the different nodes you might use in an XML
pipeline. It references XML pipelines in the pipelines folder in the examples project.

This section covers the following topics:

● “Types of Nodes” on page 1079

● “Adding Nodes to an XML Pipeline” on page 1079

● “XQuery and XSLT Nodes” on page 1082

● “XSL-FO Nodes” on page 1085

● “ConvertToXML and ConvertFromXML Nodes” on page 1092

● “Validate Nodes” on page 1088

● “Stop and Warning Nodes” on page 1094

● “Pipeline and Related Nodes” on page 1086

● “Choose Nodes” on page 1090

● “XML Parser Nodes” on page 1096

● “XML Serializer Nodes” on page 1097

For information about node properties, see “XML Pipeline Node Properties Reference”
on page 1114.

Types of Nodes
Nodes can be grouped into three broad categories:

● Transformation

● Flow control

● Data sources

These categories are described in “XML Pipeline Components” on page 1050.

Adding Nodes to an XML Pipeline
There are two ways to add nodes to an XML pipeline. You can

● Use existing documents

● Use the icons in the Toolbox pane
Stylus Studio User Guide 1079

Building XML Pipelines
Using Existing Documents

To create a node in an XML pipeline using an existing document, just drag and drop the
document (from the Project window or the File Explorer, for example) on the XML
pipeline canvas. This creates a node that represents the document you dropped on the
canvas. For example, if you drag and drop an XQuery document, Stylus Studio creates an
XQuery node based on that XQuery document. It also incorporates that XQuery
document’s default scenario properties settings, including its input and output URLs,
processor, and post-process instructions, validation instructions, and so on.

In addition to dropping a file on the XML pipeline canvas, you can also drop it on an
existing node or on the appropriate Value field for that node displayed in the Properties
window. A node’s input and output ports cannot be used as drop targets.

Using the Toolbox

To create a node in an XML pipeline using the Toolbox, just drag an icon from the
Toolbox pane and drop it on the XML pipeline canvas.

This creates a node that is not yet implemented, whose properties you then need to specify
– either by typing, or by dragging an external document and dropping it on the node or
one of its Value fields in the Properties window. For example, if you drag the XSLT icon
and drop it on the canvas, you would need to specify values for the input and output nodes,
as well as the URL of the XSLT document you want that node to represent in your XML
pipeline.

Figure 482. XML Pipeline Toolbox
1080 Stylus Studio User Guide

Working with Nodes
Available tools are described in the following table.

Table 127. XML Pipeline Tools

Tool Description Code Generation

Choose Used to direct the flow of XML pipeline
processing using one or more XPath
expressions.

Java only

ConvertFromXML Used to convert XML to some other format
(CSV, binary, and so on).

Java

C#

ConvertToXML Used to converts a flat file (CSV, binary, and so
on) or EDI message type to XML.

Java

C#

Pipeline Represents an XML pipeline file you want to
include in the another pipeline.

Java only

Pipeline Input Used to specify an external input to an XML
pipeline that includes the XML pipeline in
which this node is defined.

Java

C#

Pipeline Output Used to specify an external output to an XML
pipeline that includes the XML pipeline in
which this node is defined.

Java

C#

Stop Used to terminate XML pipeline processing. Java

C#

Validate Used to validate XML specified as input using
one or more XML Schemas.

Java

C#

Warning Used to display a warning message during
XML pipeline processing.

Java only

XML Parser Used to convert text input to XML. Java only

XML Serializer Used to convert XML input to text. Java only

XQuery Used to query XML input using an XQuery. Java

C#
Stylus Studio User Guide 1081

Building XML Pipelines
Node and Port Names

The default node name is a variation of the name as it appears in the Toolbox pane – the
default name for the XSL-FO operation is FO Operator, for example. If you use an
existing document to create a node, Stylus Studio uses the file name as the default node
name.

Node names are used for documentation purposes only; they do not affect XML pipeline
execution, though they do appear as strings in the generated code and in messages in the
XML pipeline execution log displayed in the Preview window. Node names appear in the
XML pipeline as tooltips when you place the pointer on the node.

XQuery and XSLT Nodes

XQuery and XSLT nodes represent XQuery and XSLT documents. XQuery and XSLT
code is executed using the processors specified in the XML pipeline’s execution

XSL-FO Used to process XML input using XSL-FO. Java only

XSLT Used to transform XML input using XSLT. Java

C#

Table 127. XML Pipeline Tools

Tool Description Code Generation

Tip You can create a label for a node that is always visible in the XML pipeline diagram. See
“Labeling” on page 1098 for more information.

Note You cannot use an XQuery node in an XML Pipeline for which you plan to generate C#
code.
1082 Stylus Studio User Guide

Working with Nodes
framework. See “Specifying an Execution Framework” on page 1056 for more
information on this topic.

Input Ports

XQuery and XSLT nodes have a single input port by default which you use to specify the
XML input to be transformed. You can specify a default value, or the value can be
dynamic (the output from another node in the XML pipeline, for example).

Additional input ports, like the one on the XQuery node in Figure 483, appear if

● One or more external variables are defined for it (XQuery)

● One or more global parameters are defined for it (XSLT)

Output Ports

XQuery and XSLT nodes have a single output port, used to specify what to do with the
result of the transformation. You can

● Use the Copy to URL property to write the output to a file system

● Pipe the output to one or more other nodes

● Or both

Scenario Properties

An XQuery or XSLT document’s default scenario properties are reflected in the XML
pipeline only if you drop the document directly on the canvas. For example, if the default

Figure 483. XQuery and XSLT Nodes in getHoldings.pipeline
Stylus Studio User Guide 1083

Building XML Pipelines
scenario for your XQuery document specifies RenderX post-processing, Stylus Studio
automatically adds an XSL-FO node to the XML pipeline, connected to the XQuery
node’s output port when you drop it on the canvas to represent the post-processing. If you
drop the document on an existing XQuery node, however, the XSL-FO post-processing
node is not added to the XML pipeline.

Scenario properties treated in this way include

● Input and output URLs

● Values for existing parameters and variables

● Processors

● Post-processing

● Validation

Similarly, changes made to default scenario properties are not reflected in the XML
pipeline unless you re-add the document to the XML pipeline by dropping it on the
canvas.

Changes to Source Code

When you save changes to the source XQuery or XSLT documents used in an XML
pipeline, those changes are reflected the next time the XML pipeline is executed. If you
added external variables or parameters, new input ports are added to the XQuery and
XSLT nodes.

Managing Processor Conflicts

Each XQuery and XSLT document is associated with its own set of processors, which are
specified on the Processor, Post-Process, and Validation tabs of XQuery and XSLT
Scenario Properties dialog boxes. When you add an XQuery or XSLT node to an XML
pipeline by dragging and dropping the document onto the XML pipeline canvas, Stylus
1084 Stylus Studio User Guide

Working with Nodes
Studio displays the Processor Mismatch dialog box if the document’s processor settings
differ from those specified for the XML pipeline.

You can

● Use the processor settings specified for the XML pipeline on the Execution
Framework tab of the Scenario Properties dialog box

● Change the XQuery or XSLT processor setting for the XML pipeline

XSL-FO Nodes

Figure 484. Processor Mismatch Dialog Box

Note Stylus Studio checks XQuery and XSLT processor compatibility only. Validation and FO
processing engines are not checked, and are not altered by any actions you take on the
Processor Mismatch dialog box.

Note You cannot use an XSL-FO node in an XML Pipeline for which you plan to generate C#
code.
Stylus Studio User Guide 1085

Building XML Pipelines
XSL-FO nodes convert their input to PDF using the FO processor specified in the XML
pipeline’s execution framework. See “Specifying an Execution Framework” on
page 1056 for more information on this topic.

They are created automatically when an XQuery or XSLT document that specifies post-
processing is dropped directly onto the XML pipeline canvas. You can also create one by
dragging the XSL-FO icon from the s. The only property you can specify for an XSL-FO
node is its name.

Input Port

XSL-FO nodes have a single input port that you use to specify the XML to be converted
to PDF. This node expects XML defined using the FO grammar. You can specify a default
value, or the value can be dynamic (the output from another node in the XML pipeline,
for example). XSL-FO nodes are typically piped to XQuery and XSLT nodes, but they
can be piped to any node that outputs XML using the FO grammar.

Output Ports

XSL-FO nodes have a single output port, used to specify what to do with the result of the
transformation. Typically you use the Copy to URL property to write the output PDF to a
file system, but you could also pipe it to a converter that does something with the PDF, or
to a Pipeline Output node.

Pipeline and Related Nodes

Figure 485. XSL-FO Node in getHoldings.pipeline

Note You cannot use a Pipeline node in an XML Pipeline for which you plan to generate C#
code.
1086 Stylus Studio User Guide

Working with Nodes
Including an XML pipeline refers to the process of inserting one XML pipeline inside
another – instead of piping a node’s output to an XQuery or XSLT transformation for
processing, for example, output is piped to the included XML pipeline. That XML
pipeline performs the processes defined by its nodes, and then returns one or more outputs
to a node in the including XML pipeline for subsequent processing.

Example

The getHoldings.pipeline in the pipelines\stocks folder in the examples project
installed with Stylus Studio uses an included XML pipeline, retrieveData.pipeline.
Figure 486 illustrates how an included XML pipeline is represented in the including XML
pipeline.

Included XML pipelines, as any other documents (XQuery and XSLT, for example),
cannot be edited from the including XML pipeline. You must open these documents
separately.

Figure 486. Illustration of an Included Pipeline (retrieveData.pipeline)

Tip To open and edit an included XML pipeline or any other document, double-click its node.
Stylus Studio User Guide 1087

Building XML Pipelines
Pipeline Node Input and Output Ports

A Pipeline node displays input and output ports only if the XML pipeline it represents has
been defined with Pipeline Input and Pipeline Output nodes, as shown in Figure 496.
These nodes allow the included XML pipeline to be connected to the including XML
pipeline.

How to Include an XML Pipeline

◆ To include an XML pipeline:

1. Define the XML pipeline (XML pipeline A) you want to include in another XML
pipeline (XML pipeline B).

2. Ensure that you have defined Pipeline Input and Pipeline Output nodes for XML
pipeline A (the XML pipeline to be included in XML pipeline B).

3. Drag and drop XML pipeline A into XML pipeline B.

Alternative: Create an empty Pipeline node in XML pipeline B and manually specify
the URL for XML pipeline A in its .pipeline file property.

4. Connect the input and output ports of the Pipeline node representing XML pipeline
A to node ports in XML pipeline B as required.

Validate Nodes
Validate nodes represent an XML Schema document used to validate XML piped to it
from another node.

Figure 487. Validate Node in retrieveData.pipeline
1088 Stylus Studio User Guide

Working with Nodes
You can create a Validate node by dragging an XML Schema document (.xsd) and
dropping it directly on the XML pipeline canvas, or you can drop an XML Schema
document on an existing Validate node.

Using Multiple XML Schemas

A Validate node can represent multiple XML Schemas. You can add additional XML
Schemas by simply dragging and dropping the XML Schema document (.xsd) on the
Validate node, or you can use the following procedure.

◆ To add additional XML Schemas to a Validate node:

1. Display the Properties window if it is not already open (View > Properties).

2. Click the Validate node in the XML pipeline diagram.

The properties for the validate node are displayed in the Properties window.

3. Click the XML Schemas field; click the more button () when it appears.

The Select Multiple URLs dialog box appears.

4. Use the add button () to display the Open dialog box, which you can then use to
navigate to the XML Schema you want to add to the Validate node.

5. Click the OK button.

Input Port

The Validate node has a single input port that you use to specify the XML you want to be
validated by the XML Schemas specified by the Validate node’s XML Schemas property.
You can specify a default value, or the value can be dynamic (the output from another
node in the XML pipeline, for example).

Figure 488. Select Multiple URLs Dialog Box
Stylus Studio User Guide 1089

Building XML Pipelines
Output Ports

Validate nodes have two output ports, named Output valid and Output invalid, which you
use to direct the flow of the XML pipeline. Typically, the Output valid port is piped to
another transformation in the XML pipeline, while the Output invalid port is piped to a
node like Stop or Warning.

Choose Nodes

A Choose node uses XPath expressions to evaluate one or more conditions based on its
input to direct the flow of XML pipeline processing. The Choose node uses XPath 2.0 to
evaulate the XPath expressions defined for it.

Input Ports

The Choose node can have one or more input ports; by default, it has a single input port,
named Input #0. You use the XPath # property to express a “true” condition – that is, a
condition that must be met in order for processing to continue. The Choose node in
retrieveData.pipeline, for example, uses the XPath expression . castable as
xs:double to check whether or not the user ID it is given as its input is numeric.

The initial context node for each XPath # expression is the data input from Input #0. For
additional input ports (Input #1, Input #2, and so on), data is available to the XPath
expression as $var1, $var2, and so on.

Note You cannot use a Choose node in an XML Pipeline for which you plan to generate C#
code.

Figure 489. Choose Node in retrieveData.pipeline
1090 Stylus Studio User Guide

Working with Nodes
The Choose node evaulates XPath#0. If XPath#0 is true, it sends data from Input #0 to
Output #0. If XPath#0 is false, it evaluates XPath#1. If XPath#1 is true, it sends data from
Input #0 to Output #1, and so on. If none of the XPath # expressions is true, the data from
Input #0 is sent to Output ‘no match’ port.

Adding Input Ports

◆ To add an input port to a Choose node:

1. Display the Properties window if it is not already open (View > Properties).

2. Click the Choose node in the XML pipeline diagram.

3. Change the value for the Number of inputs property.

A new input port is added, named Input #1.

4. Optionally, add an output port for the new input port.

Output Ports

By default, a Choose node has two output ports:

● Output#0, which is enabled when the condition defined by the corresponding
property, XPath #0, is met (the “true” condition)

● Output ‘no match’, the default “else” condition, which is enabled if an input evaluates
to “false”

You can add additional output ports, which you might want to do if you have added an
input port. The output port that corresponds to the “true” condition always makes the first
input available to its connecting pipe.

Each output port must have a value specified for it. You can

● Use the Copy to URL property to write the output to a file system

● Pipe the output to another node (for more processing if the condition evaluates to
“true”, or to a Stop node if the condition evaluates to “false”, for example)

● Or both
Stylus Studio User Guide 1091

Building XML Pipelines
Adding Output Ports

◆ To add an output port to a Choose node:

1. Display the Properties window if it is not already open (View > Properties).

2. Click the Choose node in the XML pipeline diagram.

3. Change the value for the Number of choices property.

A new output port is added, named Output #1.

ConvertToXML and ConvertFromXML Nodes
ConvertToXML nodes convert non-XML input (like a CSV file or an EDI message type)
to XML; ConvertFromXML nodes convert XML input to a non-XML format. Both nodes
use built-in DataDirect XML Converters or user-defined custom XML conversions to
convert input.

Specifying an XML Converter URL

Both ConvertToXML and ConvertFromXML nodes are defined by specifying an XML
Converter URL that evaluates to either a

● Built-in DataDirect XML Converter (converter:CSV or converter:EDI, for example)
or a

● User-defined converter (converter:file:///c:/XMLconverters/myConverter.conv,
for example)

You can manually type a URL in the node’s XML Converter URL property, but the XML
converter URL syntax can be complex, and it is easy to make errors or to leave settings
that you might wish to use unspecified. For example, a completely specified XML
Converter URL for the CSV XML Converter might look like this:

Figure 490. ConvertToXML Node in retrieveData.pipeline
1092 Stylus Studio User Guide

Working with Nodes
converter:CSV:newline=cr:sep=|:first=yes:number=yes:collapse=yes

The recommended way to specify an XML Converter URL is to select the built-in XML
Converter or user-defined custom XML conversion from the Select XML Converter
dialog box, which you display by clicking the XML Converter URL field, and then clicking
the more button () when it appears.:

The value in the URL field changes when you select an XML Converter. Properties and
their settings (like decode=no in Figure 491) are displayed only if you change a default
value.

Creating a ConvertToXML Node

You can create a ConvertToXML node manually, by dragging the ConvertToXML icon
from the Toolbox pane and dropping it on the XML pipeline canvas. See “Create a
ConvertToXML Node for order.edi” on page 1061 for a description of this procedure.

ConvertToXML nodes are created automatically if an XML Converter URL has been
used as a data source for another document represented in the XML pipeline, or if you
drag a converted document from the Project window and drop it on the canvas. The
Extract full order information XQuery node in the order.pipeline uses two non-XML
data sources that convert text and EDI message types to XML for processing. When this
XQuery is added to an XML pipeline, its data sources, represented as ConvertToXML
nodes, also appear in the XML pipeline.

Figure 491. Select XML Converter Dialog Box
Stylus Studio User Guide 1093

Building XML Pipelines
Input Port

ConvertToXML and ConvertFromXML nodes have a single input port that you use to
specify the file to be converted to XML (or vice versa). You can specify a default value,
or the value can be dynamic (the output from another node in the XML pipeline, for
example).

Output Ports

ConvertToXML and ConvertFromXML nodes have a single output port, used to specify
what to do with the result of the transformation. You can

● Use the Copy to URL property to write the output to a file system

● Pipe the output to another node (like an XQuery transformation, for example)

● Or both

For More Information

To learn more about built-in DataDirect XML Converters and converter technology, see
“Converting Non-XML Files to XML” on page 253.

Stop and Warning Nodes
Stop and Warning nodes are used to indicate exceptions to or special conditions
encountered in an XML pipeline’s execution. They serve a similar purpose, but behave in
different ways.

Stop Nodes

Figure 492, for example, shows a Stop node piped to the Output invalid output port of the
Validate node – if the validation using the XML Schema specified in the Validate node
fails, the Stop node aborts XML pipeline processing, and a user-defined error message is
1094 Stylus Studio User Guide

Working with Nodes
generated. Stop nodes do not have an output port – XML pipeline processing ends if it
encounters a Stop node.

Warning Nodes

Warning nodes, like the one shown in Figure 493, do have an output port. When
encountered in XML pipeline processing, a Warning node generates the user-defined
error message you give to it and pipes the input it is given through to the next node in the
XML pipeline.

Figure 492. Stop Node in retrieveData.pipeline

Note You cannot use a Warning node in an XML Pipeline for which you plan to generate C#
code.

Figure 493. Example Warning Node Implementation
Stylus Studio User Guide 1095

Building XML Pipelines
XML Parser Nodes

XML Parser nodes convert text input to an XML document.

Input Port

XML Parser nodes have a single input port that you use to specify the text to be converted
to XML. You can specify a default value, or the value can be dynamic (the output from
another node in the XML pipeline, for example).

Output Ports

XML Parser nodes have a single output port, used to specify what to do with the result of
the transformation. You can

● Use the Copy to URL property to write the output to a file system

● Pipe the output to another node (like Validate, for example)

● Or both

An output must be specified in order for the node to be processed.

Note You cannot use an XML Parser node in an XML Pipeline for which you plan to generate
C# code.

Figure 494. Example XML Parser Node Implementation
1096 Stylus Studio User Guide

Working with Nodes
XML Serializer Nodes

XML Serializer nodes convert an XML document to text. You can use node properties to
specify characteristics of the resulting text file, such as whether or not you want it to
include an XML declaration, and whether or not to use pretty-print to format it.

Input Port

XML Serializer nodes have a single input port that you use to specify the XML to be
converted to text. You can specify a default value, or the value can be dynamic (the output
from another node in the XML pipeline, for example).

Output Ports

XML Serializer nodes have a single output port, used to specify what to do with the result
of the transformation. You can

● Use the Copy to URL property to write the output to a file system

● Pipe the output to another node

● Or both

Note You cannot use an XML Serializer node in an XML Pipeline for which you plan to
generate C# code.

Figure 495. Example XML Serializer Node Implementation
Stylus Studio User Guide 1097

Building XML Pipelines
Working with the XML Pipeline Diagram
This section describes the features you can use when working with the XML pipeline
diagram. This section covers the following topics:

● “Displaying a Grid” on page 1098

● “Labeling” on page 1098

● “Zoom” on page 1099

● “Edge Style” on page 1099

● “Manipulating Nodes in the Diagram” on page 1101

● “Saving the XML Pipeline Diagram as an Image” on page 1101

● “Labeling XML Pipeline Diagrams” on page 1102

Displaying a Grid
By default, Stylus Studio displays a grid on the canvas to help you place nodes in a
uniform fashion. You can hide the grid by clicking the Show Grid button, or by selecting
XMLPipeline > Show Grid from the menu or Show Grid from the canvas shortcut menu.
Figure 458 shows the XML pipeline canvas with the grid displayed.

Labeling
You can label the XML pipeline diagram and individual nodes. Labeling is a useful way
to provide documentation for an XML pipeline, especially if you plan to print the
diagram.

For more information, see “Labeling XML Pipeline Diagrams” on page 1102.

Tip Use Snap to Grid to have Stylus Studio place nodes precisely along grid line coordinates.
This feature is available whether or not you display the grid. See “Manipulating Nodes
in the Diagram” on page 1101 for more information.

Tip Open BookLookup.pipeline, in the \pipelines\servlet folder of the examples project
installed with Stylus Studio for an example of labels in an XML pipeline diagram.
1098 Stylus Studio User Guide

Working with the XML Pipeline Diagram
Zoom
You can zoom the XML pipeline diagram in and out using the zoom slider at the top of
the editor () – drag the slider to the right to increase zoom, drag it to the left
to decrease zoom. Changing zoom affects both the diagram and the grid (if it is displayed).

The zoom level you select in the XML Pipeline Editor does not affect the size of the nodes
if you save the XML pipeline diagram as an image – the default zoom level is always used
for saved images.

For more information, see “Saving the XML Pipeline Diagram as an Image” on
page 1101.

Edge Style
You can choose from one of three edge styles for the pipes that connect one node to
another:

Table 128. Edge Styles

Term Example

Line
Stylus Studio User Guide 1099

Building XML Pipelines
When you change the style, either from the XMLPipeline menu or the toolbar, you change
the style

● Of any pipes that are currently selected; this includes the pipes associated with any
selected nodes

● Of any pipe you create after selecting the new style

◆ To change the edge style:

1. Select the pipe, or the node whose pipes, you want to change.

2. Select XML Pipeline > Edges Style from the menu.

Alternative: Right-click and select XML Pipeline > Edges Style from the shortcut
menu.

3. Select the edge style you want from the drop-down menu.

Orthogonal

Spline

Table 128. Edge Styles

Term Example
1100 Stylus Studio User Guide

Working with the XML Pipeline Diagram
Manipulating Nodes in the Diagram
Once you have added a node to the XML pipeline diagram, there are several ways to
manipulate them, as summarized in Table 129. You might want to use these operations to
simplify the XML pipeline’s layout, perhaps before saving an image of the diagram.
Changing the diagram layout has no effect on the XML pipeline’s definition.

Saving the XML Pipeline Diagram as an Image
You can save a graphical image of your XML pipeline diagram as a JPEG (.jpg) file or
as an Extended Meta File (.emf). When you save an XML pipeline as an image, Stylus
Studio includes the entire XML pipeline, not just what is currently visible on the XML
pipeline canvas.

Stylus Studio uses a standard zoom level when saving an XML pipeline as an image;
application zoom level settings are ignored. The grid is captured if it is displayed.

Table 129. Ways to Manipulate Nodes

Action Description Methods

Rotate ports You can rotate the ports on nodes clockwise
and counter-clockwise, 90 degrees at a
time.

● Rotate (Clockwise or
Counter-clockwise) buttons
on tool bar

● XML Pipeline > Rotate
(Clockwise or Counter-
clockwise) on main menu

● Rotate (Clockwise or
Counter-clockwise) on
shortcut menu

Snap-to-grid By default, Stylus Studio places nodes
where you drop them on the canvas. For a
more uniform layout, you can use Snap-to-
Grid. When this setting is on, dropped
nodes shift (snap) to the closest vertical and
horizontal grid axis. Snap-to-Grid is
available regardless of whether or not the
grid is displayed on the XML pipeline
canvas.

● Snap to Grid button on tool
bar

● XML Pipeline > Snap to Grid
on main menu

● Snap to Grid on shortcut
menu
Stylus Studio User Guide 1101

Building XML Pipelines
◆ To save an XML pipeline as an image:

1. Click the Save as Image button on the toolbar.

Alternatives: Select XMLPipeline > Save as Image from the menu, or select Save as
Image from the shortcut menu (right-click).

Stylus Studio displays the Save As dialog box.

2. Select the file format (.jpg or .emf) from the Files of type drop-down list.

3. Specify a name and location for the file and click the Save button. The default name
is the name of the XML pipeline; the default location is the project folder in which
the XML pipeline has been saved.

Labeling XML Pipeline Diagrams
A label is a block of text that you can associate with a node, or with the XML pipeline
diagram itself. Labeling can be useful for printed XML pipelines, or any time you need
to provide additional documentation about the XML pipeline. Label text is not available
in the generated code.

Labels appear as plain text on the canvas until you select one. When you select a label or
the node with which it is associated, Stylus Studio displays a line that shows you the node
with which the label is associated.

You can create as many labels for a pipeline as you like. Each node, however, can be
associated with only one label. You cannot format label text.

Figure 496. Pipeline Labels

Tip For XQuery, XSLT, and other nodes that represent files, use the label to describe the
node’s action or role in the XML pipeline, and enter the file name in the Name property.
1102 Stylus Studio User Guide

Debugging an XML Pipeline
◆ To create a label:

1. Select the operation you want to label. If you want to label the entire XML pipeline,
click the canvas.

2. Select XML Pipeline > Add Label from the menu.

Alternative: Right-click and select Add Label from the shortcut menu.

A label block appears in the XML pipeline diagram.

3. Type the text for your label.

4. Press Enter.

Debugging an XML Pipeline
You can debug an XML pipeline in Stylus Studio as you would an XQuery or XSLT
document – by setting breakpoints, stepping through the diagram, and using features like
the Watch, Variables, and Call Stack windows to help troubleshoot your XML pipeline.
Debugging tools are available in the toolbar, and in the Debug menu.

This section covers the following topics:

● “Cross-Language Debugging” on page 1103

● “Execution Framework Determines Debugging Support” on page 1104

● “Setting and Removing Breakpoints” on page 1104

● “Running the Debugger” on page 1105

● “Stepping Into a Node” on page 1106

● “Stopping Debug Processing” on page 1107

Cross-Language Debugging
An important feature of XML pipeline debugging is Stylus Studio’s support for cross-
language debugging. Cross-language debugging allows you to set a breakpoint on, say,
an XQuery node, and then step into the source XQuery document on which the node is
based, debug it, and then step back into the XML pipeline. Cross-language debugging is
supported for

● XQuery nodes

● XSLT nodes
Stylus Studio User Guide 1103

Building XML Pipelines
● Included pipelines

● Java functions within your XQuery or XSLT code

Execution Framework Determines Debugging Support
The XML pipeline’s execution framework determines whether or not you can perform
cross-language debugging in your XML pipeline. Processor settings defined in the
scenarios for XML pipeline components like XQuery and XSLT have no effect – XML
pipeline processor settings are always used.

The following execution framework settings support cross-language debugging:

● Java built-in

● Saxonica Saxon and Saxonica Saxon-SA

● Microsoft .NET

Setting and Removing Breakpoints
You can set breakpoints on any node in an XML pipeline. You cannot set breakpoints on
a node’s input and output ports.

◆ To set a breakpoint:

1. Select the XML pipeline node on which you wish to set the breakpoint.

2. Click the Toggle Breakpoint button () or press F9.

Stylus Studio displays a breakpoint symbol (a large red circle) next to the node.

◆ To remove a breakpoint:

1. Select the XML pipeline node whose breakpoint you wish to remove.

2. Click the Toggle Breakpoint button () or press F9.

Figure 497. Breakpoint Set on a Node
1104 Stylus Studio User Guide

Debugging an XML Pipeline
Running the Debugger

◆ To run the debugger, click the Start Debugging button () or click F5:

When the debugger hits a breakpoint you have set, it displays a pause symbol, like the one
shown in Figure 498.

When debugging is paused, debugging tools (like those that let you step into and over
breakpoints, and toggles for the Watch, Variables, and Call Stack windows) become
active. You cannot edit the XML pipeline or alter its scenario properties during
debugging, or when the debugger is paused.

Figure 499 shows a breakpoint set on the createFullOrder.xquery node in
order.pipeline. The Preview window shows the XML pipeline’s execution log, and we
can see in it that the two ConvertToXML nodes have just been processed; this is

Figure 498. Pause Symbol for a Debugging Breakpoint

Figure 499. Debugging an XQuery Node in order.pipeline
Stylus Studio User Guide 1105

Building XML Pipelines
confirmed by the presence of the pause symbol on the following XQuery node – it has not
yet been processed. The Variables window shows the data retrieved from booksXML.txt.

Stepping Into a Node
If we want to take a closer look at the XQuery node as it processes the input, we can step
into it, directly from the XML Pipeline Editor by pressing the Step Into button (), or
by pressing F11. When we step into a node, Stylus Studio opens the document the node
represents (in this case, createFullOrder.xquery) in its own editor.

When you step into another document from the XML Pipeline Editor, Stylus Studio
pauses the debugger on the first instruction in that document. (In XQuery and XSLT, the
pause symbol is a yellow triangle. You can step over the instructions, one-by-one, by
clicking the Step Over button () or pressing F10. You can set breakpoints within this
document, as well.

You need to stop debugging before you can make changes to a document.

When the document you have stepped into has completed processing, you are returned to
the XML pipeline, and you can continue debugging it.

Figure 500. Stepping Into XQuery While Debugging XML Pipeline
1106 Stylus Studio User Guide

Generating Code for an XML Pipeline
Stopping Debug Processing
You can stop debug processing of an XML pipeline at any time by clicking the Stop
Debugging button (), or by pressing F8. Similarly, you can pause debugging (when
you choose, as opposed to waiting for the debugger to hit a breakpoint) by clicking the
Pause button () or by selecting Debug > Pause from the menu.

Generating Code for an XML Pipeline
Once you have built and tested your XML pipeline in the XML Pipeline Editor and are
satisfied that it performs as required, you can generate either Java or C# code for it. The
generated code can be compiled and run as-is. (Java code can be compiled and run inside
Stylus Studio; C# code must be compiled and run using a third-party tool such as
Microsoft Visual Studio.

This section covers the following topics:

● Execution Framework and Code Generation

● Code Generation Settings

● How to Generate Code for an XML Pipeline

● Compiling Generated Java Code

● Deploying Generated Code

Execution Framework and Code Generation
Settings for the Processor properties on the Execution Framework tab of the Scenario
Properties dialog box influence how Stylus Studio generates code for your XML
pipeline. These properties are typically set when you first begin building an XML
pipeline, as they also influence how Stylus Studio processes any XQuery, XSLT, XML
Schema validation, or FO processing you have specified in your XML Pipeline.

See Specifying an Execution Framework for more information.
Stylus Studio User Guide 1107

Building XML Pipelines
Processors for which Code Generation is Supported

You can generate code for your XML pipeline using any of the following execution
frameworks:

Note that changing default processor settings for these frameworks can affect Stylus
Studio’s ability to generate code for the XML pipeline. See Specifying an Execution
Framework for more information.

XML Pipeline Node Restrictions for C# Code

You cannot use the following XML Pipeline nodes in XML Pipelines for which you plan
to generate C# code for .NET:

● Choose

● Pipeline

● Validate

● Warning

● XML Parser

● XML Serializer

● XQuery

● XSL-FO

See XML Pipeline Node Properties Reference for more information on these and other
node types.

Table 130. Supported Code for XML Pipeline Execution Frameworks

Execution Framework Code Support

DataDirect XQuery Java

Saxonica Saxon Java

Saxonica Saxon .NET C# for .NET

Microsoft .NET C# for .NET

Java built-in Java
1108 Stylus Studio User Guide

Generating Code for an XML Pipeline
Code Generation Settings
When you generate code for an XML pipeline, Stylus Studio displays a dialog box that
allows you to specify settings that affect the generated code. There are separate dialog
boxes for Java and C# code. The dialog box that appears is based on the execution
framework you selected for the XML pipeline.

Java Code Generation Settings

You use Generate Java Code for XML Pipeline dialog box to specify

● The target directory in which you want the Java code created.
c:\temp\myPipelineJavaCode, for example. If the directory you name does not exist,
Stylus Studio creates it when you run the Java Code Generation wizard. The default
is . , which places the generated code in the same directory as the .pipeline file.

● Optionally, a package name. If you specify a package name, Stylus Studio uses this
name to create a subfolder in the target directory you specify. If you specify
mypackage as the package name, for example, the generated code is written to
c:\temp\myPipelineJavaCode\mypackage. (Though optional, it is considered good
practice to create a package name.)

● The class name. Stylus Studio also uses the class name for the .java file created by
the Java Code Generation wizard. For example, if you provide the name MyClass,
Stylus Studio creates c:\temp\myPipelineJavaCode\mypackage\MyClass.java.

● Whether or not you want to add the generated code to the current project.

● Whether or not you want to write an execution log file when the Java class runs.

Figure 501. Generate Java Code for XML Pipeline Dialog Box
Stylus Studio User Guide 1109

Building XML Pipelines
● Whether or not you want to generate inline code. Inline code can be run anywhere,
as-is. If you choose not to generate inline code, you must ensure that the XML
Pipeline Java libraries, xmlpipeline. jar, is in your system’s classpath.

● Whether or not you want to embed the XQuery source in the generated Java code.
This option is available when using either the Saxon XQuery or DataDirect XQuery
processors. This option is available only if the Generate inline code check box is
selected.

All of these options are selected by default.

C# Code Generation Settings

You use Generate C# .NET Code for XML Pipeline dialog box to specify

● The target directory in which you want the C# code created.
c:\temp\myPipelineC#Code, for example. If the directory you name does not exist,
Stylus Studio creates it when you run the Code Generation wizard. The default is the
same directory as the .pipeline file.

● Optionally, a namespace name. Stylus Studio uses the namespace name to create a
subfolder in the target directory you specify. If you use myNamespace, for example,
the generated code is written to c:\temp\myPipelineC#Code\myNamespace. (Though
optional, it is considered good practice to create a namespace.)

Figure 502. Generate C# .NET Code for XML Pipeline Dialog Box
1110 Stylus Studio User Guide

Generating Code for an XML Pipeline
● The class name. Stylus Studio uses the class name for the .cs file created by the Code
Generation wizard. For example, if you provide the name myClass, Stylus Studio
creates c:\temp\myPipelineC#Code\myClass.cs. Stylus Studio uses the XML pipeline
name as the default class name.

● The location of Saxon .NET on your system. Stylus Studio adds this URL to the
Microsoft Visual Studio 2005 project, allowing the generated C# code for .NET to
compile.

● Whether or not you want the resulting .cs file to contain a static void Main(String
[] args) method.

● The argument for the setExecutionLog method in the generated application. Choices
are Console.out (the default), Console.err, and Quiet. Set to Quiet to turn off the log.

● Whether or not you want to open the generated code file.

● Whether or not you want to embed the XQuery source in the generated C# code. This
option is available when using either the Saxon XQuery or DataDirect XQuery
processors. This option is available only if the Generate inline code check box is
selected.

● Whether or not you want to either create a new Visual Studio 2005 project or update
an existing one. If a new project is created, it is automatically opened with whatever
application is registered to open .csproj files. The .csproj file contains all the
necessary references to the generated .cs file, as well as all the .dll files that the .cs
file requires.

To run the .cs file, simply press Ctrl+F5 in Visual Studio.

How to Generate Code for an XML Pipeline

◆ To generate code for an XML Pipeline:

1. Open the XML Pipeline for which you want to generate code.

2. Display the Scenario Properties dialog box and

a. Select the desired scenario – Stylus Studio generates code only for the active
scenario.

b. Make sure properties on the Execution framework tab are set appropriately. See
Execution Framework and Code Generation for more information.

3. Close the Scenario Properties dialog box.

4. Click the Generate Code button () on the XML Pipeline Editor toolbar.
Stylus Studio User Guide 1111

Building XML Pipelines
Alternative: Select XML Pipeline > Generate Code from the Stylus Studio menu.

Stylus Studio displays a dialog box that allows you to specify code generation
settings. There are separate dialog boxes for Java and C# code. The dialog box that
appears is based on the execution framework you selected for the XML pipeline.

See Code Generation Settings if you need help with this step.

5. Click OK.

Stylus Studio generates code for the XML pipeline. If you generated Java code, the
resulting file (myPipeline.java, for example) is opened in the Stylus Studio Java
Editor.

Compiling Generated Java Code
The deployer automatically puts the JAR files required to compile the generated Java
code in the Stylus Studio project classpath. JAR files are in the \bin directory where you
installed Stylus Studio.

How to Compile and Run Java Code in Stylus Studio

In order to compile Java code, the JDK must be installed on your machine and configured
in Stylus Studio. Click Tools > Options > Java Virtual Machine to configure the JDK.

Figure 503. Configuring the JDK in Stylus Studio
1112 Stylus Studio User Guide

Generating Code for an XML Pipeline
◆ To compile Java code in Stylus Studio:

1. Make sure the Java Editor is the active window.

2. Click the Compile button ().

Alternatives: Press Ctrl + F7, or select Java > Compile from the Stylus Studio menu.

Stylus Studio compiles the Java code. Results are displayed in the Output window.

Troubleshooting Compiling Inside Stylus Studio

If you have trouble compiling Java code in Stylus Studio

1. Remove the existing Stylus Studio project classpaths from the Project Classpath
dialog box (select Project > Set Classpath from the menu).

2. Generate code again, which causes Stylus Studio to respecify the project classpaths.

Compiling Java Code Outside Stylus Studio

If you want to compile the Java code generated for your XML pipeline outside Stylus
Studio, you will need to manually set your classpath to include the JAR files listed at the
top of the generated .java file.

Running Java Code in Stylus Studio

◆ To run Java code in Stylus Studio:

1. Make sure the Java Editor is the active window.

2. Click the Run button ().

Alternatives: Press Ctrl + F5, or select Java > Run from the Stylus Studio menu.

If the code has not been compiled, Stylus Studio displays a prompt asking if you want
to compile the code now. Otherwise, Stylus Studio runs the Java code. Results are
displayed in the Output window.

Deploying Generated Code
If your XML Pipeline uses built-in DataDirect XML Converters – to convert CSV or EDI
to XML, for example – you need to purchase licenses for the DataDirect XML Converters
you wish to use if you wish to deploy your code in any environment on a machine (such
as a test or application server) that does not have a license for the DataDirect XML
Stylus Studio User Guide 1113

Building XML Pipelines
Converters. Licenses for DataDirect XML Converters are purchased separately from
Stylus Studio 2011 XML Enterprise Suite.

Similarly, if you use DataDirect XQuery in your XML pipeline, you must acquire
additional licences if you wish to deploy the XML pipeline application.

Write Stylus Studio at stylusstudio@stylusstudio.com, or call 781.280.4488 for more
information.

XML Pipeline Node Properties Reference
This section contains reference information for XML pipeline node properties, including
their input and output ports. This section is organized as follows:

● “Choose Node Properties” on page 1115

● “ConvertFromXML Node Properties” on page 1116

● “ConvertToXML Node Properties” on page 1117

● “Pipeline Node Properties” on page 1118

● “Pipeline Input Node Properties” on page 1119

● “Pipeline Output Node Properties” on page 1120

● “Stop Node Properties” on page 1120

● “Validate Node Properties” on page 1121

● “Warning Node Properties” on page 1122

● “XML Parser Node Properties” on page 1123

● “XML Serializer Node Properties” on page 1124

● “XQuery Node Properties” on page 1125

● “XSL-FO Node Properties” on page 1126

● “XSLT Node Properties” on page 1127
1114 Stylus Studio User Guide

XML Pipeline Node Properties Reference
Choose Node Properties

Input Port

Choose nodes can have as many input ports as you specify.

Node

Table 131. Choose Input Port Properties

Property Description

Name The name displayed in the port’s tooltip. Default value is Input#0.
This number is incremented by one for each additional input port
(Input#1, Input#2, and so on). Not editable.

DataType The port’s datatype. Default value is node(). Other values are
available in a drop-down list.

Default Value The default value for the input. Can be blank (this is the default).

Table 132. Choose Node Properties

Property Description

Name The name you want to appear in the Choose node’s tooltip. Default
value is Choose.

Number of Inputs The number of input ports you want the Choose node to have.

Number of Choices By default, a Choose node has two choices – one, which you
specify, and the “else”, which is implicit. You can use this property
to specify additional choices.

XPath #0 The XPath expression used to define the choices in the Choose
node. There is one XPath# property for each choice.
Stylus Studio User Guide 1115

Building XML Pipelines
Output Port

Each Choose node has at least two output ports – Output#0, and Output ‘no match’. It will
have other output ports (Output#1, Output#2, and so on) if other choices have been defined
for the Choose node.

ConvertFromXML Node Properties

Input Port

Node

Table 133. Choose Output Port Properties

Property Description

Name The name displayed for the output port; not editable.

DataType The port’s datatype. Default value is node().

Copy to URL The URL to which you want the output passed. Can be left blank.

Table 134. ConvertFromXML Input Port Properties

Property Description

Name The name displayed for the input port; not editable.

DataType The port’s datatype. Default value is node.

Default Value The default value for the input. Can be blank (this is the default).

Table 135. ConvertFromXML Node Properties

Property Description

Name The name you want to appear in the ConvertFromXML node’s
tooltip. Default value is ConvertFromXML.

XML Converter URL The URL of the DataDirect XML Converter (converter:CSV?, for
example) or of the user-defined custom XML conversion
(converter:file://c:\myFiles\myConverter.conv?, for example)
you want to use to convert XML input to some other format.
1116 Stylus Studio User Guide

XML Pipeline Node Properties Reference
Output Port

ConvertToXML Node Properties

Input Port

Node

Table 136. ConvertFromXML Output Port Properties

Property Description

Name The name displayed for the output port; not editable.

DataType The port’s datatype. Default value is text.

Copy to URL The URL to which you want the output passed. Can be left blank.

Table 137. ConvertToXML Input Port Properties

Property Description

Name The name displayed for the input port; not editable.

DataType The port’s datatype. Default value is node.

Default Value The default value for the input. Can be blank (this is the default).

Table 138. ConvertToXML Node Properties

Property Description

Name The name you want to appear in the ConvertToXML node’s tooltip.
Default value is ConvertToXML.

XML Converter URL The URL of the DataDirect XML Converter (converter:CSV?, for
example) or of the user-defined custom XML conversion
(converter:file://c:\myFiles\myConverter.conv?, for example)
you want to use to convert input to XML.
Stylus Studio User Guide 1117

Building XML Pipelines
Output Port

Pipeline Node Properties
A Pipeline node does not display input and output ports unless the included pipeline it
represents (specified in the .pipeline File property) has Pipeline Input and Pipeline
Output nodes defined for it.

Input Port

Node

Table 139. ConvertToXML Output Port Properties

Property Description

Name The name displayed for the output port; not editable.

DataType The port’s datatype. Default value is node.

Copy to URL The URL to which you want the output passed. Can be left blank.

Table 140. Pipeline Input Port Properties

Property Description

Name The name of the Pipeline Input node that is defined in the included
pipeline; not editable.

DataType The port’s datatype. Default value is text.

Default Value The default value for the input. Can be blank (this is the default).

Table 141. Pipeline Node Properties

Property Description

Name The name you want to appear in the Pipeline node’s tooltip. Default
value is Include Sub-Pipeline.

.pipeline File The URL of the .pipeline file represented by the Pipeline node.
1118 Stylus Studio User Guide

XML Pipeline Node Properties Reference
Output Port

Pipeline Input Node Properties
Pipeline Input nodes have no input port.

Node

Output Port

Table 142. Pipeline Node Output Port Properties

Property Description

Name The name of the Pipeline Output node that is defined in the included
pipeline; not editable.

DataType The port’s datatype. Default value is text.

Copy to URL The URL to which you want the output passed. Can be left blank.

Table 143. Pipeline Input Node Properties

Property Description

Name The name you want to appear in the Pipeline Input node’s tooltip.
Default value is Pipeline Input.

DataType The node’s datatype. Default value is any.

Default Value The literal value or URL for the document or file you want to use as
the included pipeline’s main input.

Table 144. Pipeline Input Output Port Properties

Property Description

Name The name displayed for the output port; not editable.

DataType The port’s datatype. Default value is any.
Stylus Studio User Guide 1119

Building XML Pipelines
Pipeline Output Node Properties
Pipeline Output nodes do not have an output port.

Input Port

Node

Stop Node Properties
Stop nodes do not have an output port.

Input Port

Table 145. Pipeline Output Input Port Properties

Property Description

Name The name displayed for the input port; not editable.

DataType The port’s datatype. Default value is any.

Table 146. Pipeline Output Node Properties

Property Description

Name The name you want to appear in the Pipeline Output node’s tooltip.
Default value is Pipeline Output.

Table 147. Stop Node Input Port Properties

Property Description

Name The name displayed for the input port; not editable.

DataType The port’s datatype. Default value is any.
1120 Stylus Studio User Guide

XML Pipeline Node Properties Reference
Node

Validate Node Properties

Input Port

Node

Table 148. Stop Node Properties

Property Description

Name The name you want to appear in the Stop node’s tooltip. Default
value is Stop.

Message The message you want written to output with the Stop node is
processed. The default is Error.

Table 149. Validate Node Input Port Properties

Property Description

Name The name displayed for the input port; not editable.

DataType The port’s datatype. Default value is node.

Default Value The default value for the input. Can be blank (this is the default).

Table 150. Validate Node Properties

Property Description

Name The name you want to appear in the Validate node’s tooltip. Default
value is Validate operator.

XML Schemas The URL of the XML Schema you want to use to validate the input.
You can specify more than one XML Schema.
Stylus Studio User Guide 1121

Building XML Pipelines
Output Port

The Validate node has two output ports – one (named Output valid) used to direct input
if the XML Schema validation passes, the other (named Output invalid) used if the input
is invalid.

Warning Node Properties

Input Port

Node

Table 151. Validate Node Output Port Properties

Property Description

Name The name displayed for the Output valid and Output invalid
ports; not editable.

DataType The port’s datatype. Default value is node.

Copy to URL The URL to which you want to copy the output.

Table 152. Warning Node Input Port Properties

Property Description

Name The name displayed for the input port; not editable.

DataType The port’s datatype. Default value is any.

Table 153. Warning Node Properties

Property Description

Name The name you want to appear in the Warning node’s tooltip. Default
value is Warning.

Message The message you want written to output with the Warning node is
processed. The default is Warning.
1122 Stylus Studio User Guide

XML Pipeline Node Properties Reference
Output Port

XML Parser Node Properties

Input Port

Node

Table 154. Warning Node Output Port Properties

Property Description

Name The name displayed for the output port; not editable.

DataType The port’s datatype. Default value is any.

Copy to URL The URL to which you want to copy the output when a warning
condition is encountered.

Table 155. XML Parser Node Input Port Properties

Property Description

Name The name displayed for the input port; not editable.

DataType The port’s datatype. Default value is text.

Default Value The default value for the input. Can be blank (this is the default).

Table 156. XML Parser Node Properties

Property Description

Name The name you want to appear in the XML Parser node’s tooltip.
Default value is XML Parser.
Stylus Studio User Guide 1123

Building XML Pipelines
Output Port

XML Serializer Node Properties

Input Port

Node

Table 157. XML Parser Node Output Port Properties

Property Description

Name The name displayed for the output port; not editable.

DataType The port’s datatype. Default value is any.

Copy to URL The URL to which you want to copy the output XML parser output.

Table 158. XML Serializer Node Input Port Properties

Property Description

Name The name displayed for the input port; not editable.

DataType The port’s datatype. Default value is node.

Default Value The default value for the input. Can be blank (this is the default).

Table 159. XML Serializer Node Properties

Property Description

Name The name you want to appear in the XML Serializer node’s tooltip.
Default value is XML Serializer.

format-pretty-print Whether or not you want to format the output using pretty-print
(indenting nodes). The default is False.

xml-declaration Whether or not you want the output to include an XML declaration.
The default is true.

encoding The type of encoding you want to specify for the output. The default
is utf-8.
1124 Stylus Studio User Guide

XML Pipeline Node Properties Reference
Output Port

XQuery Node Properties

Input Port

An XQuery node has one input port by default. Additional input ports are based on
external variables defined in the XQuery.

Node

Table 160. XML Serializer Node Output Port Properties

Property Description

Name The name displayed for the output port; not editable.

DataType The port’s datatype. Default value is text.

Copy to URL The URL to which you want to copy the output XML parser output.
Can be left blank.

Table 161. XQuery Node Input Port Properties

Property Description

Name The name displayed for the input port; not editable.

Data Type Present for input ports corresponding to external variables.
Initialized with variable’s data type.

Default Value The default value for the input. Can be blank.

Table 162. XQuery Node Properties

Property Description

Name The name you want to appear in the XQuery node’s tooltip. Default
value is XQuery operator.

.xquery file The URL of the XQuery file you want this node to represent.

DB Connections Reserved for future use.
Stylus Studio User Guide 1125

Building XML Pipelines
Output Port

XSL-FO Node Properties

Input Port

Node

Table 163. XQuery Node Output Port Properties

Property Description

Name The name displayed for the output port; not editable.

DataType The port’s datatype. Default value is any.

Copy to URL The URL to which you want to copy the XQuery output. Can be left
blank.

Table 164. XSL-FO Node Input Port Properties

Property Description

Name The name displayed for the input port; not editable.

DataType The port’s datatype. Default value is node.

Default Value The default value for the input. Can be blank.

Table 165. XSL-FO Node Properties

Property Description

Name The name you want to appear in the XSL-FO node’s tooltip. Default
value is FO operator.
1126 Stylus Studio User Guide

XML Pipeline Node Properties Reference
Output Port

XSLT Node Properties

Input Port

An XSLT node has one input port by default. Additional input ports are based on
parameters defined in the XSLT.

Node

Table 166. XSL-FO Node Output Port Properties

Property Description

Name The name displayed for the output port; not editable.

DataType The port’s datatype. Default value is binary.

Copy to URL The URL to which you want to copy the XSL-FO output.

Table 167. XSLT Node Input Port Properties

Property Description

Name The name displayed for the input port; not editable.

Default Value The default value for the input. Can be blank.

Table 168. XSLT Node Properties

Property Description

Name The name you want to appear in the XSLT node’s tooltip. Default
value is XSLT operator.

.xsl file The URL of the XSLT file you want this node to represent.

Base URL The URL you want to use to resolve hyperlinks and images in the
output. This value defaults from the XSLT scenario properties if it
was specified.
Stylus Studio User Guide 1127

Building XML Pipelines
Output Port

Table 169. XSLT Node Output Port Properties

Property Description

Name The name displayed for the output port; not editable.

DataType The port’s datatype. Default value is any.

Copy to URL The URL to which you want to copy the XSLT output. Can be left
blank.
1128 Stylus Studio User Guide

Chapter 15 Publishing XML Data
This chapter describes how to use the Stylus Studio XML Publisher to create XSLT or
XQuery code that generates HTML+CSS or XSL-FO reports based on XML data.

A complete list of the videos demonstrating Stylus Studio’s features is here:
http://www.stylusstudio.com/xml_videos.html.

This chapter covers the following topics:

● “The XML Publisher” on page 1130

● “Building an XML Publisher Report” on page 1131

● “Choosing a Report Format” on page 1134

● “Working with Data Sources” on page 1135

● “Adding Data to a Report” on page 1149

● “Working with Report Components” on page 1156

● “Generating Code for an XML Publisher Report” on page 1182

● “Example: Building an XML Publisher Report” on page 1186

● “Properties Reference” on page 1192

Support for XML Publisher is available only in Stylus Studio XML Enterprise
Suite.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the Introduction to the XML Publisher
video.
Stylus Studio User Guide 1129

http://www.stylusstudio.com/videos/publisher1/publisher1.html
http://www.stylusstudio.com/videos/publisher1/publisher1.html
http://www.stylusstudio.com/videos/publisher1/publisher1.html
http://www.stylusstudio.com/xml_videos.html

Publishing XML Data
The XML Publisher
The Stylus Studio XML Publisher is a visual editor and code generator that helps you
create XSLT or XQuery that transforms XML into HTML+CSS or XSL-FO reports.

You use the XML Publisher to select the data sources for your report, to build and format
the report using the desired data, and to preview a sample report before you generate the
XSLT or XQuery code.

Note The examples in this chapter rely on the books.xml and videos.xml documents that are
part of the examples project installed with Stylus Studio. These documents are in the
query and VideoCenter project folders, respectively.

Figure 504. XML Publisher and Report Preview
1130 Stylus Studio User Guide

Building an XML Publisher Report
Parts of the XML Publisher Editor
The XML Publisher Editor has three main parts:

● The XML Publisher canvas. You use the canvas to format your report and identify its
contents.

● The data sources panel. You use the data sources panel to identify the XML sources
(relational tables and XML documents, for example) you want to include in your
finished report. You select the data you want in your report by dragging the nodes that
represent the data from the data sources panel and dropping them on the XML
Publisher canvas.

● The Properties window. You use the Properties window to fine-tune settings that
affect the finished report’s format and contents. For example, you can use XPath
expressions to specify formatting based on results returned by the XPath expression
against a given document node.

In addition, Stylus Studio displays the Preview window when you preview a report.

Building an XML Publisher Report
This section describes how to build an XML Publisher report. It contains the following
sections:

● “Process Summary” on page 1131

● “How to Create an XML Publisher Report” on page 1132

● “The XML Publisher Canvas” on page 1133

Process Summary
The process of building an XML Publisher report involves the following basic steps:

1. Create a new XML Publisher report document (File > New > XML Report).

2. Choose the report format (HTML or PDF). See “Choosing a Report Format” on
page 1134.

3. Add the source documents you want to use for the report’s content. See “Working
with Data Sources” on page 1135.

4. Add the components you want in your report – data, as well as formatting constructs
like lists and tables – to the XML Publisher canvas. See “Adding Data to a Report”
on page 1149.
Stylus Studio User Guide 1131

Publishing XML Data
5. Optionally, format the data you have added to the XML Publisher canvas. See
“Formatting Components” on page 1174.

6. Preview the report; adjust data and formatting as required.

Once you are satisfied with the XML Publisher report, you can generate XQuery or XSLT
code for the report, choosing your desired report format (HTML or XSL-FO).

Each of these steps is described in greater detail in the following sections.

How to Create an XML Publisher Report

◆ To create an XML Publisher report:

1. Select File > New > XML Report from the Stylus Studio menu.

The XML Report Format dialog box appears.

2. Select the desired report format (HTML or PDF) and click OK.

An untitled .report document is opened in the XML Publisher.

Figure 505. XML Report Format Dialog Box
1132 Stylus Studio User Guide

Building an XML Publisher Report
The XML Publisher Canvas
When you create an XML Publisher report, Stylus Studio starts the XML Publisher and
displays a new report (untitled.report). The canvas representing the report is empty, as
shown here.

The canvas represents the report’s body, and all of the work you do when building a report
– inserting XML data, tables, text and text blocks, and conditional expressions – takes
place within the context of the body.

A useful way to think of the body is as the <body> tag in an HTML document – everything
that you do on the report canvas would be described between the <body> and </body> tags
in an HTML document. This metaphor is represented by the Body glyph () in the
canvas navigation bar at the top of the canvas – everything you subsequently add to the
report canvas will be represented as a child of the report’s body.

See “How Data is Represented on the Canvas” on page 1151 and “More About the
Navigation Bar” on page 1153 for more information.

Figure 506. Empty Canvas in a New XML Publisher Report
Stylus Studio User Guide 1133

Publishing XML Data
Choosing a Report Format
When you create an XML Report in Stylus Studio, you need to specify the format you
want for the finished report – HTML (XHTML+CSS) or PDF (XSL-FO). Stylus Studio
can generate XQuery or XSLT code for either format. You specify report format using the
XML Report Format dialog box, which appears when you create a new XML Report in
Stylus Studio:

Specifying a format up front allows Stylus Studio to use format information to expose
format-specific properties – like headers and footers for reports in PDF, for example – to
help speed and simplify report creation.

Figure 507. XML Report Format Dialog Box
1134 Stylus Studio User Guide

Working with Data Sources
Working with Data Sources
You can use any of the following as data sources for building XML Publisher reports:

● XML documents

● XML Schema or DTD

● Relational database tables

● EDI and flat files like CSV converted to XML using one of the DataDirect XML
Converters

● Web services

This section covers the following topics:

● “How Data Sources are Represented in XML Publisher” on page 1135

● “Adding a Data Source” on page 1136

● “Specifying a Default Data Source” on page 1137

● “Data Source Required for XSLT” on page 1138

● “Using XML Schema or DTD as a Data Source” on page 1138

● “Grouping Data” on page 1140

How Data Sources are Represented in XML Publisher
When you add a data source to the data sources panel, Stylus Studio displays the schema
representation, or the data model, for that source. The following illustration shows how
the videos.xml document from the VideoCenter folder in the examples project appears
after it has been added as a data source:

Figure 508. XML Document in the Data Sources Panel
Stylus Studio User Guide 1135

Publishing XML Data
Working with Namespaces

If the document you have selected as a source uses a namespace prefix, Stylus Studio
displays the prefix and the URI at the bottom of the data sources panel, as shown in
Figure 509.

You can edit the value in the Namespace field, which can simplify the process of typing
XPath expressions you might use when defining a property. For example, you could
change books to simply b to shorten and simplify XPath expressions. See “Example:
Using Context and XPath Sub-Properties to Format Text” on page 1171 to learn more
about using XPath expressions when building XML Publisher reports.

Adding a Data Source

◆ To add a data source you can

● Drag a document or file from the Project or File Explorer windows and drop it on the
data sources panel.

● Drag a relational database table from the File Explorer window and drop it on the data
sources panel.

● Click the Add Data Source button ()on the data sources panel and use the Open
dialog box to navigate to the desired data source.

You can use multiple data sources for an XML Publisher report.

Figure 509. Namespace Prefix and URI
1136 Stylus Studio User Guide

Working with Data Sources
Specifying a Default Data Source
Stylus Studio uses the first data source you add as the default data source. The default
data source is specified as the Main input for XQuery scenarios, and as the Source XML
URL for XSLT scenarios. In other words, when you generate XQuery or XSLT for your
XML Publisher report, the default data source is automatically specified in the scenario
properties, as shown in Figure 510.

The red check on the document icon (see Figure 508) indicates a data source’s default
status. You can specify any data source you add as the default data source.

◆ To specify the default data source:

1. In the data sources panel, select the data source you want to specify as the default
(books.xml, in Figure 511, for example).

Figure 510. Default Data Source Used in Generated XSLT
Stylus Studio User Guide 1137

Publishing XML Data
2. Click the Set As Default button ().

The data source is set as the new default, as indicated by the red check.

Data Source Required for XSLT
While it is considered good practice to specify a data source regardless of whether you
are planning to generate XQuery or XSLT, a data source is required only for XSLT. In
addition, if your XML Publisher report has multiple data sources, one of them must be
designated as the default data source. See “Specifying a Default Data Source” on
page 1137 for more information.

See “Sources” on page 1183 to learn more about how additional sources are treated by
Stylus Studio when generating XQuery and XSLT from XML Publisher.

Using XML Schema or DTD as a Data Source
If you use XML Schema or DTD documents as sources for XML Publisher reports, you
need to

● Choose the element from the XML Schema or DTD you want to use as the root
element

● Associate the XML Schema or DTD with an XML instance

This section describes how to perform these procedures.

Figure 511. Setting a Different Default Data Source
1138 Stylus Studio User Guide

Working with Data Sources
Choosing a Root Element

When you add an XML Schema or a DTD to the data sources panel, Stylus Studio
displays the Choose Root Element dialog box, shown in Figure 512.

The Choose root element drop-down list displays all the child elements of the XML
Schema or DTD document you selected as a data souce. Select the element you want to
use as the document root and click OK.

Associating an XML Instance with the Schema

Before you can preview or generate code for an XML Publisher report, you need to
associate an XML document, referred to as an XML instance, with any XML Schema or
DTD documents you are using as source documents.

When you click the Preview or Generate buttons on the XML Publisher toolbar, if you
have not already associated an XML instance with the schema you are using as data
sources, Stylus Studio displays the Associate with XML Instance dialog box, shown in
Figure 512.

Figure 512. Choose Root Element Dialog Box

Figure 513. Schema Instance Dialog Box
Stylus Studio User Guide 1139

Publishing XML Data
Each entry in the Schema field represents an XML Schema or DTD document used as a
data source. To associate it with an XML instance:

1. Click the XML Instance field.

Stylus Studio displays the Open dialog box.

2. Choose the XML document you want to use as the XML instance and click the Open
button.

The Open dialog box closes; the URL for the file you selected appears in the XML
Instance field.

3. Click OK.

Stylus Studio previews the XML Publisher report, or begins the code generation
process.

Grouping Data

The ability to group data from one or more data sources is a common requirement for
many reports. For example, given the videos.xml file, you might want to create a list of
actors that shows all the movies in which he or she has starred.

Stylus Studio facilitates grouping using a feature that allows you to create a relationship
between different data sources (between books.xml and catalog.xml, for example), or
between different data islands within the same source (between two nodes in videos.xml,
for example).

This section describes the relationship feature in XML Publisher and how to use it to
perform grouping.

What is a Relationship?

A relationship is a link between two nodes in one or more data sources that allows you to
compare the values of those nodes. For example, in videos.xml, you might want compare
the value of the id attribute of the actor element with the value of actorRef element, and
then perform some action when those values are equal.

Watch it! You can view a video demonstration of this feature by clicking the
television icon or by clicking this link: watch the XML Publisher data grouping
video.
1140 Stylus Studio User Guide

http://www.stylusstudio.com/videos/report-generation/xmlpublisher-070504.html
http://www.stylusstudio.com/videos/report-generation/xmlpublisher-070504.html
http://www.stylusstudio.com/videos/report-generation/xmlpublisher-070504.html

Working with Data Sources
Comparison operations you can define for a relationship are

● Equal

● Not equal

● Less than

● Greater than

● Less than or equal to

● Greater than or equal to

When you create a relationship in XML Publisher, you are defining the inner and outer
loops of the for-each statements in your XSLT or XQuery code that will be used to
perform the grouping (xsl:for-each in XSLT; FLWOR instructions in XQuery). The
order of the nodes you select determines the order in which the outer and inner loops are
created:

● The first node you select is used to define the outer loop

● The second node you select is used to define the inner loop

Creating a Relationship

Once you have added one or more data sources to the data sources panel, you can create
a relationship between nodes within the same data source, or across data sources.

◆ To create a relationship:

1. Add the data source(s) you require for your report. See “Adding a Data Source” on
page 1136 if you need help with this step.

2. Select the node you want to use to define the outer loop in the XQuery or XSLT that
will be used to create the report.

The Add Relationship button becomes active, as shown here:

Figure 514. Add Relationship Button for XML Publisher
Stylus Studio User Guide 1141

Publishing XML Data
3. Click the Add Relationship button.

The Create Relationship dialog box appears. The tree for the document appears in the
Link From field. The document that appears in the Link To field depends on how many
data sources you added in Step 1.

By default, Stylus Studio sets the node’s context using the first repeating element in
the selected node’s hierarchy – including the selected node itself. In this example, we
selected the id attribute of the actor element, so the actor repeating element is used
to set the context for this loop.

4. Optionally, change the key node and context.

5. In the Link To field, select the node you want to use to define the inner loop in the
XQuery or XSLT that will be used to create the report. If you defined more than one
data source in Step 1, you can change the data source in the Data Source drop-down
list.

Figure 515. Create Relationship Dialog Box
1142 Stylus Studio User Guide

Working with Data Sources
In this example, we selected videos/video/actorRef repeating element.

6. Optionally, change the context of the node you selected in Step 5.

7. Choose the comparison operator you want to use to define this relationship from the
Operator drop-down list.

8. Click OK.

The relationship you just defined appears in the data sources pane of the XML
Publisher Editor.

Figure 516. Second Node in a Relationship

Figure 517. Relationship Defined as a Data Source
Stylus Studio User Guide 1143

Publishing XML Data
If you expand the relationship node, you see the graphic representation of the join
formed between the actors/actor/id node and the videos/video/actorRef node.

You can now use this relationship as a data source in XML Publisher. See “Example –
Using a Relationship in a Report” on page 1144 for more information.

Example – Using a Relationship in a Report

This example describes how to build a simple report in XML Publisher, shown here, that
lists actors and the movies they have appeared in. The information for this report is based
on the data in videos.xml, in the VideoCenter folder in the Stylus Studio examples project.

Figure 518. Join Displayed as a Data Source
1144 Stylus Studio User Guide

Working with Data Sources
Specifically, it matches the id attribute in the actors/actor element with the
videos/video/actorRef element.

◆ To create the example report:

1. Click File > New > XML Report to open the XML Publisher Editor.

2. Drag videos.xml from the VideoCenter folder in the Stylus Studio examples project
and drop it on the data sources panel in the XML Publisher Editor.

Stylus Studio displays a tree representing the videos.xml document.

3. Expand the actors node by selecting it and pressing the * key on your number pad.

4. Select the id attribute.

5. Click the Add Relationship button. The Create Relationship dialog box appears, as
shown next.

Figure 519. Example Report
Stylus Studio User Guide 1145

Publishing XML Data
6. In the Link To field, expand the videos node and select the actorRef repeating
element.

7. Since we want the loop on the video element (to locate all movies with a matching
actorRef and id), change the value in the Context field to video (also a repeating
element).

Figure 520. Create Relationship Dialog Box

Figure 521. Changing the Context of the Target Node
1146 Stylus Studio User Guide

Working with Data Sources
8. Click OK.

The data source defined by the relationship we just created between the actors and
videos nodes appears in the data sources pane.

9. Drag the newly defined data source from the data sources pane and drop it on the
XML Publisher canvas.

Stylus Studio creates two loops.

If you place the mouse over the outer loop, the tool tip displays the XPath –
/result/actors/actor; similarly the XPath for the inner loop is
/result/videos/video[$actor/@id./actorRef].

Now that the context for the loops has been defined, we next need to specify the data
we want to display.

10. From the data sources panel, drag the videos/video/title element and drop it in the
inner loop.

11. From the data sources panel, drag the actors/actor element and drop it in the outer
loop. Select Insert Value from the pop-up menu.

When you have finished, your XML Publisher canvas should look like this:

Figure 522. Repeating Loops in the XML Publisher Canvas

Figure 523. XML Publisher Before Formatting
Stylus Studio User Guide 1147

Publishing XML Data
12. Click the Preview button (), and save the file when prompted.

Before formatting, the report looks like this:

All the information is there, but the report is hard to read.

13. Select the .(actor) glyph in the XML Publisher canvas and click the Bold button on
the XML Publisher tool bar. Add a carriage return (press Enter) after the glyph.

14. Use the space bar to indent the title glyph. Add a carriage return (press Enter) after
the glyph.

15. Preview the report again.

We now have a report that resembles the one shown in Figure 519.

Figure 524. Draft Report

Figure 525. Final Report
1148 Stylus Studio User Guide

Adding Data to a Report
Deleting a Relationship

You can delete the relationships you have defined as data sources for XML Publisher
reports just as you would any other data source.

◆ To delete a relationship:

1. Select the relationship you want to deletein the data sources pane.

2. Click the Remove Relationship button.

The relationship is removed from the XML Publisher.

Adding Data to a Report
Once you have added one or more data sources to the data sources panel, you can specify
the data you want to include in your XML report. This section describes how to add data
to a report and how it is represented on the XML Publisher canvas.

This section covers the following topics:

● “How to Add Data to a Report” on page 1149

● “Example: Dropping a Repeating Node” on page 1150

● “How Data is Represented on the Canvas” on page 1151

● “More About the Navigation Bar” on page 1153

How to Add Data to a Report
There are essentially two ways to add data to a report:

● Automatically. You can drag a node from the data sources panel and drop it on the
canvas. When you do, Stylus Studio displays a short-cut menu that displays the types
of components you can create based on the node you have selected. For example, if
you select a repeating element, you can create components that loop – tables and lists,
for example.

● Manually. You can add an empty component to the report using the main menu
(Report > Insert List, for example) or the canvas short-cut menu (right-click on the
canvas), and then populate the component by dragging and dropping nodes from the
data sources panel. Alternatively, you can specify Context and XPath properties in the
Properties window for the component you want to populate.

The benefit of using the automatic method is that Stylus Studio determines the context and
XPath settings required to return the data you have selected. In addition, when you drop
Stylus Studio User Guide 1149

Publishing XML Data
the node on the canvas, Stylus Studio displays on the short-cut menu only those choices
that are applicable to the node you selected from the data sources panel.

Example: Dropping a Repeating Node
As described earlier, the data source – whether it is an XML document, a relational
database table, an EDI file converted to XML, or some other XML data source – is
represented as a data model in the data sources panel. The glyphs used for the nodes are
based on the object they represent in the data source, as shown here.

For this example, we use books.xml as the report’s data source. When we drop the book
repeating element on the canvas, we select Insert Table > Populated Columns from the
short-cut menu. Stylus Studio creates a table with five columns, one for each of the child
nodes in the book repeating element, as shown in Figure 528.

Figure 526. Glyphs Used to Represent a Data Source

Figure 527. Table Created Automatically Using Repeating Element Child Nodes
1150 Stylus Studio User Guide

Adding Data to a Report
The following table summarizes the types of components you can create and
automatically populate with data based on the node type.

See “Working with Report Components” on page 1156 for information about specific
components.

How Data is Represented on the Canvas
Data is represented by glyphs that contain an XPath expression. The composition of these
XPath expressions varies based on the context of the component in which the data is being
included. The glyph might contain just an element name, or it might display a longer
XPath expression if it represents data whose context is not established by the containing
component.

Example

The context for the table component shown in Figure 528 is the video repeating element
from the videos.xml document. You can see this if you select the table in the canvas and
look at either the

● The Context and XPath sub-properties for the repeating row

Table 170. Components for Repeating and Non-Repeating Nodes

Repeating Nodes Non-Repeating Nodes

Text Text

Image Image

If If

Table (either a table with three empty
columns, or a table with one column for each
child node of the repeating element)

–

Repeater –

List –

Note You cannot drag document nodes.
Stylus Studio User Guide 1151

Publishing XML Data
● The Video table glyph in the navigation bar

The following table shows the different types of XPath expressions you might see in an
XML Publisher report.

Figure 528. Value Glyphs on the XML Publisher Canvas

Tip You can see the context for any piece of data or component by hovering the mouse pointer
over it. When you do, Stylus Studio displays a tooltip that includes the URL and XPath.

Table 171. Explanation of XPath Expressions in Data Glyphs

Data Glyph Contains Description

The current context The XPath expression for context is a dot. To
make this easier to see in the glyph, Stylus
Studio adds the element name in parentheses
following the dot.

An element (or attribute)
name

If the context is established by the containing
component, the data glyph contains only the
element or attribute name.

A full XPath If the context for the data is not established by
the containing component, Stylus Studio
displays the full XPath needed to resolve it.
1152 Stylus Studio User Guide

Adding Data to a Report
More About the Navigation Bar
As you add components to your report, Stylus Studio adds glyphs that represent them to
the canvas navigation bar. You can click these glyphs to place the editor’s focus on a
specific component; similarly, when you select a component from the canvas, the glyphs
in the navigation bar change to reflect the editor’s current focus.

Consider the following report – it contains two tables, each with a number of columns,
and some text headings.

The Body glyph in the navigation bar represents the report’s body. The dark blue means
that the report body – the table headings and empty paragraph markers – has the editor’s
focus. In other words, any editing performed now – changing the text to italic, or making
the background a different color, for example – would affect every object in the report
body.

The plus sign next to the Body glyph indicates that the report body has at least one child.
Our report has two children – the table containing video data, and the table containing
book data. If we click the plus sign, Stylus Studio displays a drop-down menu that lists
the children of the report body, and we see the entries for the video and book tables.

Figure 529. Report Body Glyph Collapsed by Default

Figure 530. Plus Sign Indicates Children
Stylus Studio User Guide 1153

Publishing XML Data
Click the Glyph to Navigate

You can use the glyphs in the navigation bar to quickly change the editor’s focus to the
component you select. If we select book from the Body glyph drop-down menu, for
example:

● The editor’s focus moves to the book table. Notice the dashed line around the table in
Figure 531.

● The navigation bar changes to reflect the editor’s focus.

Notice that the book glyph, which represents the table containing book data, has two
symbols to its right:

● The plus sign, which indicates that the table has children. A table’s children are its
cells.

● The down arrow, which indicates that the table has siblings. In this example, the table
containing video data is the sibling of the current table.

Figure 531. Clicking Navigation Bar Glyphs Changes Editor Focus
1154 Stylus Studio User Guide

Adding Data to a Report
If we now click a cell directly, say, the cell containing author data, notice how the
navigation bar changes:

In this fashion, the navigation bar operates a tree, always showing you the report
component that currently has focus. Components are displayed from the most general to
the most specific. Look at the navigation bar in Figure 532. When the author glyph in the
table is selected, the glyphs in the navigation bar are interpreted this way (from left to
right):

Figure 532. The Navigation Bar Operates as a Tree Based on Report Context

Table 172. Explanation of Example Navigation Bar Tree

Navigation Bar Glyph Represents

The entire report. Every other component is a child of the body
component.

The book table. The down arrow means that the table has
siblings.

The cells in the book table. The down arrow means that the cell
has siblings – the other cells in the table.

The list component built on the author element.

An item in the list component.

The dynamic value of the author element. It is dark blue
because in our example (Figure 532), it is the report
component that currently has focus.
Stylus Studio User Guide 1155

Publishing XML Data
Notice the video table is not represented in the navigation bar. This is because the current
context in the report canvas is owned by the book table. You can quickly change context
in the canvas by either

● Clicking a cell in the video table or the video table itself

● Using the down arrow on the table glyph (which currently displays book) to select
video

Working with Report Components
This section describes the types of components you can include in an XML Publisher
report and how to create and work with them.

This section covers the following topics:

● “Types of Components” on page 1156

● “Tables” on page 1157

● “Lists” on page 1160

● “Text” on page 1162

● “Images” on page 1163

● “Repeaters” on page 1166

● “Ifs” on page 1167

● “Component Properties” on page 1170

● “Formatting Components” on page 1174

● “Formatting Decimal Numbers” on page 1179

Types of Components
There are two types of components you can include in an XML Publisher report:

● Visual components; these are components that have a visual representation in the
published HTML or XSL-FO report. Examples include tables and lists.

● Non-visual components; these are components that do not have a visual
representation in a finished report. Examples include repeaters and ifs.

All components, regardless of type, are represented graphically on the XML Publisher
canvas.

Note Repeater and text block components have their own glyphs.
1156 Stylus Studio User Guide

Working with Report Components
The following table lists all XML Publisher report components and tells you where to find
more information about them.

Tables
A table is a visual component that usually iterates over the data it contains. You typically
create a table when you want your report to display multiple rows with two or more
columns of dynamic data – one row for each movie in the videos.xml file, with each row
containing the movie’s title, its genre, and its rating, for example.

Table 173. XML Publisher Report Components

Component Name Component Type For More Information

Table Visual See “Tables” on page 1157

List Visual See “Lists” on page 1160

Text Visual See “Text” on page 1162

Image Visual See “Images” on page 1163

Repeater Non-visual See “Repeaters” on page 1166

If Non-visual See “Ifs” on page 1167

Figure 533. Example Table and Output
Stylus Studio User Guide 1157

Publishing XML Data
If your data can be displayed in a single column (only movie titles, for example), you
might want to consider using either the list or repeater components. See “Lists” on
page 1160 and “Repeaters” on page 1166 for more information.

Creating a Table

The easiest way to create a table in XML Publisher is to drag and drop a repeating
element. When you drop the repeating element on the canvas, Stylus Studio displays a
short-cut menu with an Insert Table choice. You can insert a table with either

● Populated Columns – Stylus Studio creates a table with one column for each of the
child nodes of the repeating element. The table’s context and XPath are set based on
the repeating element used to create it. Each column contains a data value glyph
representing a child node.

● Empty – Stylus Studio creates table with three empty columns. As with the previous
option, the table’s context and XPath are set based on the repeating element used to
create it, but it is up to you to select from the data sources pane the child nodes you
want to include in the table.

You can also create a table manually (Report > Insert > Table, or select Insert Table from
the canvas short-cut menu). When you create a table like this, however, the context and
XPath are not set for you, and it will only contain the number of rows you explicitly create
for it unless you also define the Loop property for a row.

Graphical Representation

Tables, like the one shown in Figure 534, are displayed as a single row with a loop symbol
(); the loop symbol indicates a repeating row.

Figure 534 shows a table based on the book repeating element in books.xml that was
created using the Populated Columns short-cut menu choice.

Figure 535 shows a table based on the same repeating element, but it was created using
the Default Columns short-cut menu choice.

Figure 534. Table Created with Populated Columns

Figure 535. Table Created with Default Columns
1158 Stylus Studio User Guide

Working with Report Components
Finally, Figure 536 shows a table that was created manually using the Report menu.
Notice that it does not have the loop symbol associated with repeating rows.

Sorting

By default, data for dynamic rows is displayed in document order. You can use an XPath
expression in the Loop property’s Sort sub-property to specify a different sort order. The
Loop property appears on the Row tab of the Properties window.

Adding Rows and Columns

◆ To add rows and columns to a table:

1. Select the cell before or after which you wish to add a row or column.

2. Right-click.

Stylus Studio displays a short-cut menu.

Alternative: Click the Report > Table menu.

3. Select the appropriate choice from the menu.

Deleting Rows, Columns, and Tables

◆ To delete a row, column, or table:

1. Select a cell in the row or column you want to delete.

2. Click the Delete button in the toolbar ().

Stylus Studio displays a drop-down menu.

Alternative: Right-click.

Alternative: Click the Report > Table menu.

3. Select the appropriate choice from the menu.

Figure 536. Manually Created Table
Stylus Studio User Guide 1159

Publishing XML Data
Lists
A list is visual component that iterates over the data it contains and contains one or more
items. You typically create a list when you want your report to display a list of dynamic
values – all the books, by title, in the books.xml document, for example.

Lists are formatted using bullets, but you can choose numeric, alphabetic, and other
symbols like squares and circles. Depending on your needs, you might prefer to use the
repeater or table components for dynamic data. See “Repeaters” on page 1166 and
“Tables” on page 1157 for more information.

Creating a List

The easiest way to create a list in XML Publisher is to drag and drop a repeating element.
When you drop the repeating element on the canvas, Stylus Studio displays a short-cut
menu with an Insert List choice. The list’s context and XPath are set based on the
repeating element used to create it. You specify the data you want the list to contain by
dragging the appropriate node from the data sources panel and dropping it in the list as
Value.

You can also create a list manually (Report > Insert > List, or select Insert List from the
canvas short-cut menu). When you create a list like this, however, the context and XPath
are not set for you, and it will iterate over the data you specify only if you also define the
Loop context and Xpath properties for an item.

Figure 537. Example List and Output
1160 Stylus Studio User Guide

Working with Report Components
Graphical Representation

As shown in Figure 537, a list is represented as a bounding box drawn with a dashed line
containing a bullet symbol and, usually, a loop symbol (). If you created the list
manually, the loop symbol appears only if you specify the Loop property’s Context and
XPath sub-properties for an item.

Sorting

By default, data for dynamic lists is displayed in document order. You can use an XPath
expression in the Loop property’s Sort sub-property to specify a different sort order.

Adding Items

◆ To add items to a list:

1. Select the item before or after which you wish to add a new item.

2. Right-click.

Stylus Studio displays a short-cut menu.

Alternative: Click the Report > List menu.

3. Select the appropriate choice from the menu.

Deleting an Item or a List

◆ To delete an item or a list:

1. Select the item or list you want to delete.

2. Click the Delete button in the toolbar ().

Stylus Studio displays a drop-down menu.

Alternative: Right-click.

Alternative: Click the Report > List menu.

3. Select the appropriate choice from the menu.
Stylus Studio User Guide 1161

Publishing XML Data
Text
A text component is a block that allows you to create an area for text that can be formatted
independently from the body text in a report. The text component in Figure 538 has been
formatted using a crimson italic font, which differs from the default body text that
precedes and follows it.

Text components and body text have the same properties (Alignment, Font, Color, Size,
and so on).

Creating a Text Component

◆ To create a text component:

1. Click the canvas where you want to insert the text component.

2. Select Report > Insert > Text from the menu.

Alternative: Right-click and select Insert Text from the short-cut menu.

Graphical Representation

In the XML Publisher canvas, a text component is represented, when selected, as a
bounding box drawn with a dashed line. If the text component is not selected, the
bounding box does not appear.

Figure 538. Body Text and Text Component
1162 Stylus Studio User Guide

Working with Report Components
Images
An image is a component that contains a GIF, JPEG, or some other graphic file. You can
place image components within other components (like tables, lists, and repeaters, for
example), or directly on the report body.

Creating an Image

◆ To create an image component:

1. Click the canvas where you want to insert the image component.

2. Select Report > Insert > Image from the menu.

Alternative: Right-click and select Insert image from the short-cut menu.

3. Specify the location of the image file(s). See “Specifying an Image Source” on
page 1164 for more information.

Graphical Representation

In the XML Publisher canvas, an image is represented as a small square with a cross-
hatched pattern. Figure 539 shows an image component that includes some text to its right
– (photo of the author).

Images are resolved when you preview the report only if the image files are accessible to
Stylus Studio using the source information you have specified. Unresolved images are
rendered as red Xs, as shown in Figure 540:

Note The location of all image files must be specified relative to the target destination of
the HTML+CSS or XSL-FO. For example, do not specify c:\myFiles\images as a
source directory unless that directory is accessible to the finished report.

Figure 539. Image (with text)

Figure 540. Symbol for Unresolved Image in Preview Window
Stylus Studio User Guide 1163

Publishing XML Data
Specifying an Image Source

You can use static and dynamic images in a report. A static image is one that never
changes. An example of a static image is a corporate logo that appears in a fixed place on
a report. To specify a static image, just the complete file URL in the image’s Source
property – file://c:\MyProjects\StylusLogo.gif, as shown in Figure 541.

A dynamic image is one whose source changes based on the context defined for it. An
example of a dynamic image is the cover art for the movies in the videos.xml document
– the image varies based on the video id as determined by the current context.

To specify a dynamic image, you need to define the image component’s Source
property’s Context and XPath sub-properties:

● Context – defines the document context for the evaluation of the Source property’s
XPath sub-property. This can be a source document URL, or a variable.

● XPath – an XPath expression used to evaluate the source document; the context for
the XPath expression is determined by the Context sub-property. This can be any
XPath expression.

When you specify these properties, Stylus Studio displays <dynamic> in the Source
property field.

Example: Specifying a Dynamic Image Source

The cover art for the movies in the videos.xml document are written to the
\examples\VideoCenter\images\video\ directory where you installed Stylus Studio. The

Figure 541. Example of a Static Image

Note Regardless of whether you are using static or dynamic images, the image source must be
available to the finished HTML+CSS or XSL-FO report.
1164 Stylus Studio User Guide

Working with Report Components
name of each .gif file is the same as the value of the id attribute of the video repeating
element. We want to create a simple table displaying the movie’s title and its cover art, as
shown in Figure 542.

To create this report in XML Publisher, we would:

1. Create a table by dragging the video repeating element and dropping it on the canvas.
This establishes the context for the cells in the table, as well as creating a value,
$video, that represent this context.

2. Drag and drop the title element in the table’s first cell (as a value).

3. Right-click and insert an image component in the table’s second cell.

4. Specify the context for the image:

a. Change the image component’s Context sub-property to $video. The context for
this variable (result/videos/video) was established automatically when we used
the video repeating element to create the table.

b. Change the image component’s XPath sub-property to concat(@id)”.gif”. This
concatenates the value of the current id attribute with the string .gif to identify
image file to display. The source for these image files is specified in the following
step.

Figure 542. Example of Dynamic Images
Stylus Studio User Guide 1165

Publishing XML Data
5. Specify the source for the image files – change the body component’s Base URI
property to c:\Program Files\Stylyus Studio\examples\VideoCenter\images
\video\, or wherever you have installed Stylus Studio.

Specifying Image Size

By default, Stylus Studio displays the image in the finished report using the source file’s
dimensions. You can use the image component’s Width and Height properties to specify
a different size. When you do this, Stylus Studio changes the dimensions of the image
glyph (see Figure 539) on the canvas to reflect the change.

Repeaters
A repeater is a component that iterates over data in a data source based on the context
defined for it. When the report is executed, a new line is added to the report for each new
value. These lines are not formatted in any way, so, depending on your needs, you might
prefer to use the list or table components for repeating data. See “Lists” on page 1160 and
“Tables” on page 1157 for more information.

Creating a Repeater

The easiest way to create a repeater in XML Publisher is to drag and drop a repeating
element. When you drop the repeating element on the canvas, Stylus Studio displays a
short-cut menu with an Insert Repeater choice. The repeater’s context and XPath are set
based on the repeating element used to create it. You specify the data you want the
repeater to contain by dragging the appropriate node from the data sources panel and
dropping it in the repeater as Value.

You can also create a repeater manually (Report > Insert > Repeater, or select Insert
Repeater from the canvas short-cut menu). When you create a repeater like this, however,
the context and XPath are not set for you, and it will iterate over the data you specify only
if you also define the Loop context and Xpath properties for an item.
1166 Stylus Studio User Guide

Working with Report Components
Graphical Representation

In the XML Publisher canvas, a repeater is represented as a bounding box drawn with a
dashed line, usually with a loop symbol () on the left side of the bounding box.
Figure 543 shows a repeater based on the title element in videos.xml. It was created by

1. Dragging the video repeating element on the canvas and selecting Insert Repeater
from the short-cut menu.

This action defines the context for the iterative action.

2. Dragging the title element and dropping it inside the repeater.

This action defines the data to be included in the repeater.

The loop symbol is present only if the repeater’s Loop property has values specified for
its Context and XPath sub-properties. You can specify these properties manually in the
Properties window, but it is usually easier to create the repeater by dragging a repeating
element, dropping it on the canvas, and choosing Insert Repeater.

Sorting

By default, data for the repeater component is displayed in document order. You can use
an XPath expression in the Loop property’s Sort sub-property to specify a different sort
order.

Ifs
An if is a component that represents a condition (if... then... else...). You can use if
components to control report content. You can insert if components within other
components (within a table cell, for example).

Creating an If

The easiest way to create an if component in XML Publisher is to select Report > Insert
> If from the Stylus Studio menu, or select Insert If from the canvas short-cut menu.

The if component’s context is established automatically only if you insert within another
component – such as a table or list – whose context is already set. The if component does
not inherit its context from the body component.

Figure 543. Repeater with a Text Value
Stylus Studio User Guide 1167

Publishing XML Data
Graphical Representation

In the XML Publisher canvas, an if component is represented as two tabs, true and false,
within a bounding box drawn with a dashed line. Figure 544 shows an empty if
component.

Example

We need to create a report that contains a simple table that lists the title and rating for all
movies in the videos.xml document. In addition, if the movie carries an ‘R’ rating, we
want to display the R-rated symbol () for emphasis. A sample of the report is

To create this report in XML Publisher, we would:

1. Create a table by dragging the video repeating element and dropping it on the canvas.
This establishes the context for the cells in the table.

2. Drag and drop the title element in the table’s first cell (as a value).

Figure 544. If Component

Figure 545. Example of an If Component
1168 Stylus Studio User Guide

Working with Report Components
3. Right-click and insert an if component in the table’s second cell.

4. Select the if component and click the If tab in the Properties window.

5. Set the Condition property to rating=’R’.

6. Specify the true condition:

a. Select the true tab.

b. Right-click and select Insert Image.

c. Set the image component’s Source property to the location of the image we want
to display for R-rated movies (c:\MyProjects\images\r_rating.gif, for
example).

7. Specify the false condition:

a. Select the false tab.

b. Drag the rating node from the data sources panel and insert it as a value.

Figure 546. Setting the True Condition

Figure 547. Setting the False Condition
Stylus Studio User Guide 1169

Publishing XML Data
Component Properties
Each component in a report – the body, tables, lists, repeaters, and so on – is associated
with a set of properties that control its formatting and content. The text component has
properties for Color, Font, Size, and so on. The Color property, for example, lets you
select aqua, bisque, blue, and so on. Properties vary based on the component. (See
“Properties Reference” on page 1192 for a complete list.)

Context and XPath Sub-Properties

Each property has Context and XPath sub-properties that let you define the conditions
under which you want to, say, display a value or apply a given formatting characteristic.
You can use the Color property’s Context and XPath sub-properties to format text based
on the value returned by an XPath expression – format all ‘R’ rated movies in videos.xml
using the color red, for example. (See “Example: Using Context and XPath Sub-
Properties to Format Text” on page 1171 later in this section for an illustration of this
technique.)

The Properties Window

Component properties are displayed in the Properties window, a dockable window you
can place anywhere on your desktop.

◆ To display the Properties window, click View > Properties

Figure 548. Properties Window
1170 Stylus Studio User Guide

Working with Report Components
The Properties window consists of one or more tabbed pages. The specific tabs that are
present in the Properties window vary based on the component you have selected in the
report canvas. As shown in Figure 548, the Properties window for the rating element in
the video table includes tabs for the

● The context and XPath expression that return the dynamic value of the rating
element

● Text value

● Cell

● Column

● Row

● Table

The order of the tabs in the Properties window reflects the hierarchy of the currently
selected component, from the most specific (the currently selected component) to the
most general (the parent component to which it belongs), left to right. The report body has
Document, Decimal Format, and Text tabs that let you control global formatting
characteristics.

Example: Using Context and XPath Sub-Properties to Format Text

Our report contains a table based on the video element from videos.xml; the table lists the
movie title and rating. When we preview the report, we see that if a movie’s rating is ‘R’
the rating is displayed in red, while other movie ratings are displayed using the default
color, as shown next.
Stylus Studio User Guide 1171

Publishing XML Data
If we look at the properties for the rating element, we can see how this was achieved.

As you can see, Default Color property is specified as <dynamic>. Stylus Studio sets the
Default Color property to this value automatically when you specify

● A context for the evaluation of an XPath expression defined in the XPath property.
Here, the context is $video. Stylus Studio created this variable, which represents the
videos.xml document, when we created the table using the video repeating element
from this document.

● An XPath expression to be evaluated in the context defined by the Context property.
Here, the XPath expression is if (rating = 'R') then "red" else "".

Figure 549. Preview of an XML Publisher Report

Figure 550. Properties for the Rating Element
1172 Stylus Studio User Guide

Working with Report Components
Together, these properties control when data from the rating element in the videos.xml
document is set to the color red.

Entering XPath Expressions

You can enter an XPath expression by typing directly in the XPath field. If you prefer,
you can use the XPath Editor dialog box, shown in Figure 551.

The XPath Editor dialog box supports Stylus Studio’s Sense:X auto-completion and text
coloring, which can provide useful prompts as you type your XPath expression.

◆ To display the XPath Editor dialog box:

1. Click the XPath entry field for the property you want to define.

The text cursor and a “more” button appear in the field.

2. Click the “more” button.

Stylus Studio displays the XPath Editor dialog box.

Figure 551. XPath Editor Dialog Box

Figure 552. Opening the XPath Editor Dialog Box
Stylus Studio User Guide 1173

Publishing XML Data
Formatting Components
Formatting in XML Publisher works in a fashion similar to that of formatting in many text
and graphical editors – you select the item you want to format and then apply a style from
a tool bar, menu, or palette. An item can be

● One or more words

● A component like a list or table

● A glyph representing data

As described later in this section, the effect of applying a style varies based on where and
how you apply it.

Formatting Numbers

XML Publisher provides special features for formatting decimal numbers. See
“Formatting Decimal Numbers” on page 1179.

Styles

Styles include font, background and foreground (that is, text) color, size, and alignment.
For a complete list of available styles, see “Text Properties” on page 1197.

Ways to Apply Styles

There are several ways to apply styles to items in XML Publisher reports. You can use

● The tool bar, which is located above the XML Publisher canvas

Figure 553. XML Publisher Formatting Tool Bar
1174 Stylus Studio User Guide

Working with Report Components
● The Report and short-cut menus

● The Properties window

Each of these methods behaves in a similar fashion in that they apply a style to the
currently selected item. The Properties window, however, is slightly different – in
addition to applying a stlye, it sets the default for the component that currently has focus.
See “Setting Default Properties” on page 1178 for more information.

Formatting Influenced by Component Hierarchy

Since all components in a report occur within the context of the body component, any
formatting you perform to the body component affects every component it contains –
every table, list, text component, and so on – unless that component has a default value
for the same format property specified on the Properties window. Put another way, any

Figure 554. Format Choices on Short-Cut Menu

Figure 555. Format Properties
Stylus Studio User Guide 1175

Publishing XML Data
formatting applied to a parent component affects all of its children unless that child has a
default value specified for it.

Consider the following example report, which shows an introductory sentence (body text)
and a list of book titles (list component).

All of the report’s components are displayed using the XML Publisher default settings for
the body component, as seen in the toolbar (font is Arial, size is 10, non-bold, non-italic,
no underline, and so on).

Figure 556. Default Format Settings
1176 Stylus Studio User Guide

Working with Report Components
If we now click the Bold button on the toolbar, all of the report’s text, including the list
component items, is rendered in bold – the list component is a child of the body
component, so all formatting done to the body cascades to the list as well.

Notice that the values in the Properties window have not changed – although we have
changed some of the formatting characteristics for the body component, we have not set
any of its default values.

Next, we select just the title value glyph and click the Italic button.

Figure 557. Using the Bold Tool to Format the Entire Report

Figure 558. Using the Italic Tool to Format Only Data Values
Stylus Studio User Guide 1177

Publishing XML Data
Notice that the label in the value glyph has been italicized. And when we preview the
report, we see that the text representing each data value (each book’s title element)

● Retains the formatting established for the body (bold)

● Includes the formatting specified just for it (italic)

The value glyph has a format state separate from the body, and this state is reflected in
both the glyph (the label is italicized) and the tool bar (when the glyph is selected, the
italic tool in the tool bar s highlighted).

Setting Default Properties

Default properties allow you to specify formatting for a child component that differs from
that of its parent components. These settings remain in effect regardless of how the
formatting for its parents changes. Return to the example illustrated in Figure 558 – all of
the report’s text is bold (we formatted the body component using the bold tool), and the
list text is also italic (we formatted the title value glyph).

If we do not want the list text to appear in bold, we need to establish a default for it –
otherwise, it will continue to inherit the bold setting from its parent, the body component.
So, as shown in Figure 559, we click the glyph to give it focus, and then change the
Default Bold setting to Normal.

Clearing Formats

You can clear formats you have applied using the Clear Styles button () on the tool bar
or the Report (Report > Text > Clear Styles) or short-cut menus. Format properties are

Figure 559. Default Settings Take Precedence
1178 Stylus Studio User Guide

Working with Report Components
removed (or cleared) in the same way that they were applied – that is, on a component-
by-component basis. For example, if the body component text was italic, when you
cleared the formatting the body component text would be returned to its original state.
Clear removes all formatting, regardless of whether or not the XML Publisher report was
last saved.

◆ To clear formatting:

1. Select the report component whose formatting you want to remove.

2. Click the Clear Styles button ().

Alternatives: Select Report > Text > Clear Styles from the menu, or select Clear
Styles from the short-cut menu (right-click).

The formatting is removed from the component you selected. Default settings are not
affected.

Formatting Decimal Numbers
XML Publisher allows you to define formatting characteristics for the decimal numbers
displayed in a report. For example, you might want to specify that all dollar values
displayed in a report end with two decimals, thus $10 would be formatted as $10.00,
$21.72 as $21.72, $99 as $99.00, and so on.

Formatting decimal numbers is a two-step process:

1. Specify the formatting you want to use – which character you want to use as the
decimal separator, for example.

2. Specify the pattern, called a picture string, you want the decimal numbers in your
report to match in order for this format to be applied.

Formatting for decimal numbers is specified for the report body and affects all decimal
numbers in a report for which you have specified a picture string. Formatting applies only
to dynamically generated values – the total value of an order, for example – and not to any
numbers that you type by hand as body text or in a text component.

Note Clearing formats does not affect a component’s default property settings.
Stylus Studio User Guide 1179

Publishing XML Data
Where You Specify Decimal Number Formats

You specify the formats for decimal numbers on the Decimal Format tab of the XML
Publisher Properties window, shown here:

For example, if you want decimal values to be separated by a comma (,) instead of a
period (.), you would enter a comma in the Value field for the Decimal Separator property.
Default values are used for any properties that you do not specify. See Table 176,
“Decimal Format Properties” on page 1193 for more information.

In addition to defining the format of the decimal numbers in your reports, the properties
on the Decimal Format tab also affect the values you can use to define your picture string.
For example, the Digit property defines the character that you use to define digits in the
picture string. Its default value is the number character (#). Similarly, the Decimal
Separator property defines the character used to separate decimal values; its default value
is the period character (.). If you want to use values other than these in your picture strings,
you must be sure to specify them on the Decimal Format tab.

Where You Specify Picture Strings

As mentioned earlier in this section, a picture string represents a pattern for number
strings. An example of a picture string might be #,###.00. Number strings that match the
picture string you define are formatted using values you specify on the Decimal Format
tab.

You specify the picture string in the Format property on the Dynamic Value tab for the
report component – the Price node, in the following illustration – whose number strings
you want to format. You must specify a picture string for any number strings you want
formatted using the values you define on the Decimal Format tab. If you do not specify a

Figure 560. Decimal Format Tab in the XML Publisher Properties Window
1180 Stylus Studio User Guide

Working with Report Components
picture string, no formatting is applied to the number string and it is rendered in the
finished report as-is.

Values entered for the Format property must conform with the rules described in the
XSLT specification: http://www.w3.org/TR/xslt20/#dt-picture-string.

Example

We are producing reports for consumption by a European audience. This audience is
accustomed to seeing monetary values represented using the period (.) as the grouping
separator (for thousands, for example), and the comma (,) used as the decimal separator.
Thus, for example, a monetary typically displayed in North America as 4,230.95 needs to
be rendered as 4.230,95 for this report.

To satisfy this report requirement:

1. In XML Publisher, display the Properties window.

2. Click the Decimal Format tab.

3. In the Decimal Separator property Value field, enter a comma (,).

4. In the Grouping Separator property Value field, enter a period (.).

Figure 561. Dynamic Value Tab
Stylus Studio User Guide 1181

http://www.w3.org/TR/xslt20/#dt-picture-string

Publishing XML Data
When we have finished, the Properties window looks like this:

Next, we need to define the picture string for the decimal number we want to format
using these characters.

5. In the XML Publisher canvas, select the glyph that represents the decimal number. In
this example, it is the node for book price.

6. In the Properties window, click the Dynamic Values tab.

7. In the Value field for the Format property, specify the following picture string:
#.###,00. The pound sign (#) is the default character used to represent digits in a
picture string; the zeroes after the decimal separator instruct the XML Publisher to
use “00” unless another value is present in the number string, so 82 is represented as
“82,00”. If we had specified the picture string as #.###,##, no decimal value would
be represented in the report because none was present in the number string, so 82
would be represented as “82,”.

Generating Code for an XML Publisher Report
Once you have built and previewed your report in XML Publisher, you can generate
XSLT or XQuery code for it. The generated code includes all the instructions necessary
to create the report you composed in XML Publisher in the format (HTML or PDF) you
selected when creating the report.

Figure 562. New Values Assigned for Decimal Formats

Tip When you preview the XSLT or XQuery code generated by XML Publisher, the result
displayed in the Preview window should look the same as the preview of the XML
Publisher report.
1182 Stylus Studio User Guide

Generating Code for an XML Publisher Report
Supported Transformation Languages
The code generator for XML Publisher supports these transformation languages:

● XSLT 1.0

● XSLT 2.0

● XQuery 1.0

You select the language, as well as a target for the output file, on the Generate
Transformation dialog box:

Sources
As described in “Working with Data Sources” on page 1135, if you plan on generating
XSLT for your XML Publisher report you must have specified at least one default source.
(Sources are not required for generating XQuery, though it is considered good practice to
specify one.)

Additional Sources

You can specify multiple sources for an XML Publisher report. The first source is
specified in the XSLT/XQuery Scenario Properties dialog box as shown in the following
table.

Figure 563. Generate Transformation Dialog Box

Table 174. How Additional Source Documents Are Referenced

Language Type Scenario Property Referenced in Generated Code As

XSLT Source XML URL A global parameter:
xsl:param name=”input1”

XQuery Main Input An external variable:

declare variable $input1 as
document-node() external
Stylus Studio User Guide 1183

Publishing XML Data
The expression associated with these variable names is displayed on the Parameter
Values page of the Scenario Properties dialog box, like the one shown for XQuery
scenarios in Figure 564.

As you can also see, Figure 564 shows how data sources specified in XML Publisher are
represented in the XQuery (and XSLT) editor. This XQuery uses three XML sources:

● videos.xml (it is the default source)

● A relational source from the pubs data base

● A local copy of books.xml, displayed on the XQuery data sources panel using the
variable name, $input1, with which it is associated

More About Relational Sources

Relational sources, like the one shown in Figure 564, are referenced in different ways by
XSLT and XQuery:

● XSLT code references relational data sources within a document() function:
document('xquery:///jdbc:xquery:sqlserver://ntstylus-
dev:1433;table=companies;user=sa;xmlforest=true;schema=dbo;DatabaseName=
pubs;urltype=.xml')"

● XQuery code references relational data sources using the collection() function:

Figure 564. Additional Sources Displayed on XQuery (XSLT) Scenario Properties
1184 Stylus Studio User Guide

Generating Code for an XML Publisher Report
collection('pubs.dbo.companies')/companies/ticker

See “Working with Relational Data Sources” on page 889 for more information.

How to Generate Code

◆ To generate code for an XML Publisher report:

1. Preview the XML Publisher report. If it is satisfactory, continue with this procedure.

2. Click the Generate button.

Alternative: Select Report > Generate from the menu.

Stylus Studio displays the Generate Transformation dialog box.

3. Use the Transformation Language field to specify whether you want to use XSLT
1.0, XSLT 2.0, or XQuery 1.0.

4. The default URI for the generated XSLT or XQuery code is displayed in the Save Into
field. Unless you specify otherwise, Stylus Studio uses the .report file name for the
.xsl or .xquery file name.

5. Click OK.

Figure 565. Generate Transformation Dialog Box
Stylus Studio User Guide 1185

Publishing XML Data
Example: Building an XML Publisher Report
In this example, we will build a simple XML report based on videos.xml. This XML
document is in the VideoCenter folder of the examples project.

This section covers the following topics:

● “Getting Started” on page 1186

● “Insert and Populate a Table” on page 1186

● “Simple Table Formatting” on page 1188

● “Format Data Conditionally” on page 1189

● “Generate the Code” on page 1191

Getting Started
In this part of the procedure, we create a new XML Publisher report and specify a data
source.

◆ To get started:

1. Select File > New > XML Report from the Stylus Studio menu.

Stylus Studio displays the XML Report Format dialog box.

2. Choose XHTML+CSS if it is not already selected, and click OK.

Stylus Studio displays the XML Publisher Editor.

3. If the Project window is not already open, open it (View > Project Window).

4. Drag videos.xml from the VideoCenter folder to the data sources panel in the XML
Publisher Editor.

Insert and Populate a Table
Next, we add a table based on the video repeating element and populate its columns.

1. Expand the videos node.

2. Drag the video repeating element from the data sources panel and drop it on the XML
Publisher canvas.

3. Select Insert Table > Empty from the short-cut menu.
1186 Stylus Studio User Guide

Example: Building an XML Publisher Report
Stylus Studio creates a three-column table. At this point, the XML Publisher Editor
should resemble Figure 566:

Although the table currently contains no values, if you mouse over the repeating
glyph at the left of the table () you will see that it references the videos.xml
document and that the current XPath expression evaluates the video repeating
element (/result/videos/video).

4. Right-click any cell in the table and select Remove Column from the short-cut menu.

5. Expand the video node in the data sources panel.

6. Drag the title node and drop it in the first column; select Insert Value from the short-
cut menu.

A value glyph with the element name appears in the cell.

7. Repeat this step with the rating element, dropping it in the second column.

8. Right-click the table again, and select Add Row Before.

Stylus Studio adds a new row to the table. Note that the new row does not repeat – the
repeating glyph is associated only with the second row, the row that contains the data.

9. Type Title in the first column and Rating in the second.

Figure 566. Default Table in New XML Publisher Report
Stylus Studio User Guide 1187

Publishing XML Data
10. Click Preview ().

Stylus Studio creates a three-column table. At this point, your XML Publisher Editor
should resemble this:

11. Click the Hide docked window button (the small X) to close the Preview window.
This gives us more room to work, and Stylus Studio will automatically display the
Preview window the next time we preview the report.

Simple Table Formatting
In this section, we will perform some simple formatting to make the table more
presentable. We will start by making the column headings, Title and Rating, bold.

1. First, click the Show Text Symbols button () in the toolbar.

This removes text symbols (like spaces and paragraph markers) from the canvas,
which can make the canvas easier to work with while you build the report.

2. Click anywhere in the cell containing the Title string.

3. Click the Bold tool on the toolbar ().

The Title string appears bold in the canvas.

4. Make the Rating string bold.

Figure 567. Preview of XML Publisher Report
1188 Stylus Studio User Guide

Example: Building an XML Publisher Report
Next, we want to adjust the width of the first column, so the ratings appear closer to
the title.

5. Click either of the rows in the table’s first column.

6. Click the Column tab in the Properties window. (If the Properties window is not
displayed, select View > Properties from the Stylus Studio menu.)

7. Enter 40% for the Width property.

8. Click Preview ().

The Preview window displays the changes.

Format Data Conditionally
The last action we will perform on the table is to write an XPath expression to display the
‘R’ rating for movies in a bold red.

1. Click the rating glyph.

2. In the Properties window, expand the Default Color property.

3. Click the XPath field, and then click the “more” button ().

Stylus Studio displays the XPath Editor dialog box.

Figure 568. Changes to the Report’s Table
Stylus Studio User Guide 1189

Publishing XML Data
4. Type the following XPath expression:
if (rating = 'R') then 'red' else ""
Notice Stylus Studio’s Sense:X auto-completion and text coloring as you type.

5. Click OK.

6. Next, use the same process to enter this XPath expression for the Bold property:
if (rating = 'R') then 'bold' else ""

7. Click Preview ().

Our report now looks like this:

Figure 569. XPath Editor Dialog Box

Figure 570. Finished Example Report
1190 Stylus Studio User Guide

Example: Building an XML Publisher Report
Generate the Code
Once the report is finished, we can generate XSLT or XQuery code to produce a report.

1. Click the Generate button on the toolbar.

Stylus Studio displays the Generate Transformation dialog box.

We want to use XSLT to generate our report, so we do not need to change the values
for Document Type or Transformation Language.

2. The default name for the .xsl file is based on the .report file name. We change
Untitled1.xsl to myMovieRatings.xsl and click OK.

Stylus Studio opens the generated XSLT in the XSLT Editor, as shown in Figure 572.

Figure 571. Generate Transformation Dialog Box

Figure 572. XSLT Generated from the XML Publisher Report
Stylus Studio User Guide 1191

Publishing XML Data
3. If we preview the XSLT, we see the same results as when we previewed the report in
XML Publisher.

Properties Reference
This section contains reference information for the report component properties displayed
in the Properties window. Where appropriate, properties are grouped by component – the
section “Table Properties” on page 1195 has subsections for row and column properties,
for example. The text property is associated with many components, as well as being a
component in its own right. It has its own subsection (“Text Properties” on page 1197).

This section is organized as follows:

● “Context and XPath Sub-Properties” on page 1193

● “Body Properties” on page 1193

● “Table Properties” on page 1195

● “List Properties” on page 1197

● “Text Properties” on page 1197

● “Repeater Properties” on page 1198

● “If Properties” on page 1199

● “Image Properties” on page 1199

● “Dynamic Value Properties” on page 1199

Figure 573. Preview of the XSLT Generated by XML Publisher
1192 Stylus Studio User Guide

Properties Reference
Context and XPath Sub-Properties
All of the properties in this section have Context and XPath sub-properties. They are
described in “Component Properties” on page 1170. In addition, some properties (ifs and
repeaters, for example) have sub-properties that are unique to them. Unique sub-
properties are described with the property to which they pertain.

Body Properties
Body properties affect all other components in an XML Publisher report unless they have
their own format settings specified for them. Body properties are displayed on these tabs
– Document, Decimal Format, and Text.

Table 175. Document Properties

Property Description

Base URL Base URL used for HTML links and image resolution.

Background Sets the background color for the report.

Table 176. Decimal Format Properties

Property Description

Zero Digit The character used as the digit zero. The default is the digit zero (0).

Digit The character used for a digit in the picture string. The default is
number sign character (#).

Decimal Separator The character used for the decimal sign. The default is the period
character (.).

Grouping Separator The character used as a grouping (thousands, for example)
separator. The default is the comma character (,).

Pattern Separator The character used to separate positive and negative sub-pictures in
a picture string. The default is the semi-colon character (;).

Minus Sign The character used as the default minus sign. The default is the
hyphen-minus character (-, #x2D).
Stylus Studio User Guide 1193

Publishing XML Data
Percent The character used as a percent sign. The default is the percent
character (%).

Per mille The character used as a per mille sign. The default is the Unicode
per-mille character (#x2030).

Infinity The string used to represent infinity. The default value is the string
“Infinity”.

NaN The string used to represent the NaN value. The default is the string
“NaN” (not a number).

Table 177. Text Properties

Property Description

Alignment Aligns body content along left margin, right margin, or in the center.
Default is None.

Font Sets the font for body contents. If no value is specified, Stylus Studio
uses the font specified in the toolbar.

Size Sets the font size for body contents. If no value is specified, Stylus
Studio uses the font size specified in the toolbar.

Color Sets the font color for body contents. If no value is specified, Stylus
Studio uses the value specified by the Foreground Color tool in
the toolbar.

Background Sets the background color for body contents. If no value is specified,
Stylus Studio uses the value specified on the Document tab.

Bold Sets the body content to bold. If no value is specified, Stylus Studio
uses the value specified by the Bold tool in the toolbar.

Italic Sets the body content to italic. If no value is specified, Stylus Studio
uses the value specified by the Italic tool in the toolbar.

Table 176. Decimal Format Properties

Property Description
1194 Stylus Studio User Guide

Properties Reference
Table Properties
See also:

● “Row Properties” on page 1196

● “Column Properties” on page 1196

● “Cell Properties” on page 1196

● “Text Properties” on page 1197

Underline Sets the body content to underline. If no value is specified, Stylus
Studio uses the value specified by the Underline tool in the toolbar.

Base URL Base URL used for HTML links and image resolution.

Table 177. Text Properties

Property Description

Table 178. Table Properties

Property Description

Component Name The name of the repeating element on which the table is based. This
name appears in the navigation bar glyph that represents the table.
Editable.

Width The table width. If expressed as a percent, the table is drawn relative
to the available page. If expressed as a number, the value is
interpreted in points (pt).

Border The width of the line used to draw the table border, in points (pt).

CellSpacing The amount of space between cells, in points (pt).

CellPadding The amount of space between a cell border and its contents, in points
(pt).

Alignment Aligns cell contents along left border, right border, or in the center.
Default is None.
Stylus Studio User Guide 1195

Publishing XML Data
Row Properties

Column Properties

Cell Properties

Table 179. Row Properties

Property Description

Loop A group of properties (Context, XPath, and Sort) that together
describe how to iterate over a node set. See “Component
Properties” on page 1170.

Sort A sub-property of Loop that allows you to specify, using an XPath
expression, for example, how to sort table rows. If no value is
specified, rows are displayed in document order.

Height The row height in points (pt).

Background The color of the row background. (Set the color of row values using
the Text tab.

Table 180. Column Properties

Property Description

Width The column width in points (pt).

Background The color of the column background.

Table 181. Cell Properties

Property Description

Background The color of the cell background.
1196 Stylus Studio User Guide

Properties Reference
List Properties
See also “Item Properties” on page 1197.

Item Properties

Item properties are the same as Text properties. See “Text Properties” on page 1197.

Text Properties
Text properties are applicable to text components (Insert > Text) as well as to text in other
components (tables, lists, repeaters, and ifs).

Table 182. List Properties

Property Description

Component Name The name of the repeating element on which the list is based. This
name appears in the navigation bar glyph that represents the list.
Editable.

List Type The type of symbol or character you want to use for the list: disk (the
default), circle, decimal, lower-alpha, none, square, and upper-
alpha.

Table 183. Text Properties

Property Description

Alignment Aligns text along left margin, right margin, or in the center. Default
is None.

Font Sets the font for the selected text. If no value is specified, Stylus
Studio uses the font specified in the toolbar.

Size Sets the font size for the selected text. If no value is specified, Stylus
Studio uses the font size specified in the toolbar.

Color Sets the font color for the selected text. If no value is specified,
Stylus Studio uses the value specified by the Foreground Color
tool in the toolbar.
Stylus Studio User Guide 1197

Publishing XML Data
Repeater Properties
See also “Text Properties” on page 1197.

Background Sets the background color for the selected text. If no value is
specified, Stylus Studio uses the value specified by the
Background Color tool in the toolbar.

Bold Sets the selected text to bold. If no value is specified, Stylus Studio
uses the value specified by the Bold tool in the toolbar.

Italic Sets the selected text to italic. If no value is specified, Stylus Studio
uses the value specified by the Italic tool in the toolbar.

Underline Sets the selected text to underline. If no value is specified, Stylus
Studio uses the value specified by the Underline tool in the toolbar.

Table 183. Text Properties

Property Description

Table 184. Repeater Properties

Property Description

Loop A group of properties (Context, XPath, and Sort) that together
describe how to iterate over a node set. See “Component
Properties” on page 1170.

Sort A sub-property of Loop that allows you to specify, using an XPath
expression, for example, how to sort the items in the repeater. If no
value is specified, items are displayed in document order.

Direction The way in which the data values that make up the repeater’s items
will be added to the report – vertical (in a list), or horizontal (in a
row). The default is Vertical.
1198 Stylus Studio User Guide

Properties Reference
If Properties
See also “Text Properties” on page 1197.

Image Properties

Dynamic Value Properties
See also Table 176, “Decimal Format Properties” on page 1193.

Table 185. If Properties

Property Description

Condition An XPath expression used to define the condition. Actions based on
this condition are specified on the If glyph’s true and false tabs.

Table 186. Image Properties

Property Description

Width The image width in points (pt).

Height The image height in points (pt).

Source The location of the image file to be displayed in the report. This can
be an absolute path, or a relative path specified in conjunction with
the Body component’s Base URL property.

Alignment Aligns the image relative to the page – left, right, or in the center.
Default is None.

Table 187. Dynamic Value Properties

Property Description

Format Allows you to specify a picture string for numbers (#,###.##, for
example). Number strings that match this picture string are
formatted using values you specify on the Decimal Format tab. All
numbers in a report are formatted using the values specified there.

Values entered for the Format property must conform with the rules
described in the XSLT specification:
http://www.w3.org/TR/xslt20/#dt-picture-string
Stylus Studio User Guide 1199

http://www.w3.org/TR/xslt20/#dt-picture-string

Publishing XML Data
1200 Stylus Studio User Guide

Chapter 16 Integrating with Third-Party File Systems
Stylus Studio is fully integrated with Raining Data® TigerLogic® XML Data
Management Server (TigerLogic XDMS).

This chapter describes how to work with this file system in Stylus Studio.

Using Stylus Studio with TigerLogic XDMS

This section describes how to use Stylus Studio with the TigerLogic XDMS file system
and covers the following topics:

● “Overview” on page 1202

● “Connecting to TigerLogic XDMS” on page 1203

● “Using Documents Stored on TigerLogic XDMS” on page 1205

● “Creating Collections” on page 1206

Integration with TigerLogic XDMS is available only in Stylus Studio XML
Enterprise Suite.

Integration with the TigerLogic XDMS file system is available only in Stylus Studio
XML Enterprise Suite.
Stylus Studio User Guide 1201

Integrating with Third-Party File Systems
Overview
Stylus Studio can read and write well-formed XML documents (.xml, .xsl, and so on)
from/to TigerLogic XDMS collections. In Stylus Studio, you reference external files
using a URL. The URL used to access TigerLogic XDMS files is
tig://server:port/database_ name/collection_name/file_name.xml:

● tig is the prefix that specifies that files will be read from TigerLogic XDMS

● server:port is the server name that hosts the TigerLogic XDMS file system; the port is
the port used to connect to the server

● database_name is the name of the TigerLogic XDMS database you want to access

● collection_name is the name of the TigerLogic XDMS collection associated with the
document you want to open

● file_name.xml is the name of the XML document you wish to access within that
collection

For example, to access the auction.xml document in mycollection, you might enter the
following in the URL field of the Stylus Studio Open dialog box:

tig://ntstylus-dev:3408/mydb/mycollection/auction.xml

Note Stylus Studio treats collections very much like directories, and the XML documents
stored within a collection are treated like files within a directory.

You can save files back to the same collection from which they were read, or to some other
file system (your local machine, for example). You can create new collections.

TigerLogic XDMS Version Support

Stylus Studio supports TigerLogic XDMS Version 2.6.

Note You can use a TigerLogic XDMS URL to open an XML document anywhere you can
specify URLs in Stylus Studio. For example, you can use the TigerLogic XDMS URL to
specify the source document for XQuery Mapper and then process the XQuery using the
TigerLogic XDMS XQuery processor.
1202 Stylus Studio User Guide

Using Stylus Studio with TigerLogic XDMS
Connecting to TigerLogic XDMS
The TigerLogic XDMS file system is accessible from the

● Open dialog box

● File Explorer window

In addition, if you know the file system URL for a specific TigerLogic XDMS database,
you can enter it in a URL field (in the Open dialog box, for example) and connect to the
file system in that fashion.

What Happens When You Connect

When you connect to the server hosting TigerLogic XDMS, Stylus Studio caches the
information used to establish the connection – host name and port, username, and
password – for the duration of the Stylus Studio session. When you exit Stylus Studio, all
connections are dropped. Only the host name and port information is retained to help
simplify subsequent connections.

How to Connect to TigerLogic XDMS

◆ To connect to TigerLogic XDMS:

1. In the File Explorer window, expand the TigerLogic XDMS folder.

Note If a document in Stylus Studio (an XQuery or XSLT, for example) uses a document stored
in a TigerLogic XDMS collection, when you open that document in a subsequent session,
Stylus Studio automatically prompts you for the TigerLogic XDMS connection
information.

Figure 574. TigerLogic XDMS Icon in File Explorer
Stylus Studio User Guide 1203

Integrating with Third-Party File Systems
Alternative: On the Stylus Studio menu, Click File > Open, and then click the
TigerLogic XDMS icon.

Stylus Studio displays the Choose Server dialog box.

2. Complete the Server Name, (server address and port; myServer:3008, for example)
User Name, and Password fields, and click OK.

Stylus Studio connects you to the host specified in the Server name field. Icons
representing the host and the TigerLogic XDMS databases residing on that host
appear in the File Explorer window.

3. Optionally, expand the database folders to view the TigerLogic XDMS collections
stored on that database.

4. Optionally, expand the collection folders to view the XML documents stored there.

Reconnecting

If you lose your connection with the server hosting the TigerLogic XDMS file system,
and a document from a TigerLogic XDMS collection is open, Stylus Studio displays the
Authentication Required dialog box the next time you try to access that document.

This dialog box can appear, for example, when you

● Re-start Stylus Studio

● Refresh an XSLT or XQuery that uses an XML document from a TigerLogic XDMS
collection

The Authentication Required dialog box prompts you for the username and password you
used when you first established a connection with the server.

Figure 575. TigerLogic XDMS Icon in Open Dialog Box

Figure 576. Authentication Required Dialog Box
1204 Stylus Studio User Guide

Using Stylus Studio with TigerLogic XDMS
Using Documents Stored on TigerLogic XDMS
XML documents stored on the TigerLogic XDMS file system are available to you in
Stylus Studio once you establish a connection to the server hosting TigerLogic XDMS, as
described in “Connecting to TigerLogic XDMS” on page 1203.

Opening Documents

You can open a document stored in the TigerLogic XDMS file system by dragging it from
the File Explorer window into an open document editor, the document editor tab area, or
some other target. See “Dragging and Dropping Files in the Stylus Studio” on page 135
and “Using the File Explorer” on page 132 for more information. You can also select a
document using the Open dialog box (File > Open).

Saving Documents

When you save a document to the TigerLogic XDMS file system, TigerLogic XDMS first
validates the document to ensure that it is well-formed XML. If the document is well-
formed, the document is saved; otherwise, you receive an error from the TigerLogic
XDMS server.

Auto-Save and Backup Files

Stylus Studio has an option (select Tools > Options from the Stylus Studio menu) that
automatically saves modified documents at an interval you determine (every 10 minutes
is the default). This option is off by default.

The creation of backup files is managed by the TigerLogic XDMS file system. Stylus
Studio does not create .bak files of files saved to the TigerLogic XDMS file system.

Using Documents in XQuery and XSLT

You can use XML documents stored in the TigerLogic XDMS file system as source and
target documents in Stylus Studio XQuery and XSLT. They are treated as any other
document with one exception: when you open a document in Stylus Studio that uses a
document stored in the TigerLogic XDMS file system, Stylus Studio prompts you to
supply authentication information (username, password) before restablishing connection
with the server hosting the TigerLogic XDMS file system.

Tip Use the Stylus Studio well-formedness checker to check your XML documents
before saving them to TigerLogic XDMS.
Stylus Studio User Guide 1205

Integrating with Third-Party File Systems
Creating Collections
You can create new TigerLogic XDMS collections in Stylus Studio.

◆ To create a TigerLogic XDMS collection:

1. Connect to a TigerLogic XDMS server, as described in “Connecting to TigerLogic
XDMS” on page 1203.

2. Open the File Explorer window if it is not already open (View > File Explorer).

3. Right-click the TigerLogic XDMS server instance in which you wish to create the
collection.

4. Select New Folder from the short-cut menu.

A new folder icon appears under the icon for the TigerLogic XDMS server instance
with the default name, New Folder.

5. Edit the default collection name and press Enter.

Alternative:

You can also create a new TigerLogic XDMS collection from the Open dialog box.

1. Connect to a TigerLogic XDMS server, as described in “Connecting to TigerLogic
XDMS” on page 1203.

2. Click the New Folder button on the Open dialog box.
1206 Stylus Studio User Guide

Chapter 17 Extending Stylus Studio
Stylus Studio provides several ways to extend its native functionality. This chapter
describes features that allow you to specify other XML validation engines, and features
that allow you to define and register custom document wizards.

This chapter covers the following topics:

● “Custom XML Validation Engines” on page 1208

● “Custom Document Wizards” on page 1214
Stylus Studio User Guide 1207

Extending Stylus Studio
Custom XML Validation Engines
Stylus Studio supports several XML validation engines, including the MSXML4.0 SAX
Parser, Xerses-J 2.3.0, and .NET XML. The custom validation engine feature lets you
register your own XML validation engine with Stylus Studio. Custom validation engines
are added to the Validate Document drop-down list in the XML Editor once you register
them with Stylus Studio, as shown in Figure 577.

Output for custom validation engines is displayed in Stylus Studio’s Output Window.
Output for other custom applications, such as that created by the custom document
wizard, is also displayed in Stylus Studio’s Output Window.

Figure 577. Validate Document Drop-Down List

Figure 578. Output Window
1208 Stylus Studio User Guide

Custom XML Validation Engines
Registering a Custom Validation Engine
The process of registering a custom validation involves the following steps:

1. Make the necessary custom validation engine available to Stylus Studio.

2. Configure the custom validation engine on the Custom Validation Engines page of
the Options dialog box. This step involves

a. Providing a name.

b. Specifying a command line template.

c. Defining any arguments required by the command line.

d. Optionally specifying the initial directory, path, and classpath to be used by the
custom validation engine.

e. Optionally setting a feature that prompts the custom validation engine user for
arguments when the custom validation engine is run.

More information for each of these steps is provided in the following section,
“Configuring a Custom Document Wizard” on page 1215.

Configuring a Custom Validation Engine
This section provides information and procedures for configuring a custom validation
engine. It covers the following topics:

● The Custom Validation Engines Page on page 1210

● How to Configure a Custom Validation Engine on page 1213
Stylus Studio User Guide 1209

Extending Stylus Studio
The Custom Validation Engines Page

You use the Custom Validation Engines page of the Options dialog box to work with
custom validation engines in Stylus Studio.

How to display

◆ To display the Custom Validation Engines page:

1. In the Stylus Studio menu bar, select Tools > Options.

The Options dialog box appears.

2. If necessary, expand Application Settings and click Custom Validation Engines.

The Custom Validation Engines page appears.

About macros

Stylus Studio provides macros for some fields to help speed creation of custom validation
engines. Any macro you use to configure the custom validation engine is resolved when
it is run.

Figure 579. Custom Validation Engines Page
1210 Stylus Studio User Guide

Custom XML Validation Engines
Available macros vary based on the field for which they are being used. To display
macros available for a given field, click . Predefined macros include

● ${FilePath} – The complete path of the XML file to be validated.

● ${FileDir} – The directory in which the XML file to be validated is stored.

● ${FileName}– The name of the XML file to be validated.

● ${FileExt} – The extension of the XML file to be validated.

● ${ClassPath} – The Classpath environment variable.

● ${StylusDir} – The path of the Stylus Studio installation directory.

● ${SchemaURLFile} – Expands into "-schemaURLFile tempfile.txt" where tempfile.txt
is a text document containing the name of an XML Schema on each separate line.
(The names of the XML Schema are specified using "Associate Schema to Folder" in
the Project window.) Each XML Schema should be pre-loaded before attempting
validation, so that even XML documents that carry no reference to an XML Schema
can be validated.

 Name

When you click the New button ()to create a new custom validation engine, Stylus
Studio displays an entry field for the name.

You should replace the default name (Validation Engine 1, for example) with the name
you want to associate with the custom validation engine. The name you enter is displayed
in the drop-down in the XML Editor.

Custom validation engines are displayed in the Validate Document drop-down list in the
order in which they appear here.

◆ You can change the custom validation engine order by

1. Selecting the custom validation engine whose order in the list you want to change.

2. Clicking the up or down arrow to the right of the custom validation engine list box as
needed.

Figure 580. Specifying a Custom Validation Engine Name
Stylus Studio User Guide 1211

Extending Stylus Studio
Command

You use the Command field to specify the command line used to invoke the custom
validation engine. This is typically the path to the .exe, .cmd, or .bat file that starts the
application.

Arguments

You use the Arguments field to specify any arguments required by the custom validation
engine. Click to browse predefined macros.

Initial Directory

You use the Initial directory field to specify the directory you want Stylus Studio to use
as the current directory when the custom validation engine is run. Click to browse
predefined macros.

Path

You use the Path field to define paths to any files (such as .exe and .dll) required by the
custom validation engine. You do not have to define any paths that are already defined in
your PATH environment variable. Separate multiple paths with a semicolon. Click to
browse predefined macros.

Classpath

You use the Classpath field to define paths to any JVM files required by the custom
validation engine (such as .jar and .class). You do not have to define any paths that are
already defined in your PATH environment variable. Click to browse predefined
macros.

Prompt for arguments

The Prompt for arguments feature displays a dialog box when the custom validation
engine is run.

Figure 581. Argument Prompt
1212 Stylus Studio User Guide

Custom XML Validation Engines
The Arguments field allows the user to change the command line and arguments
configured with the custom validation engine when it was registered with Stylus Studio.

How to Configure a Custom Validation Engine

Before performing this procedure, you should be familiar with the information in “The
Custom Validation Engines Page” on page 1210.

◆ To configure a custom validation engine:

1. Display the Custom Validation Engines page of the Options dialog box. See “How
to display” on page 1210 if you need help with this step.

2. Click the New button and enter a name for the custom validation engine. Remember
that this value is displayed in the Validate Document drop-down list in the XML
Editor.

3. Specify the command line any required arguments. See “Command” on page 1212
and “Arguments” on page 1212 if you need help with this step.

4. Optionally, specify an initial directory, path and classpath.

5. Click Prompt for arguments if you want Stylus Studio to display a dialog box that
allows the user to change the command line or arguments when the custom validation
engine is run.

6. Click OK.
Stylus Studio User Guide 1213

Extending Stylus Studio
Custom Document Wizards
Stylus Studio’s custom document wizard feature allows you to create and configure
document wizards that invoke third-party file conversion and document generation tools,
such as Thai Open Source’s Trang. When run, a custom document wizard passes
argument values provided by the user (the name of the file to be converted, for example)
to the command line that invokes the third-party tool. The third-party tool generates an
output file as specified in the custom document wizard’s command line, and the file is
then opened by Stylus Studio in the appropriate editor.

An example of a custom document wizard is the DTD to XML Schema (Trang) document
wizard shipped with Stylus Studio.

This document wizard was created using the custom document wizard feature.

Figure 582. A Custom Document Wizard

Values entered by
custom document
wizard users

Arguments defined in
Stylus Studio
1214 Stylus Studio User Guide

Custom Document Wizards
Registering a Custom Document Wizard
The process of registering a custom document wizard in Stylus Studio involves the
following steps:

1. Make the necessary third-party software available to Stylus Studio. For example, any
.jar or .exe files associated with the document conversion or generation tool must be
accessible from the Stylus Studio installation.

2. Configure the custom document wizard on the Custom Document Wizards page of
the Options dialog box. This step involves

a. Providing a name and, optionally, an icon, for the custom document wizard.

b. Setting the document type.

c. Specifying a command line template.

d. Defining any arguments required by the command line.

e. Optionally setting a trace feature that displays processing provided by the third-
party tool.

More information for each of these steps is provided in the following section,
Configuring a Custom Document Wizard on page 1215.

Configuring a Custom Document Wizard
This section provides information and procedures for configuring a custom document
wizard. It covers the following topics:

● The Custom Document Wizards Page

● Defining Arguments

● How to Configure a Custom Document Wizard
Stylus Studio User Guide 1215

Extending Stylus Studio
The Custom Document Wizards Page

You use the Custom Document Wizards page of the Options dialog box to work with
custom document wizards in Stylus Studio.

This section describes how to display the Custom Document Wizards page and
information about its fields.

How to display

◆ To display the Custom Document Wizards page:

1. In the Stylus Studio menu bar, select Tools > Options.

The Options dialog box appears.

2. If necessary, expand Application Settings and click Custom Document Wizards.

The Custom Document Wizards page appears.

About macros

Stylus Studio provides macros for some fields to help speed creation of custom document
wizards. Available macros vary based on the field for which they are being used. To
display macros available for a given field, click .

Figure 583. Custom Document Wizards Page
1216 Stylus Studio User Guide

Custom Document Wizards
Predefined macros include

● ${StylusDir}, which indicates that the path you are specifying is relative to the Stylus
Studio installation directory.

● ${PATH}, which specifies the PATH environment variable.

● ${OutputFile}, which is used to specify the output generated by the document wizard.
This macro is available in the Command field only.

In addition, Stylus Studio creates argument variable macros for any arguments you define
and displays them with other Command field macros.

Name

When you click the New button ()to create a new custom document wizard, Stylus
Studio displays an entry field for the name.

You should replace the default name (DocumentWizard1, for example) with the name you
want to associate with the custom document wizard. The name you enter is

● Displayed in the Document Wizards dialog box along with the icon you specify for
the custom document wizard.

● Used in the title bar of the dialog box the user sees when running the custom
document wizard.

Figure 584. Specifying a Custom Document Wizard Name
Stylus Studio User Guide 1217

Extending Stylus Studio
Document type

The Document type field displays a drop-down list of available document types when you
click it:

The document type is the type of output generated by the custom document wizard (XML
Schema, XQuery, and so on). The value you select determines

● The tab in the Document Wizards dialog box on which the custom document wizard
is displayed (XML Editor, XSLT Editor, or Java, for example)

● The editor Stylus Studio uses to display the output generated by the document wizard

Icon bitmap

You use the Icon bitmap field to specify the path for the icon you want to represent the
custom document wizard. This icon, along with the name you give the custom document
wizard, is displayed in the Document Wizards dialog box. Click to browse for the
file you want to specify or to insert the ${StylusDir} macro.

If you leave the Icon bitmap field blank, Stylus Studio uses the following default icon for
the custom document wizard:

Command line

You use the Command line field to specify a command line template. Stylus Studio uses
this template to compose the command line that invokes the custom document wizard.
Variables, such as ${InputFile}, are used in place of actual arguments. Users specify
argument values when they run the custom document wizard.

Consider the following example:

Figure 585. Document Type Field

java -cp my.jar com.exln.stylus.Import ${QuoteChar} ${InputFile} ${OutputFile}
1218 Stylus Studio User Guide

Custom Document Wizards
This command line template allows Stylus Studio to start the specified Java class with a
command line that includes the QuoteChar, InputFile, and OutputFile arguments.

Argument variables can appear anywhere in the command. They must be in the form
${name}. For example:

You must specify the ${OutputFile} argument variable in every command line template.
Stylus Studio always generates the name of the file it opens as the value for the
${OutputFile} argument variable.

As with the Icon bitmap field, you can click to display a menu that provides shortcuts
that help you specify the command line template. This menu lets you

● Display the Custom Document Wizard Arguments dialog box, in which you can
specify the command line arguments and their properties. See “Defining Arguments”
on page 1220 for more information.

● Browse for and select a file you want to specify.

● Insert the ${StylusDir} macro.

● Insert argument variable macros for arguments you have already defined.

Initial directory

You use the Initial directory field to specify the directory you want Stylus Studio to use
as the current directory when the custom document wizard is run. Click to browse
for the file you want to specify or to insert the ${StylusDir} macro.

Path

You use the Path field to define paths to any files required by the custom document
wizard. You do not have to define any paths that are already defined in your PATH
environment variable. Separate multiple paths with a semicolon.

Click to display a menu that provides shortcuts that help you specify the PATH field.
From this menu you can

● Browse for and select a file you want to specify.

● Insert the ${StylusDir} macro.

● Insert the ${PATH} macro.

${InputFile}
${OutputFile}
${LoggingOption}
${SomeArgument}
Stylus Studio User Guide 1219

Extending Stylus Studio
Trace execution

If the custom document wizard you are configuring outputs processing information (error
messages, stack traces, and so on), you can use the Trace execution feature to display this
information in the Output Window of the Stylus Studio editor used to display the custom
document wizard’s generated document.

Defining Arguments

You must define any arguments required by the custom document wizard using the
Custom Document Wizard Arguments dialog box.

Stylus Studio uses the arguments you define here to

● Compose the dialog box used to run the custom document wizard. That dialog box
enables users to provide values for the arguments you define.

● Create argument variable macros, which you can then use to compose the command
line template. Stylus Studio displays the argument variable macro it creates in the
Command field menu.

Figure 586. Custom Document Wizard Arguments Dialog Box

Note Every variable used in the command line template must be defined in the Custom
Document Wizard Arguments dialog box.
1220 Stylus Studio User Guide

Custom Document Wizards
How to display

There are two ways to display the Custom Document Wizard Arguments dialog box:

● Click the Arguments button on the Custom Document Wizard page. Use this
procedure if you want to define arguments before composing the command line
template.

● Select Edit Arguments from the Command field menu that is displayed when you
click . You can use this procedure if you want to define arguments while
composing the command line.

OutputFIle argument

Stylus Studio creates an OutputFile argument for each custom document wizard. You
cannot delete this argument. You can change its order, if necessary, as described in the
following section.

Argument order

By default, the arguments you define in the Custom Document Wizard Arguments dialog
box are displayed to users in the order in which they are created. Arguments are displayed
in a simple two-column grid, with the argument description in the first column, and an
entry field for the argument value in the other. (See Figure 582 for an illustration of a
custom document wizard dialog box.)

Also by default, the OutputFile argument appears first.

◆ You can change the argument order by

1. Selecting the argument whose order you want to change.

2. Clicking the up or down arrow to the right of the argument list box as needed.

Note Whether or not the argument order defined here has to match the argument order in the
command line template will vary from one custom document wizard to the next –
arguments for some applications can be order independent, for example. Generally
speaking, it is good practice for the argument order in the Custom Document Wizard
Arguments dialog box to match that in the command line template.
Stylus Studio User Guide 1221

Extending Stylus Studio
Argument attributes

You can specify the following attributes for each argument you define:

● Name. Stylus Studio uses the value you enter in the Name field to compose the
argument variable macro. This name is not displayed to custom document wizard
users. Required.

● Description. The value you enter in the Description field appears in the custom
document wizard dialog box that is displayed to users when they run the wizard. The
description should provide users with adequate information about the argument’s
expected value. It can be useful to distinguish input and output arguments, for
example. Required.

● Flag. The flag associated with the argument (-v, or simply - or /, for example). When
Stylus Studio composes the command line for the custom document wizard, it uses
the flag value as a prefix to the argument value supplied by the user.

● Type. The argument’s data type. Table 188 summarizes valid values for the Type
field and describes possible values for those types

Note The Flag field must be specified for Boolean arguments.

Table 188. Type Field Values

Type Description

boolean The value for a Boolean argument must be true or false. If the
value is true, Stylus Studio inserts the value of the associated Flag
attribute in the command line. No value other than the Flag value
appears in the command line for Boolean arguments. If the value is
false, the associated Flag value does not appear in the command
line.

If you set Type to boolean, you must specify the argument’s Flag
attribute.

InputFile The value for an InputFile argument is a URL that the custom
document wizard user enters or selects by clicking the Browse
button. If the format of the URL is for a protocol other than the file
protocol, Stylus Studio copies the file into a temporary local file and
uses the name of the temporary local file in the command line. You
can specify multiple arguments whose data type is InputFile.
1222 Stylus Studio User Guide

Custom Document Wizards
● Default Value. The value used by Stylus Studio for optional arguments, unless
another value is specified by the user when the custom document wizard is run.
Default values for required arguments are ignored – Stylus Studio requires users to
enter values for required arguments.

● Optional. Whether or not the argument is optional. Valid values for this field are true
or false.

How to define an argument

◆ To define an argument:

1. Display the Custom Document Wizard Arguments dialog box. See “How to display”
on page 1221 if you need help with this step.

2. Click the New button ().

A new argument is displayed in the Custom Document Wizard Arguments dialog
box, with a default name and other default values.

OutputFile The custom document wizard user does not specify a value for the
OutputFile argument. Exactly one argument must be of the
OutputFile type. Stylus Studio generates a value for the
OutputFile argument and inserts it in the command line.

string The value for a string argument can be anything specified by the
custom document wizard user. Stylus Studio encloses the string
values in quotation marks when composing the command line.

Table 188. Type Field Values

Type Description

Figure 587. Custom Document Wizard Arguments Dialog Box
Stylus Studio User Guide 1223

Extending Stylus Studio
3. Complete the argument attributes as described in earlier in this section. Remember
that Description values appear in the custom document wizard dialog box when the
user runs the wizard.

4. To define another argument, click the New button again.

5. If necessary, use the Up and Down arrows to change the argument order. Remember
that the order in which arguments are displayed here is the order in which they appear
in the custom document wizard dialog box when the user runs the wizard.

6. Click OK.

How to Configure a Custom Document Wizard

Before performing this procedure, you should be familiar with the information in “The
Custom Document Wizards Page” on page 1216 and Defining Arguments.

◆ To configure a custom document wizard:

1. Display the Custom Document Wizards page of the Options dialog box. See “How
to display” on page 1216 if you need help with this step.

2. Click the New button and enter a name for the custom document wizard. Remember
that this value is used as the title for the dialog box displayed to the user when they
run the wizard, as well as for the label associated with the custom document wizard
icon displayed in the Document Wizards dialog box.

3. Click the Arguments button and define the wizard’s arguments on the Custom
Document Wizard Arguments dialog box. See “Defining Arguments” on page 1220
if you need help with this step.

4. Select the custom document wizard’s document type.

5. Specify the command line template. See “Command line” on page 1218 if you need
help with this step.

6. Optionally, specify an initial directory and path.

7. Click Trace execution if you want to display processing information generated by the
custom document wizard in the Output Window of the Stylus Studio editor window
associated with the custom document wizard’s Document type.

8. Click OK.
1224 Stylus Studio User Guide

Chapter 18 The Stylus Studio Java API
Note The material previously in this chapter was deprecated in Stylus Studio 2007 XML
Enterprise Suite Release 2. The functionality provided by the Stylus Studio Java API has
been replaced by DataDirect XML Converters standalone components for Java and
.NET. See the DataDirect XML Converters documentation for more information:
http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp.
Stylus Studio User Guide 1225

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

The Stylus Studio Java API
1226 Stylus Studio User Guide

Index
A
ActiveX controls

xqDoc and 955
alerts

for video demonstrations 39
ancestor axis 766
ancestor-or-self axis 770
AND operator 778
annotating

XML pipelines and 1098
applying stylesheets

how it is done 424
Stylus Studio function key for 458

Architecture data type property 331
ATIS

creating XML Schema from ATIS message
types 619

ATIS files
XML Converter properties for 414

attribute axis 768
attributes

matching template 447
auto detect

feature for configuring Java components 173
automatic tag completion

Sense:X 53
Stylus Studio feature for 53

axis syntax in queries 764

B
back-mapping

described 80
using in templates 595
XPath query results and 737
XSLT processors that support 479

backmapping
in XML pipelines 1070

backup copies of documents 250
Base data type property 344
BCD data type properties 331
binary data type properties 332
binary files

converting to XML 253
Binding element in WSDL documents 1029
BLOBs

querying 732
bookmarks

setting 186
XQuery debugging and 930

bookstore.xml 741
boolean data type properties 332
boolean() function 779
Booleans

converting operands to 779
expressions 778
functions 779
Stylus Studio User Guide 1227

Index
breakpoints
in stylesheets 590
in XQuery documents 927

byte data type properties 335

C
C Rules for Octal and Hex data type

property 345
C#

compiling code generated from XQuery 503,
981

deploying code generated from XQuery 981
deploying code generated from XSLT 503
generating C# code for an XML pipeline 1107
generating code from XQuery 977
generating code from XSLT 499
how to generate C# code for an XML

pipeline 1111
restrictions for generated code for XML

Pipelines 1108
call stack

displaying the Call Stack window in the
XQuery editor 929

canonical XML
converting XML to canonical XML 249

Cargo-IMP files
XML Converter properties for 414

case sensitivity
Boolean operators and 778
queries and 756

ceiling() function 784
character map

in XSLT 511
checking spelling 189
child axis 765
classpath

setting for a project 145
ClearCase

using with Stylus Studio 149, 151
code

code folding 182
generating C# code for XQuery 977
generating C# code for XSLT 499
generating Java code for XQuery 972

generating Java code for XSLT 493
selecting lines in 186

Code Generation wizard for XML Pipeline
running 1111

Code Generation wizard for XQuery
C# 977
compiling C# code from 981
compiling code from 498, 976
generating C# code 981
generating Java code 497, 975
settings for C# code generation 979
settings for Java code generation 974

Code Generation wizard for XSLT
compiling C# code from 503
generating C# 499
generating C# code 502
settings for C# code generation 501
settings for Java code generation 496

code lists
using to validate EDI 377

collection() functions
creating a collection() statement 896
creating database connections for 891
custom URI resolvers for 943
DataDirect XQuery processor and 890
handling invalid SQL characters in 891
querying relational data with 889
Stylus Studio built-in processor and 890
syntax 897
using 889
using in Stylus Studio 890
XQuery processors and 890

collections
connecting to TigerLogic XDMS

collections 1202
creating in TigerLogic XDMS 1206

collections. See collection() functions
command line

custom document wizard arguments 1220
registering custom tools 160
running Stylus Studio from 166
running XML diff 243
utilities 166
XML validation utility 167

comma-separated files
 see CSV files
1228 Stylus Studio User Guide

Index
comment() function 795
Comp3 data type properties 336
Comp3 properties for custom XML

conversions 336
comparing node sets 786
comparing XML documents 215

merged view 228
text view 227
tree view 226

concat function blocks
in XQuery 877

concat() function 774
concatenating strings 774
conditions

expressing
in XQuery Mapper 878

expressing in XSLT Mapper 571
configuring

Java components 171
contains() function 772
context node 758
context node set 758
.conv files

default Stylus Studio module and 130
converter URI scheme

building a converter URI 314
displayed in Stylus Studio 312
parts of 309
syntax of 310
using with user-defined .conv files 310

converters
for converting EDI 316
using in an XML pipeline 1092

converting EDI to XML 316
creating custom message types 317

converting operands
to Booleans 779
to numbers 782
to strings 776

count() function 801
creating templates

example 449
how to 478

creating XQuery
using the XQuery Mapper 851

creating XSLT
using the XSLT Mapper 545

cross-language debugging in 1103
cross-language debugging in XML

pipelines 1103
CSV files

converting to XML
Custom XML Conversions module 253

current context
number of nodes in 801

current node
definition 759

current() function 803
custom document wizards

about 1214
arguments 1220
command line arguments 1220
configuring 1215
defining arguments 1220
document types for 1218
how to configure 1224
macros for 1216
naming 1217
registering 1215
specifying a command line template for 1218

Custom Document Wizards page in Options
dialog box 1216

custom tools
registering in Stylus Studio 160

custom validation engines for XML
about 1208
configuring 1209
macros for 1210
naming 1211
registering 1209

Custom Validation Engines page in Options
dialog box 1210

Custom XML Conversion Definition editor
changing fonts in 271
display features for document pane 270
displaying grid lines in 271
displaying pattern matches in 270
displaying the ruler in 270
Go To dialog box 272
Stylus Studio User Guide 1229

Index
custom XML conversions
creating a custom XML conversion

definition 262
data type properties 330
field names

display of 269
opening files with 306
URI scheme for 309
using with converter URIs 310
video demonstration 316, 1140

Custom XML Conversions module
video demonstration 253

D
data sources

connecting to a relational database 891
editing a relational database connection 896
for XQuery Mapper 853
relational database support 891
XML publisher reports and 1135

data type properties 336
Architecture 331
Base 344
BCD properties for custom XML

conversions 331
binary properties for custom XML

conversions 332
boolean properties for custom XML

conversions 332
byte properties for custom XML

conversions 335
C Rules for Octal and Hex 345
common properties for custom XML

conversion data types 330
Date Format 337
date properties for custom XML

conversions 336
datetime properties for custom XML

conversions 339
Date-Time Separator 339
Decimal 344
decimal properties for custom XML

conversions 339

double properties for custom XML
conversions 340

Endian 340, 341, 342, 343, 347
False Output As 333
False Value Match List 333
float properties for custom XML

conversions 341
for custom XML conversions 330
HMS Separator 350
integer properties for custom XML

conversions 342
Left Padding 334, 338, 346, 348, 350
long properties for custom XML

conversions 343
Lookup List 330
Normalize White Space 348
Notes 330
number properties for custom XML

conversions 344
Omit from Output 330
Packed 331
Rendering 332
Right Padding 334, 338, 346, 348, 350
Scaling Factor 331, 335, 336, 340, 341, 342,

343, 345, 347, 351
short properties for custom XML

conversions 347
Signed 335, 342, 343, 347
string properties for custom XML

conversions 348
Thousand 344
time properties for custom XML

conversions 349
True Output As 333
True Value Match List 333
Unknown Output As 334
Use Currency Conventions 346
Window for Two-Digit Year 338
XML Output Form 330
YMD Separator 337
zoned properties for custom XML

conversions 351
databases

accessing with XQuery 834
connecting to 891
deleting records 917
1230 Stylus Studio User Guide

Index
editing a connectiont to 896
inserting records 908
integration with Raining Data 1201
integration with TigerLogic XDMS 1201
updating records 913
updating with DataDirect XQuery 905

DataDirect XML Converters
for EDI 316

DataDirect XQuery
collection() function processing 890
execution plans 934
query plans and
updating relational data with 905

date data type properties 336
Date Format data type property 337
datetime data type properties 339
Date-Time Separator data type property 339
debugging

cross-language debugging in XML
pipelines 1103

using bookmarks in the XQuery debugger 930
XML pipelines 1103
XSLT processors that support 479

debugging stylesheets
example of 90
parser errors 599
processor errors 599
using breakpoints 590
what output this template generates 595
which template generated output 595

debugging XQuery
bookmarks 930
displaying expressions associated with

output 930
displaying process suspension points 929
displaying processing information 928
evaluating XPath expressions 929
local variables and 929
overview 926
using breakpoints 927
watching variables 928

debugging XSLT
bookmarks and 594
breakpoints 590
determining templates associated with

output 595

displaying instructions associated with
output 594

displaying process suspension points 593
displaying processing information 591
evaluating XPath expressions 592
example of 90
local variables and 592
overview 589
watching variables 592

decimal data type properties 339
Decimal data type property 344
default templates

description 476
example 75
how they work 445

Definition element in WSDL documents 1019
deploying generated code

for XML pipelines 1113
for XQuery 498, 977, 981
for XSLT 503

deploying XML pipeline code 1113
deploying XQuery code 498, 977, 981
deploying XSLT code 503
descendant axis 766
descendant-or-self axis 769
.dff files

default Stylus Studio module and 130
diagram pane

WSDL Editor 1011
Diagram tab

XML Schema Editor 622
diffing XML

changes that are identified 217
colors and symbols used by the XML Diff

Viewer 220
command line utility for 243
diffing folders 221
diffing multiple documents 234
diffing two documents 232
merged view of diffed documents 228
options 239
overview 216
text view of diffed documents 227
tools for documents and folders 215
tree view of diffed documents 226
tuning the diffing algorithm 218
Stylus Studio User Guide 1231

Index
video demonstration 215
viewing documents side-by-side 226
when the diff is calculated 219
while diffing folders 225
XML Diff Viewer

adding documents 232
example 216
tool bar 229

displaying line numbers 52
doc() function

custom URI resolvers for 943
document pane

display features for 270
Document Wizards

generating XQuery from EDI messages 400
document wizards

creating XML Schema from EDI dialects 619
custom document wizards 1214
DTD to XML 178
DTD to XML Schema 609
DTD to XML Schema (Trang) 609
how to use 177
HTML to XML 178
XML Schema to XML 177
XML to XML Schema 614

document() function
using 806
XSLT Mapper and 556

documentation
for XML Schema 681
for XQuery 952
Stylus Studio documentation 40

Documentation element in WSDL
documents 1033

Documentation tab
XML Schema Editor 624

documents
creating backup copies 250
custom document wizards 1214
saving 250

double data type properties 340
DTD

code folding 182
converting to XML 178
spell checking documents 189
using to create XML Schema 609

.dtd files
default Stylus Studio module and 130

dynamic Web pages
from XML

three-pane view 439

E
EANCOM

creating XML Schema from 617
creating XML Schema from EANCOM

message types 619
message types supported in Stylus Studio 316

EANCOM files
XML Converter properties for 414

edge styles
changing 1100
types 1099

EDI
code list validation 377
creating custom message types 317
creating XML Schema from 617
creating XML Schema from EDI dialects 619
dialects supported in Stylus Studio 316
generating XQuery from EDI messages 400
support for SEF 317

EDI files
converting to XML 316

Custom XML Conversions module
EDI message types

creating custom message types 317
EDI to XML module

video demonstration 355
EDI to XML Schema document wizard

running 619
supported EDI dialects 617

EDI to XSD document wizard
running 619
supported EDI dialect 617

EDIFACT
creating XML Schema from 617
creating XML Schema from EDIFACT

message types 619
message types supported in Stylus Studio 316
1232 Stylus Studio User Guide

Index
EDIFACT files
XML Converter properties for 414

EDIFACT to XML Schema document wizard
built-in EDI XML Converter and 320
uses for XML Schema 320

Edig@s
creating XML Schema from Edig@s message

types 619
message types supported in Stylus Studio 316

Edig@s files
XML Converter properties for 414

editing XML
auto-completing tags and fragments 183
bookmarks 186
changing fonts 186
colors used in text display 187
commenting text 186
diffing 215
displaying line numbers 52
displaying white space in schema

representations 64
features for 182
indenting text 184
inserting indents 55
line wrap 185
querying a document 56
searching text 186
Sense:X auto-completion 53, 183
setting bookmarks 186
spell checking documents 189
tools for 182
undo 54
wrapping lines 185

editors
selecting lines in 186

Endian data type property 340, 341, 342, 343,
347

examples
bookstore.xml 741
creating dynamic Web pages from XML

three-pane view 439
creating templates 449
stylesheet 417
testing queries 745
tree representation of XML data 742
XML document structure 740

expand all 196
expanded node names

obtaining 799
extension functions

data types 471
declaring 471
finding 473
invoking 473
namespaces 472
XPath data types 472

F
False Output As data type property 333
False Value Match List data type property 333
Fault element in WSDL documents 1033
field names

specifying in custom XML conversions
specifying field names in XML output 287

File Explorer
adding files to Projects using
features of 133
filters for 134
opening files with 133
overview 132
setting filters to display files in 134
tool bar 133

file systems
integration with Raining Data 1201
integration with TigerLogic XDMS 1201

files
 see also CSV, EDI, and flat files
adding file types to Stylus Studio 137
adding to projects
associating file types with Stylus Studio

tools 131
converting non-XML files to XML 253
file types and Stylus Studio module

associations 130
making Stylus Studio the default

application 137
opening 130
spell checking files in Stylus Studio 189

filters
for XQuery 751
Stylus Studio User Guide 1233

Index
Find
searching XML documents 194

fixed-width files
converting to XML

Custom XML Conversions module 253
flat files

converting to XML
Custom XML Conversions module 253

float data type properties 341
floor() function 783
flow ports

in XSLT Mapper symbols 570
FLWOR blocks

creating 874
Flow port 874
For port 873
illustration 873
in XQuery Mapper 873
Order by port 873
Return port 873
Where port 873

FLWOR expressions
declaring XQuery types using 849
examples 835
for 836
grouping 850
let 840
multiple assignments in 850
order by 845
overview 835
parts of 836
return 846
setting XQuery position variables using 849
where 844

FO processors
in XML pipelines 1056

folders
diffing folder contents 221
Other Documents folder in Stylus Studio

projects 140
following axis 767
following-sibling axis 767

fonts
changing 186
colors used in text display 187
in custom XML conversions document

pane 271
formatting objects (FO)

automatic tag completion 467
generating 486

function blocks
preserving layout in XQuery Mapper 864
preserving layout in XSLT Mapper 564

function keys
applying stylesheets 458

function-available() function 803
functions

creating user-defined functions 883, 884
finding a user-defined function

declaration 888
finding all occurrences of a user-defined

function 887
refactoring code to create user-defined

functions 884
renaming a user-defined function 889
user-defined functions 883, 884
user-defined functions and library

modules 883
XSLT functions 548

G
generate-id() function 806
generating code

generating C# for an XML pipeline 1107
generating Java for an XML pipeline 1107

Go To dialog box
Custom XML Conversion Definition

editor 272
Grid tab

overview 199
renaming nodes in 203

grouping
in FLWOR expressions 850
XML data 1140
1234 Stylus Studio User Guide

Index
H
handling errors in stylesheets 599
HIPAA

creating XML Schema from HIPAA message
types 619

HIPAA files
XML Converter properties for 414

HL7
creating XML Schema from HL7 message

types 619
HL7 files

XML Converter properties for 414
HMS Separator data type property 350
Home Edition

description 44
HTML

automatic tag completion 467
converting to XML 178
creating with XML Publisher 1130
creating XML documents from 177
creating XSLT 454

I
IATA

creating XML Schema from 617
creating XML Schema from IATA message

types 619
message types supported in Stylus Studio 316

IATA files
XML Converter properties for 414

IBM DB2
XQuery support for 891

id() function 793
IDs

finding elements with 793
public IDs for XML Schemas 673
system IDs for XML Schemas 673
temporary 806

IF blocks
in XQuery Mapper 878

images
creating in XML Publisher reports 1163
including in XML Schema documentation 684

import module statement
custom URI resolvers for 943

importing WSDL documents 1034
including XML pipelines in other XML

pipelines 1087
indenting tags 55
indenting text 184
Informix

XQuery support for 891
Input element in WSDL documents 1031
input ports

in XQuery Mapper symbols 876
in XSLT Mapper symbols 568

instantiating templates
process flow 447

integer data type properties 342
integration

with TigerLogic XDMS 1201

J
Java 171

compiling code generated from XQuery 498,
976, 1112

configuring the JVM 171
defining functions in XSLT Mapper 579
deploying code generated from XML

pipelines 1113
deploying code generated from XQuery 498,

977
dowloading Java components 172
extension functions for stylesheets 473
generating code from XQuery 972
generating code from XSLT 493
generating Java code for an XML

pipeline 1107
how to generate Java code for an XML

pipeline 1111
Stylus Studio modules that require Java

components 171
Java Code Generation wizard for XQuery

about 972
compiling code from 1112

Java Code Generation wizard for XSLT
about 493
Stylus Studio User Guide 1235

Index
.java files
default Stylus Studio module and 130

JavaScript in stylesheet results 434
JDK

configuring 171
where to download 172

JRE 171
requirements

for Java debugging 599
where to download 172

JVM
configuring 171

K
key() function 804
keyboard shortcuts 163

L
labeling

XML pipelines 1102
lang() function 780
languages.xml file 467
last() function 801
Left Padding data type property 334, 338, 346,

348, 350
library modules

creating 921
importing 923
removing 925
user-defined functions and 883

line numbers
displaying 52
jumping to a line in an XML document 193

line wrap 185
lists

creating in XML Publisher reports 1160
local variables

watching during XQuery processing 929
local-name() function 799
logical operators

in XSLT Mapper 576
long data type properties 343
Lookup List data type property 330

M
Mapper

 see XQuery Mapper and XSLT Mapper
mappings

exporting as an image 552, 871
match attribute

comparison with select attribute 423
description 421

matched templates
creating in XSLT Mapper 581

Message element in WSDL documents 1024
message types

creating custom EDI message types 317
metrics

XQuery performance 931
XSLT performance 596

Microsoft Office Open XML
using as XQuery data sources 901
using as XSLT data sources 901

Microsoft Office Open XML files
using as XQuery data sources 901
using as XSLT data sources 901

Microsoft SQL Server
XQuery support for 891

modules
creating a library module 921
importing a library module 923
removing a library module 925

multidocument queries
alternatives 806

MySQL
XQuery support for 891

N
name() function 798, 799
named templates

creating in XSLT Mapper 581
namespace axis 769
namespaces

extension functions 472
obtaining information in queries 798
stylesheets 420

namespace-uri() function 799
1236 Stylus Studio User Guide

Index
NCPDP
creating XML Schema from NCPDP message

types 619
message types supported in Stylus Studio 316

NCPDP files
XML Converter properties for 414

.NET
generating C# code for an XML pipeline 1107
how to generate C# code for an XML

pipeline 1111
node sets

comparing 786
node() function 795
nodes

in-place editing in a schema diagram 115
obtaining expanded names 799
obtaining the local name 799
obtaining the namespace URI 799
renaming in the XML Grid tab 203

Normalize White Space data type property 348
normalize-space() function 775
NOT operator 778
not() function 780
Notes data type property 330
number data type properties 344
number() function 782
numbers

converting operands to 782
displaying line numbers in Stylus Studio

editors 52
formatting decimal numbers in XML Publisher

reports 1179

O
Omit from Output data type property 330
OpenDocument Format

using as XQuery data sources 901
using as XSLT data sources 901

OpenDocument Format files
using as XQuery data sources 901
using as XSLT data sources 901

opening files 130
using the File Explorer 133

operands
converting to Booleans 779
converting to numbers 782
converting to strings 776

Operation element in WSDL documents 1028
operation nodes

labeling in XML pipelines 1102
Options dialog box

Custom Document Wizards page 1216
Custom Validation Engines page 1210

OR operator 778
Output element in WSDL documents 1032

P
Packed data type property 331
PADIS

message types supported in Stylus Studio 316
PADIS files

XML Converter properties for 414
parameters in queries 802
parent axis 766
Part element in WSDL documents 1025
performance

factors that affect Stylus Studio 168
reporting XQuery metrics 931
reporting XSLT metrics 596

performance metrics
for XQuery 931
for XSLT 585

pipeline
 see XML pipelines
XML pipeline 1040

Port element in WSDL documents 1023
Port Type element in WSDL documents 1026
position() function 790
POST data

using POST.htm to test queries 745
PostgreSQL

XQuery support for 891
post-processing XSLT 485
preceding axis 768
preceding-sibling axis 767
predicates

creating in XQuery Mapper 879
Stylus Studio User Guide 1237

Index
printing
WSDL documents 1037
XML Schema 627
XML Schema documentation 685

.prj files
default Stylus Studio module and 130

processing-instruction() function 795
processors

for XQuery 941, 946
for XSLT 479, 585

profiling
XQuery

Profiler report 931
stylesheet for Profiler report 932

XSLT
Profiler report 585
stylesheet for Profiler report 596

projects
adding files to
ClearCase and 149, 151
creating 141
definition 138
opening 141
placing under source control 147
saving 141
setting classpaths for 145
SourceSafe and 149
subprojects and 141
Visual SourceSafe and 149
Zeus CVS and 154

properties
XML Publisher report components 1170

public IDs for XML Schemas 673
publisher

 see XML Publisher

Q
qualified names

wildcards 800
queries

axis syntax 764
document element 740
document structure 740
function available? 803

getting started 745
IDs 793
multiple documents 806
non-XML data 732
query language

attributes 750
Boolean expressions 778
comparisons 784
context flags 761
context nodes 758
context summary 763
count 801
filtering results 753
filters 751
getting a subscript 790
getting all marked-up text 746
id() function 794
namespaces 798
node names 798
obtaining all like-named elements 746
operators 785
path operators 761
quick reference for functions and

methods 809
search context 758
searching by node type 795
selecting nodes to evaluate 757
subscripts 789
wildcards 754
wildcards in attributes 751

restrictions 732
root node 740
sorting attributes 732
subqueries 753
temporary IDs 806
tutorial 745
variables 802
where you can use 730

query explain. see query plan
query facility 729
1238 Stylus Studio User Guide

Index
query plan
changing font size of 937
description 934
displaying 938
example 935
how to display 938
in Stylus Studio 934
navigating 936
saving as HTML 937
toolbar 937
tree structure 936

query plans
DataDirect XQuery and 934

R
Raining Data

 see also TigerLogic
integration with Stylus Studio 1201

.rdbxml files
default Stylus Studio module and 130

refactoring
using existing code to create user-defined

functions 884
refactoring XML Schema nodes 117
regular expressions

reference 194
using Search to find 194
using to filter output of converted

documents 297
xsdpattern and 638

relational data
connecting to a relational database 891
deleting records 917
inserting new records 908
querying with the collection() function 889
updating records 913
updating with DataDirect XQuery 905
XQuery Mapper and 853

relational databases
connecting to 891
XQuery support for 891

removing templates 479
Rendering data type property 332

reports
creating XML reports with XML

Publisher 1130
formatting decimal numbers in XML Publisher

reports 1179
saving an XML pipeline diagram as an

image 1101
restrictions

queries 732
result documents

getting started with 79
Right Padding data type property 334, 338, 346,

348, 350
root element 740

definition 759
root node

creating matching template 449
default template 477
definition 760
matching template 445

root/element default template
description 477
example 446

round() function 784

S
saving documents

automatic save 250
creating backup copies 250
options for 250

Saxon
processing XQuery with 941
using Saxon to process XSLT 481

Scaling Factor data type property 331, 335, 336,
340, 341, 342, 343, 345, 347, 351

scenarios
definition 76
for Web service calls 1001
for XQuery 939

performance metrics reporting 931
for XSLT 77

choosing an XSLT processor 585
how to clone 588
how to create 586
Stylus Studio User Guide 1239

Index
how to run 587
introduction 582
performance metrics reporting 585
setting parameter values 583
specifying source documents 582

XQuery
validating results 948

XSLT
validating results 484

search context
definition 758
queries 758

searching
text 186
using Find to search XML documents 194
using XPath to search for strings 771

SEF
support for in EDI XML Converters 317

select attribute
comparison with match attribute 423
description 422
when there is none 446

selecting lines of code 186
self axis 769
Sense:X

auto-completing tags and fragments 183
Sense:X automatic tag completion

description 53
Sense:X tag completion

XSLT and 467
Service element in WSDL documents 1022
short data type properties 347
Signed data type property 335, 342, 343, 347
SOAP requests

modifying 991
parameters for 992

source control
Stylus Studio projects and 147
supported applications 148

SourceSafe
using with Stylus Studio 149

Spell Checker
personal dictionary 192
running 191

settings for 190
using 189

Standard Exchange Format
support for in EDI XML Converters 317

string data type properties 348
string() function 776
string-length() function 774
strings

after 773
before 772
concatenating 774
converting operands to 776
number of characters 774
replacing characters 775
searching for 771
substrings 773

Struzzo
command line utility for running Stylus

Studio 166
stylesheets

applied by XSLT processors 424
applying

Stylus Studio 458
contents 420
contents description 465
creating 454
creating new nodes 430
example 417
for XML Schema documentation 682
for XQuery Profiler reports 932
for XSLT Profiler reports 596
formatting results 429
getting started with 70
introduction 417
namespaces 420
obtaining system properties 802
omitting source data 427
root element 420
selecting nodes for processing 425
Stylus Studio

debugging 589
updating

three-pane view 466
XSLT instructions 504

Stylus Studio
associating file types with 131
1240 Stylus Studio User Guide

Index
auto detect feature for Java components 173
benefits 435
building a converter URI using 314
command line for running 166
command line utilities for 166
debugging stylesheets 589
Diff tool 215
Home Edition description 44
managing performance 168
modules that require Java components 171
projects 138
registering custom tools 160
running from the command line 166
using with ClearCase 149, 151
using with SourceSafe 149
using with Visual SourceSafe 149
using with Zeus CVS 154
Web services and 983
XML validation command line utility 167

Stylus Studio Home Edition
description 44

StylusDiff 243
StylusValidator

command line XML validation utility 167
substring() function 773
substring-after() function 773
substring-before() function 772
sum() function 783
support, technical 40
Sybase

XQuery support for 891
symbols

element and attribute
in XQuery Mapper 859
in XSLT Mapper 561

lines linking nodes in XQuery Mapper 866
XLST function blocks

parts of 573
XLST Mapper

parts of 567
XQuery function blocks

parts of 876
XQuery Mapper

source 856

XSLT Mapper
document 558

XSLT mapper
XSLT instructions 567

syntax, notations used in this manual 38
system IDs for XML Schemas 673
system properties in stylesheets 802
system-property() function 802

T
tables

creating in XML Publisher reports 1157
technical support 40
templates

applying 479
backmapping in 595
built-in 428
contents description 421
creating 478
creating named and matched templates in

XSLT Mapper 581
description of default templates 476
displaying match patterns 73
instantiation example 446
introduction 421
match attribute 423
matched templates in XSLT Mapper 581
matching root node 449
more than one match 428
named templates in XSLT Mapper 581
no match 428
removing 479
rules 422
select attribute 423
selecting for instantiation 422
updating 479
viewing 474
working with in XSLT Mapper 580

text
colors used to display 187

text blocks
creating in XML Publisher reports 1162
Stylus Studio User Guide 1241

Index
text files
converting to XML

Custom XML Conversions module 253
text pane

WSDL Editor 1011
XML Schema Editor 623

text values
setting for elements and attributes in XQuery

Mapper 863
setting for elements and attributes in XSLT

Mapper
introduction 576
on the target node 578
using the Mapper canvas 577

text() function 795
text/attribute default template

description 477
example 447

Thousand data type property 344
three-pane view in Stylus Studio

result documents 79
TigerLogic XDMS

connecting to collections 1202
integration with Stylus Studio 1201
processing XQuery with 942

TigerLogicXDMS
creating collections in 1206

time data type properties 349
tool bars

changing appearance of Stylus Studio main
tool bar 158

customizing Stylus Studio main tool bar 156
File Explorer tool bar 133
showing and hiding Stylus Studio main tool

bar 157
XML Diff Viewer tool bar 229

tools
registering in Stylus Studio 160

TRADACOMS
creating XML Schema from TRADACOMS

message types 619
message types supported in Stylus Studio 316

TRADACOMS files
XML Converter properties for 414

translate() function 775

Tree tab
XML Schema Editor 623

True Output As data type property 333
True Value Match List data type property 333
tutorial for queries 745
Types element in WSDL documents 1020
typographical conventions 38

U
UDDI registries

searching 988
Web services and 987

Unknown Output As data type property 334
unparsed-entity-uri() function 801
updating stylesheets 466
URIs

custom URI resolvers in XQuery 943
Use Currency Conventions data type

property 346
user-defined field names

display in custom XML conversions
editor 269

user-defined functions
creating 883
finding all occurrences of 887
finding the function declaration 888
in XQuery Mapper 877
library modules and 883
refactoring existing code as 884
renaming 889

V
validating

XML Schema 625
validating XML

custom validation engines for 1208
from the command line 167
standard validation engines for 1208
video demonstration 175

validation
using code lists to validate EDI 377

validation engines
in XML pipelines 1056
1242 Stylus Studio User Guide

Index
variables
finding all occurrences in XQuery code 887
finding the variable definition in XQuery

code 888
renaming in XQuery code 889

variables in queries 802
video demonstrations

alerts for 39
custom XML conversions 316, 1140
Custom XML Conversions module 253
diffing XML sources 215
documentation alerts for 39
EDI to XML module 355
Web Service Call Composer 983
XML editing and validation 175
XML Editor Grid tab 200
XML Pipeline Editor 1039
XML Publisher 1129
XML Schema Diagram Editor 622
XPath Query Editor 733
XQuery Mapper 817

viewing templates 474
Visual SourceSafe

using with Stylus Studio 149

W
Web pages

creating from XML
three-pane view 439

Web Service Call Composer
video demonstration 983

Web service calls
specifying transport protocols for 1002

Web services
creating a Web service call 984
invoking from an XQuery 958, 999
querying 960
saving Web service calls 995
scenarios for Web service calls 1001
SOAP requests for 991
testing 994
using in Stylus Studio 983
using Web service calls as XML 996
WSDLs and 987

Web Services Description Language. See
WSDL

white space
handling

XPath processor 775
XSL facility 430

toggling display in schema representations 64
wildcards

in queries 754
node names 798

Window for Two-Digit Year data type
property 338

wizards
custom document wizards 1214

wrapping lines 185
.wsc and .wscc files

default Stylus Studio module and 130
wscall functions in XQuery Mapper 960
WSDL

Binding element 1029
Definition element 1019
displaying documentation element text 1017
Documentation element 1033
Fault element 1033
Input element 1031
Message element 1024
Operation element 1028
Output element 1032
Part element 1025
Port element 1023
Port Type element 1026
Service element 1022
Types element 1020

WSDL documents
creating 1007
editor for 1009
element symbols used in 1013
error detection in 1017
importing 1034
printing 1037
saving a diagram as an image 1037
symbols used in 1013

WSDL Editor
description 1009
detecting errors in 1017
diagram pane 1011
Stylus Studio User Guide 1243

Index
displaying errors in text pane 1017
text pane 1011

WSDLs
displaying a WSDL document 992
finding WSDL URLs 987
searching UDDI registries for 988

X
X-12

creating XML Schema from 617
X12

creating XML Schema from X12 message
types 619

message types supported in Stylus Studio 316
X12 files

XML Converter properties for 414
xln:text() function 777
XML 741

accessing XML documents with 825
auto-completing XML fragments 183
code folding 182
command line utility for validating 167
converting EDI to XML 316
converting XML to canonical XML 249
creating an instance from XML Schema 625
creating from HTML 177
creating XML Schema from an XML

document 614
custom validation engines 1208
diffing in Stylus Studio 215
displaying the XML Schema associated with a

document 616
generating XML with XQuery 832
pipeline 1040
processing using an XML pipeline 1040
spell checking documents 189
standard validation engines for 1208
using Web service calls as XML 996
viewing a sample based on an XML

Schema 625
viewing an XML instance based on XML

Schema 625

XML Converters
ATIS file converter properties 414
building a converter URI using Stylus

Studio 314
Cargo-IMP file converter properties 414
converting files to and from XML 253
EANCOM file converter properties 414
EDIFACT file converter properties 414
Edig@s file converter properties 414
HIPAA file converter properties 414
HL7 file converter properties 414
IATA file converter properties 414
NCPDP file converter properties 414
PADIS file converter properties 414
TRADACOMS file converter properties 414
URI scheme for 309
using in an XML pipeline 1092
X12 file converter properties 414

XML data
grouping 1140

XML Diff Viewer
adding documents 232
example 216
merged view 228
options 239
split view 226
text view 227
tool bar 229
tree view 226

XML documents
comparing 215
converting to canonical XML 249
creating from HTML 177
diffing 215
jumping to a line in 193
jumping to a matching tag 194
querying using XPath 249
root element 740
root node 740
searching 194
setting bookmarks in 194
specifying for XQuery scenarios 939
structure 740
tools for diffing 215

XML editing
video demonstration 175
1244 Stylus Studio User Guide

Index
XML Editor
displaying line numbers in 52
Grid tab

overview 199
renaming nodes in 203

jumping to a line 193
jumping to a matching tag 194
searching 194
setting bookmarks 194

XML Editor Grid tab
video demonstration 200

.xml files
default Stylus Studio module and 130

XML instances
XQuery Mpper source documents and 854
XSLT Mapper source documents and 555

XML Output Form data type property 330
XML parsers

using in an XML pipeline 1096
XML pipeline 1040

definition 1040
edge styles 1099
including XML pipelines 1087

XML pipeline canvas
saving as an image 1101
zoom 1099

XML Pipeline Editor
video demonstration 1039

XML Pipelines
restrictions for C# code generation 1108

XML pipelines 1103
annotating 1098
converters and 1092
debugging 1103
deploying Java code generated from 1113
generating C# code for 1107
generating Java code for 1107
labeling 1102
saving as an image 1101
saving the canvas as an image 1101
use case for 1054
XML Converters and 1092
XML parsers and 1096
XML Schema and 1088
XML serializers and 1097
XQuery and 1082

XSL-FO and 1085
XSLTand 1082

XML Publisher
adding data to reports 1149
choosing a report format 1134
component properties 1170
creating a list 1160
creating a table 1157
creating images 1163
creating text blocks 1162
data sources for building reports 1135
formatting decimal numbers 1179
formatting reports 1174
how to use 1131
overview 1130
properties reference 1192
report components 1156
use case for 1186
video demonstration 1129

XML reports
choosing a report format 1134

XML Schema
code folding 182
converting to XML 177
creating 608
creating an XML instance from 625
creating from an XML document 614
creating from DTD 609
creating from EANCOM 617
creating from EDI 617
creating from EDI dialects 619
creating from EDIFACT 617
creating from IATA 617
creating from X-12 617
definition 608
detecting errors in 112
Diagram tab

description 622
illustration 622

displaying documentation element text in the
Diagram tab 110

displaying documentation using XS3P
stylesheet 682

displaying the XML Schema associated with a
document 616

documentation for 681
Stylus Studio User Guide 1245

Index
Documentation tab
description 624

nodes
refactoring 117
searching for referenced nodes 629

printing 627
refactoring nodes 117
reference information 608
referenced nodes

searching for 629
saving a diagram as an image 627
searching for referenced nodes 629
spell checking documents 189
Stylus Studio tools for 622
Tree tab

description 623
using in an XML pipeline 1088
validating 625
viewing an XML instance of 625
viewing sample XML 625

XML Schema diagram
in-place editing 115

XML Schema Diagram Editor
video demonstration 622

XML Schema documentation
printing 685

XML Schema Editor
displaying errors in text pane 112
searching for referenced nodes 629
text pane 623

XML serializers
using in an XML pipeline 1097

XML to XML Schema document wizard 614
XML validation

video demonstration 175
XPath

background 730
benefits 731
choosing a version 56
creating predicates in XQuery Mapper 879
description 730
evaluating expressions during XQuery

processing 929
function blocks in XSLT Mapper

creating 575

deleting 575
introduction 573
types 574

mathematical function blocks in XSLT
Mapper 575

relationship to XQuery 827
support for 56
XPath Query Editor 732
XQuery and 827

XPath expressions
where you can use 730
XML Publisher report components and 1173

XPath Query Editor
description 732
video demonstration 733

xqDoc
ActiveX controls and 955
documentation for XQuery 952
viewing XQuery code samples from 956

XQuery
accessing relational data with collection()

functions 889
accessing XML documents with 825
asscessing databases with 834
choosing a data source for XQuery

Mapper 853
code folding 182
collection functions 889
compiling C# code generated from 981
compiling Java code generated from 498, 976,

1112
concat function blocks in XQuery

Mapper 877
creating library modules 921
creating predicates in Mapper 879
creating using the XQuery Mapper 851
creating with XML Publisher 1130
custom URI resolvers 943
databases support for 891
debugging XQuery documents 926
declaring types in FLWOR expressions 849
default processor settings 946
deploying C# code generated from 981
deploying Java code generated from 498, 977
documentation for 952
1246 Stylus Studio User Guide

Index
editor for
description 819
Mapper tab 821
Plan tab 822
XQuery Source tab 819

enabling the Profiler 932
evaluating XPath expressions during XQuery

processing 929
examples 824
FLWOR expressions 835
generating C# code from 977
generating for an XML Publisher report 1182
generating from EDI messages 400
generating Java code from 972
generating XML output with 832
grouping with 1140
IBM DB2 and 891
in Stylus Studio 819
Informix and 891
introduction 824
invoking a Web service from 958, 999
Microsoft SQL Server and 891
MySQL and 891
MySQL Community Edition and 891
performance metrics reporting 931
PostgreSQL and 891
primer 824
processing with Saxon 941
processing with TigerLogic XDMS 942
processors

default options for 946
profiling 931
query plan 934
query plans 934
querying a Web service 960
relational database support for 891
relationship to XPath 827
scenarios for 939
selecting a processor 941
setting a default processor 946
setting position variables in FLWOR

expressions 849
specifying XML input for the XQuery 939
spell checking documents 189
Sybase and 891

using collection() functions in XQuery
code 890

using existing XQueries in the XQuery
editor 852

using in an XML pipeline 1082
validating result documents 948
viewing source code in the Mapper 821
W3C definition 818
XPath and 827

XQuery debugging
bookmarks 930

XQuery documents
setting breakpoints in 927

XQuery execution plan. see query plan
.xquery files

default Stylus Studio module and 130
XQuery functions

refactoring code to create user-defined
functions 884

XQuery Mapper
adding source documents 856
building a target structure 860
choosing a data source 853
condition blocks 878
creating FLWOR blocks 874
creating function blocks 876
creating target structure elements and

attributes 861
creating target structure root elements 861
creating XQuery 851
data sources for 853
element and attribute symbols in 859
elements and attributes

creating in target structures 861
exporting mapping as an image 871
FLWOR block parts 873
function blocks

about 875
creating 876
parts of 876
types 875

hiding links in 869
how documents are displayed 858
how to map nodes 865
IF blocks 878
Stylus Studio User Guide 1247

Index
input ports in Mapper symbols 876
lines linking nodes 866
mapping document nodes 863
modifying the target structure 862
preserving Mapper layout 864
removing a node from a target structure 862
removing node mappings 869
removing source documents 858
root elements

creating in target structures 861
setting text values 863
simplifying the display 869
source documents and XML instances 854
source documents for 853
source symbols 856
target structures 860
user-defined functions in 877
using 852
using FLWOR blocks 872
using the mouse 864
using the wscall function 960
video demonstration 817
viewing source code in 821

XQuery output
displaying source expressions 930

XQuery predicates
creating in XQuery Mapper 879

XQuery processing
call stack 929
displaying source expressions 930
displaying suspension points 929
selecting a processor 941
setting a default processor 946
using bookmarks 930
watching local variables 929
watching variables 928

XQuery processors
conflicts in XML pipeline 1084
in XML pipelines 1056
Saxon 941
selecting 941
setting a default processor 946
TigerLogic XDMS 942

XQuery Profiler
description 931
displaying the report 934

enabling 932
performance metrics captured by 932
report created by 931

XQuery scenarios
performance metrics reporting 931

XS3P stylesheet
display settings 684
displaying XML Schema documentation

with 682
features 683
modifying 685

XSD
displaying documentation element text 110

.xsd files
default Stylus Studio module and 130

xsd:pattern
regular expressions and 638

XSL
additional information sources 434
and XSLT 730
definition 416
example 417
formatting objects 486
getting started with 415
inserting JavaScript in result 434
patterns 431

XSL facility
creating new nodes 430
selecting source nodes 425
specifying XSL patterns 431
white space handling 430

.xsl files
default Stylus Studio module and 130

XSL processor
applying stylesheets 424
built-in templates 428
specifying result format 429
URI 420

xsl:apply-imports instruction 506
xsl:apply-templates instruction

comparison with xsl:for-each
instruction 433

controlling operation order 426
example 426
more than one match 428
no match 428
1248 Stylus Studio User Guide

Index
no select attribute 446
reference 506
selecting nodes 425
specifying patterns 431

xsl:attribute instruction 507
xsl:attribute-set instruction 508
xsl:call-template instruction 510
xsl:character-map instruction 511
xsl:choose

compared to xsl:if in XSLT Mapper 571
xsl:choose instruction 513
xsl:comment instruction 514
xsl:copy instruction 514
xsl:copy-of instruction 515
xsl:debug instruction 590
xsl:decimal-format instruction 516
xsl:element instruction 517
xsl:fallback instruction 518
xsl:for-each instruction

comparison with xsl:apply-templates
instruction 433

reference 518
selecting nodes 425
specifying patterns 431

xsl:for-each-group instruction 520
xsl:function instruction 521
xsl:if

compared to xsl:choose in XSLT
Mapper 571

xsl:if instruction 522
xsl:import instruction

reference 523
xsl:import-schema instruction 523
xsl:include instruction 525
xsl:key instruction 526
xsl:message instruction 527
xsl:namespace-alias instruction 527
xsl:number instruction 528
xsl:otherwise instruction 529
xsl:output instruction

controlling white space 431
reference 529

xsl:output-character instruction 531
xsl:param instruction 532
xsl:preserve-space instruction 533
xsl:processing-instruction instruction 533
xsl:sequence instruction 534

xsl:sort instruction 535
xsl:strip-space instruction 537
xsl:stylesheet instruction

reference 537
xsl:template instruction

creating new nodes 430
reference 538
specifying patterns 431

xsl:text instruction
creating white space 430
reference 539

xsl:transform instruction 540
xsl:value-of instruction

reference 540
specifying patterns 431

xsl:variable instruction 541
xsl:vendor property 802
xsl:vendor-url property 802
xsl:version property 802
xsl:when instruction 542
xsl:with-param instruction 542
XSL-FO

creating with XML Publisher 1130
using in an XML pipeline 1085

XSLT
automatic tag completion 467
background 416
character map 511
choosing an XSLT processor 585
code folding 182
compiling C# code generated from 503
creating from HTML 454
creating using the XSLT Mapper 545
creating with XML Publisher 1130
debugging stylesheets 589
default processor settings 482
deploying C# code generated from 503
generating C# code from 499
generating for an XML Publisher report 1182
generating formatting objects 487
generating Java code from 493
grouping with 1140
instruction blocks in XSLT Mapper 570
introduction 417
performance metrics reporting 585
post-processing result documents 485
Stylus Studio User Guide 1249

Index
processing with Saxon 481
processors

default options for 482
processors for 479
spell checking documents 189
supported versions 416
symbols used to represent instructions in

XSLT Mapper 567
tags reference 504
using in an XML pipeline 1082
validating result documents 484
version affects available functions in

Mapper 548
viewing source code in the Mapper 547

XSLT Editor
displaying line numbers in 52

XSLT functions
XSLT version and 548

XSLT Mapper
adding instruction blocks 570
adding source documents 558
building a target structure 562
choosing source documents 555
creating target structure elements and

attributes 563
creating target structure root elements 562
creating XSLT 545
defining Java functions in 579
document symbols 558
element and attribute symbols in 561
elements and attributes

creating in target structures 563
example 547
exporting mapping as an image 552
flow ports in Mapper symbols 570
how documents are displayed 560
how to map nodes 566
input ports in Mapper symbols 568
logical operators 576
mapping document nodes 564
modifying the target structure 563
options for 549
overview 546
overview of creating XSLT 553
preserving Mapper layout 564
processing source nodes 573

removing a node from a target structure 564
removing node mappings 566
removing source documents 560
root elements

creating in target structures 562
setting text values

introduction 576
on the target node 578
using the Mapper canvas 577

source documents and document()
function 556

source documents and XML instances 555
support for XSLT instructions and

expressions 548
symbols for XSLT functions

parts of 573
symbols for XSLT instructions

list 567
parts of 567

target structures 561
using the mouse 565
viewing source code in 547
working with templates 580
XPath function blocks

creating 575
deleting 575
introduction 573
types 574

XPath mathematical function blocks 575
XSLT processors

backmapping and 479
choosing 480
conflicts in XML pipeline 1084
debugging and 479
in XML pipelines 1056
Saxon 481

XSLT processors supported by Stylus
Studio 479

XSLT Profiler
displaying the report 598
enabling 597
performance metrics captured by 597
1250 Stylus Studio User Guide

Index
XSLT scenarios
choosing an XSLT processor 585
cloning 588
creating

how to 586
introduction 582

performance metrics reporting 585
running 587
setting parameter values 583
specifying source documents 582

Y
YMD Separator data type property 337

Z
Zeus CVS

using with Stylus Studio 154
Zip Archive format

using as XQuery data sources 901
using as XSLT data sources 901

.zip files
using as XQuery data sources 901
using as XSLT data sources 901

zoned data type properties 351
Stylus Studio User Guide 1251

	Contents
	Preface
	About This Manual
	Conventions in This Manual
	Typographical Conventions
	Syntax Notation
	Information Alerts
	Edition Alerts
	Video Alerts

	Available Documentation
	Technical Support

	Chapter 1 Getting Started with Stylus Studio®
	Stylus Studio Editions
	Stylus Studio XML Enterprise Suite
	Stylus Studio XML Professional Suite
	Stylus Studio Home Edition
	Edition Alerts
	More Information

	Integrated Components
	How Stylus Studio Uses Integrated Components
	Managing Component Licenses

	Starting Stylus Studio
	Getting Updates
	Getting Help

	Updating an XML Document - Getting Started
	Opening a Sample XML Document
	Updating the Text of a Sample Document
	Updating the Schema of a Sample Document
	Updating the Tree Representation of a Sample Document
	Updating a Sample Document Using the Grid Tab
	Modifying Values
	Moving Around the Grid

	Working with Stylesheets - Getting Started
	Opening a Sample Stylesheet
	XSLT Stylesheet Editor Quick Tour
	XSLT Scenarios

	Using the XSLT Mapper - Getting Started
	Opening the XSLT Mapper
	Mapping Nodes in Sample Files
	Saving the Stylesheet and Previewing the Result
	Deleting Links in Sample Files
	Defining Additional Processing in Sample Files

	Debugging Stylesheets - Getting Started
	Setting Up Stylus Studio to Debug Sample Files
	Inserting a Breakpoint in the Sample Stylesheet
	Gathering Debug Information About the Sample Files
	Ending Processing During a Debug Session

	Defining a DTD - Getting Started
	Process Overview
	Creating a Sample DTD
	Defining Data Elements in a Sample DTD
	Defining the Container Element in a Sample DTD
	Defining Structure Rules in a Sample DTD
	Examining the Tree of a Sample DTD

	Defining an XML Schema Using the Diagram Tab - Getting Started
	Introduction to the XML Schema Editor Diagram Tab
	Editing Tools of the XML Schema Diagram Tab
	Description of Sample XML Schema
	Defining a complexType in a Sample XML Schema in the Diagram View
	Defining Elements of the Sample complexType in the Diagram View

	Opening Files in Stylus Studio
	Types of Files Recognized by Stylus Studio
	Using the File Explorer
	Dragging and Dropping Files in the Stylus Studio
	Other Ways to Open Files in Stylus Studio
	Adding File Types to Stylus Studio

	Working with Projects
	Displaying the Project Window
	Creating Projects and Subprojects
	Saving Projects
	Opening Projects
	Adding Files to Projects
	Copying Projects
	Rearranging the Files in a Project
	Removing Files from Projects
	Closing and Deleting Projects
	Setting a Project Classpath
	Using Stylus Studio with Source Control Applications

	Customizing Tool Bars
	Tool Bar Groups
	Showing/Hiding Tool Bar Groups
	Changing Tool Bar Appearance

	Specifying Stylus Studio Options
	Setting Module Options
	Registering Custom Tools

	Defining Keyboard Shortcuts
	How to Define a Keyboard Shortcut
	Deleting a Keyboard Shortcut

	Using Stylus Studio from the Command Line
	Command Line Executables Location
	Invoking Stylus Studio from the Command Line
	Validating XML from the Command Line

	Managing Stylus Studio Performance
	Troubleshooting Performance
	Changing the Schema Refresh Interval
	Checking for Modified Files
	Changing the Recursion Level or Allocated Stack Size
	Automatically Opening the Last Open Files

	Configuring Java Components
	Stylus Studio Modules That Require Java
	Verifying the Current Java Virtual Machine
	Downloading Java Components
	Modifying Java Component Settings

	Chapter 2 Editing and Querying XML
	Creating XML Documents
	Using the XML Editor
	Other Ways to Create XML

	Using Document Wizards to Create XML
	How to Use a Document Wizard
	Creating XML from XML Schema
	Creating XML from DTD
	Creating XML from HTML

	Updating XML Documents
	Choosing a View
	Saving Your Work
	Ensuring Well-Formedness
	Reverting to Saved Version
	Updating Java Server Pages as XML Documents

	Using the Text Editor
	Text Editing Features
	Use of Colors in the Text Tab
	Using the Spell Checker
	Moving Around in XML Documents

	Updating DOM Tree Structures
	Displaying All Nodes in the Tree View
	Adding a Node in the Tree View
	Deleting a Node in the Tree View
	Moving a Node in the Tree View
	Changing the Name or Value of a Node in the Tree View
	Obtaining the XPath for a Node

	Using the Grid Tab
	Layout of the Grid Tab
	Features of the Grid Tab
	Moving Around the Grid Tab
	Selecting Items in the Grid
	How Grid Changes Affect the XML Document
	Working with Rows
	Working with Columns
	Working with Tables

	Diffing Folders and XML Documents
	Overview
	Diffing Folders
	The XML Diff Viewer
	Diffing a Pair of XML Documents
	Diffing Multiple Documents
	Modifying Default Diff Settings
	Running the Diff Tool from the Command Line

	Using Schemas with XML Documents
	Associating an External Schema With a Document
	Having Stylus Studio Generate a Schema
	Validating XML Documents
	Updating a Document’s Schema
	Removing the Association Between a Document and a Schema

	Converting XML to Its Canonical Form
	Querying XML Documents Using XPath
	Printing XML Documents
	Saving XML Documents

	Chapter 3 Converting Non-XML Files to XML
	Introduction
	How XML Converters are Used in Stylus Studio
	XML Converters Run-Time Components
	Other Ways to Convert Files to XML
	Types of XML Converters
	XML Converters Can Be Configured
	Using XML Converters to Open a Non-XML File as XML
	Saving an XML File in Another Format

	Custom XML Conversions
	Creating a Custom XML Conversion Definition
	Choosing an Input File
	Specifying File Settings
	How to Create a Custom XML Conversion Definition

	The Custom XML Conversion Definition Editor
	Document Pane
	Properties Window
	Schema Pane

	Parts of an Input File
	Regions
	Rows
	Fields

	Working with Regions
	Converting the Region Type
	Adjusting Fixed-Width Regions
	Defining and Joining Regions
	Controlling Region Output

	Working with Fields
	Naming Fields
	Defining Fields
	Component and Sub-Component Fields

	Controlling XML Output
	Specifying Element Names
	Specifying Format
	Omitting Regions and Fields, and Rows
	Pattern Matching
	Using Lookup Lists
	Using Key=Value Characters

	Using Custom XML Conversion Definitions in Stylus Studio
	The Converter URI Scheme
	Where You Use Converter URIs
	Specifying a Converter URI
	Converter URI Syntax
	XML Converter Properties
	Where Converter URIs are Displayed in Stylus Studio
	Using Stylus Studio to Build a Converter URI

	Working with EDI Conversions
	Supported EDI Dialects
	Converting Custom EDI Message Types
	Documentation for DataDirect XML Converters
	XML Schemas for Custom EDI Message Types
	Validating XML from/to EDI

	Custom XML Conversion Definitions Properties Reference
	Input File Properties
	XML Output URL Properties
	Region Type Properties
	Row Element Name Properties
	Field Element Name Properties
	Data Type Properties (by data type)
	Specifying Control Characters

	Chapter 4 Converting EDI to XML
	What is the EDI to XML Module?
	Supported EDI Dialects
	When to Use the EDI to XML Module
	The EDI to XML Editor
	The SEF File
	Choosing an EDI Document
	EDI to XML Conversions and EDI Standards

	Creating an EDI to XML Conversion
	Using an EDI Document
	Using an EDI Standard

	Previewing an EDI to XML Conversion
	Active Scenario Is Previewed
	How to Preview an EDI to XML Conversion

	Example: Converting a Conforming EDI File
	Example: Converting a Non-conforming EDI File
	Resolving EDI Document Errors
	What Is an EDI Document Error?
	How Errors Are Represented
	Locating Data Errors
	Displaying Information about Errors
	Correcting Dialect and Version Errors
	Quick Fixes
	Working with Code Lists

	Specifying XML Converter Properties
	Customizing an EDI Standard
	The EDI Standards Repository
	Ways to Customize an EDI Standard
	EDI XML Conversions and EDI Definitions
	Views of the EDI Structure
	Creating New Structure Definitions
	Modifying Existing Definitions
	Modifying Definition Properties
	Importing EDI Standard Definitions
	Undoing Customizations
	Removing a Definition

	Generating XQuery and XML Schema from EDI
	Generate XQuery/XML Schema
	EDI to XQuery Document Wizard

	EDI Structure Definitions Properties Reference
	Code List Properties
	Composite Properties
	Composite Reference Properties
	EDI Structure Properties
	Element Properties
	Element Reference Properties
	Group Properties
	Message Properties
	Repetition Properties
	Segment Properties
	Segment Reference Properties
	Transaction Message Properties

	EDI XML Converters Properties Reference

	Chapter 5 Working with XSLT
	Getting Started with XSLT
	What Is XSLT?
	What Is a Stylesheet?
	What Is a Template?
	How the XSLT Processor Applies a Stylesheet
	Controlling the Contents of the Result Document
	Specifying XSLT Patterns and Expressions
	Frequently Asked Questions About XSLT
	Sources for Additional XSLT Information
	Benefits of Using Stylus Studio

	Tutorial: Understanding How Templates Work
	Creating a New Sample Stylesheet
	Understanding How the Default Templates Work
	Editing the Template That Matches the Root Node
	Creating a Template That Matches the book Element
	Creating a Template That Matches the author Element

	Working with Stylesheets
	About the XSLT Editor
	Creating Stylesheets
	Creating a Stylesheet from HTML
	Specifying Stylesheet Parameters and Options
	Applying Stylesheets
	Applying a Stylesheet to Multiple Documents
	About Stylesheet Contents
	Updating Stylesheets
	Saving Stylesheets

	Specifying Extension Functions in Stylesheets
	Using an Extension Function in Stylus Studio
	Basic Data Types
	Declaring an XSLT Extension Function
	Working with XPath Data Types
	Declaring an Extension Function Namespace
	Invoking Extension Functions
	Finding Classes and Finding Java
	Debugging Stylesheets That Contain Extension Functions

	Working with Templates
	Viewing Templates
	Using Stylus Studio Default Templates
	Creating Templates
	Applying Templates
	Updating Templates
	Deleting Templates

	Using Third-Party XSLT Processors
	How to Use a Third-Party Processor
	Setting Default Options for Processors

	Validating Result Documents
	Post-processing Result Documents
	Generating Formatting Objects
	Developing Stylesheets That Generate FO
	Troubleshooting FOP Errors
	Viewing the FO Sample Application
	Deploying Stylesheets That Generate FO
	Using Apache FOP to Generate NonPDF Output

	Generating Scalable Vector Graphics
	About SVG Viewers
	Running the SVG Example

	Generating Java Code for XSLT
	What Does Stylus Studio Generate?
	Scenario Properties Used for Generating Code
	Java Code Generation Settings
	How to Generate Java Code for XSLT
	Compiling Generated Code
	Deploying Generated Code

	Generating C# Code for XSLT
	What Does Stylus Studio Generate?
	Scenario Properties Used for Generating Code
	C# Code Generation Settings
	How to Generate C# Code for XSLT
	Compiling Generated Code
	Deploying Generated Code

	XSLT Instructions Quick Reference
	xsl:apply-imports
	xsl:apply-templates
	xsl:attribute
	xsl:attribute-set
	xsl:call-template
	xsl:character-map
	xsl:choose
	xsl:comment
	xsl:copy
	xsl:copy-of
	xsl:decimal-format
	xsl:element
	xsl:fallback
	xsl:for-each
	xsl:for-each-group
	xsl:function
	xsl:if
	xsl:import
	xsl:import-schema
	xsl:include
	xsl:key
	xsl:message
	xsl:namespace-alias
	xsl:number
	xsl:otherwise
	xsl:output
	xsl:output-character
	xsl:param
	xsl:preserve-space
	xsl:processing-instruction
	xsl:sequence
	xsl:sort
	xsl:strip-space
	xsl:stylesheet
	xsl:template
	xsl:text
	xsl:transform
	xsl:value-of
	xsl:variable
	xsl:when
	xsl:with-param

	Chapter 6 Creating XSLT Using the XSLT Mapper
	Overview of the XSLT Mapper
	Example
	Graphical Support for Common XSLT Instructions and Expressions
	Setting Options for the XSLT Mapper
	Simplifying the Mapper Canvas Display
	Exporting Mappings
	Searching Document Panes
	Ensuring That Stylesheets Output Valid XML
	Steps for Mapping XML to XML

	Source Documents
	Choosing Source Documents
	Source Documents and XML Instances
	How to Add a Source Document
	How to Remove a Source Document
	How Source Documents are Displayed

	Target Structures
	Using an Existing Document
	Building a Target Structure
	Modifying the Target Structure

	Mapping Source and Target Document Nodes
	Preserving Mapper Layout
	Left and Right Mouse Buttons Explained
	How to Map Nodes
	Removing Source-Target Maps

	Working with XSLT Instructions in XSLT Mapper
	What XSLT Instructions Are Represented Graphically
	Instruction Block Ports
	Understanding Input Ports
	The Flow Port
	Adding an Instruction Block to the XSLT Mapper
	xsl:if and xsl:choose

	Processing Source Nodes
	XPath Function Blocks
	Logical Operators
	Setting a Text Value
	Defining Java Functions in the XSLT Mapper

	Creating and Working with Templates
	What Happens When You Create a Template
	How to Create a Named or Matched Template

	Creating an XSLT Scenario
	Overview of Scenario Features
	How to Create a Scenario
	How to Run a Scenario
	How to Clone a Scenario

	Chapter 7 Debugging Stylesheets
	Steps for Debugging Stylesheets
	Using Breakpoints
	Inserting Breakpoints
	Removing Breakpoints
	Start Debugging

	Viewing Processing Information
	Watching Particular Variables
	Evaluating XPath Expressions in the Current Processor Context
	Obtaining Information About Local Variables
	Determining the Current Context in the Source Document
	Displaying a List of Process Suspension Points
	Displaying XSLT Instructions for Particular Output

	Using Bookmarks
	Determining Which Template Generated Particular Output
	Determining the Output Generated by a Particular Template
	Profiling XSLT Stylesheets
	About Metrics
	Enabling the Profiler
	Displaying the XSLT Profiler Report

	Handling Parser and Processor Errors
	Debugging Java Files
	Requirements for Java Debugging
	Setting Options for Debugging Java
	Using the Java Editor
	Stylus Studio and the JVM
	Example of Debugging Java Files

	Chapter 8 Defining XML Schemas
	What Is an XML Schema?
	Creating an XML Schema in Stylus Studio
	Creating Your Own XML Schema
	Creating XML Schema from a DTD
	Creating XML Schema from an XML Document

	Creating XML Schema from EDI
	Wizard Options
	Running the EDI to XSD Document Wizard

	Working with XML Schema in Stylus Studio
	Views in the XML Schema Editor
	Validating XML Schema
	Updating XML Schema Associated with a Document
	Viewing Sample XML
	Using XML Schema in XQuery and XSLT Mapper
	Printing
	Saving theXML Schema Diagram as an Image
	Node Properties
	Searching for Referencing Nodes

	Getting Started with XML Schema in the Tree View
	Description of Sample XML Schema
	Tips for Adding Nodes
	Defining a complexType in a Sample XML Schema in the Tree View
	Defining Elements of the Sample complexType in the Tree View

	Defining simpleTypes in XML Schemas
	About simpleTypes in XML Schemas
	Examples of simpleTypes in an XML Schema
	Defining a simpleType in the Diagram View
	Defining a simpleType in the Tree View
	About Facet Types for simpleTypes
	Defining List and Union simpleTypes in the Tree View

	Defining complexTypes in XML Schemas
	Defining complexTypes That Contain Elements and Attributes - Diagram View
	Defining complexTypes That Contain Elements and Attributes - Tree View
	Defining complexTypes That Mix Data and Elements
	Defining complexTypes That Contain Only Attributes

	Defining Elements and Attributes in XML Schemas
	Defining Elements That Carry Attributes and Contain Data in XML Schemas
	Defining Elements That Contain Subelements in XML Schemas
	Adding an Identity Constraint to an Element

	Defining Groups of Elements and Attributes in XML Schemas
	Defining Groups of Elements in XML Schemas - Diagram View
	Defining Groups of Elements in XML Schemas - Tree View
	Defining attributeGroups in XML Schemas - Diagram View
	Defining attributeGroups in XML Schemas - Tree View

	Adding Comments, Annotation, and Documentation Nodes to XML Schemas
	Comments
	Annotations
	Example

	Defining Notations
	Diagram View
	Tree View

	Referencing External XML Schemas
	Ways to Reference XML Schemas
	Where You Can Reference XML Schemas
	Referencing XML Schemas in the Diagram View
	Referencing XML Schemas in the Tree View
	Redefining Nodes

	Generating Documentation for XML Schema
	XS3P Stylesheet Overview
	Saving XML Schema Documentation
	Printing XML Schema Documentation

	About XML Schema Properties
	About xsd:schema Properties
	Element and Element Reference Properties in XML Schemas
	Attribute and Attribute Reference Properties in XML Schemas
	Group Properties in XML Schemas
	Model Group Properties in XML Schemas
	Complex and simpleType Properties in XML Schemas
	Restriction and Extension Type Properties in XML Schemas
	Content Type Properties in XML Schemas
	Aggregator Type Properties in XML Schemas
	Facet Type Properties in XML Schemas
	Notation Type Properties in XML Schemas
	Include Type Properties in XML Schemas
	Import Type Properties in XML Schemas
	Redefine Type Properties in XML Schemas
	Identity Constraint Type Properties in XML Schemas
	Constraint Element Type Properties in XML Schemas
	Documentation Type Properties in XML Schemas

	Chapter 9 Defining Document Type Definitions
	What Is a DTD?
	Creating DTDs
	About Editing DTDs
	Restrictions

	About Modifiers in Element Definitions in DTDs
	Description of Element Modifiers in DTDs
	Simple Example of Aggregating Modifiers in DTDs
	More Complex Example of Aggregating Modifiers in DTDs
	Aggregating Modifiers to Allow Any Order and Any Number in DTDs

	Defining Elements in DTDs
	Defining Elements in the DTD Tree Tab
	Specifying That an Element Can Have an Attribute in DTDs
	Specifying That an Element is Required in DTDs
	Specifying That an Element is Optional in DTDs
	Specifying That Multiple Instances of An Element Are Allowed in DTDs
	Specifying That An Element Can Contain One of a Group of Elements in DTDs
	Specifying That an Element Can Contain One or More Elements in DTDs
	Specifying That an Element Can Contain Data in DTDs
	Moving, Renaming, and Deleting Elements in DTDs

	Defining General Entities and Parameter Entities in DTDs
	Steps for Defining Entities in DTDs
	General Entity Example in a DTD
	Parameter Entity Example in a DTD

	Inserting White Space in DTDs
	Adding Comments to DTDs
	About Node Properties in DTDs
	Description of Element Properties in DTDs
	Description of Attribute Properties in DTDs
	Description of Entity and Parameter Entity Properties in DTDs

	Associating an XML Document with an External DTD
	Moving an Internal DTD to an External File

	Chapter 10 Writing XPath Expressions
	About the XPath Processor
	Where You Can Use XPath Expressions
	About XPath
	Benefits of XPath
	Internationalization
	Restrictions on Queries

	Using the XPath Query Editor
	Parts of the XPath Query Editor
	Displaying the XPath Query Editor
	Working with XPath Queries
	Working with Query Results
	Working with Namespaces

	Sample Data for Examples and Practice
	About XML Document Structure
	A Sample XML Document
	Tree Representation of a Sample XML Document
	Steps for Trying the Sample Queries

	Getting Started with Queries
	Obtaining All Marked-Up Text
	Obtaining a Portion of an XML Document
	Obtaining All Elements of a Particular Name
	Obtaining All Elements of a Particular Name from a Particular Branch
	Different Results from Similar Queries
	Queries That Return More Than You Want
	Specifying Attributes in Queries
	Filtering Results of Queries
	Wildcards in Queries
	Calling Functions in Queries
	Case Sensitivity and Blank Spaces in Queries
	Precedence of Query Operators

	Specifying the Nodes to Evaluate
	Understanding XPath Processor Terms
	Starting at the Context Node
	About Root Nodes and Document Elements
	Starting at the Root Node
	Descending Along Branches
	Explicitly Specifying the Current Context
	Specifying Children or Descendants of Parent Nodes
	Examples of XPath Expression Results
	Syntax for Specifying an Axis in a Query
	Supported Axes
	Axes That Represent the Whole XML Document

	Handling Strings and Text
	Searching for Strings
	Manipulating Strings
	Obtaining the Text Contained in a Node

	Specifying Boolean Expressions and Functions
	Using Boolean Expressions
	Calling Boolean Functions

	Specifying Number Operations and Functions
	Performing Arithmetic Operations
	Calling Number Functions

	Comparing Values
	About Comparison Operators
	How the XPath Processor Evaluates Comparisons
	Comparing Node Sets
	Comparing Single Values With = and !=
	Comparing Single Values With <=, <, >, and >=
	Priority of Object Types in Comparisons
	Examples of Comparisons
	Operating on Boolean Values

	Finding a Particular Node
	About Node Positions
	Determining the Position Number of a Node
	Positions in Relation to Parent Nodes
	Finding Nodes Relative to the Last Node in a Set
	Finding Multiple Nodes
	Examples of Specifying Positions
	Finding the First Node That Meets a Condition
	Finding an Element with a Particular ID
	Obtaining Particular Types of Nodes By Using Node Tests

	Obtaining a Union
	Obtaining Information About a Node or a Node Set
	Obtaining the Name of a Node
	Obtaining Namespace Information
	Obtaining the URI for an Unparsed Entity
	Determining the Number of Nodes in a Collection
	Determining the Context Size

	Using XPath Expressions in Stylesheets
	Using Variables
	Obtaining System Properties
	Determining If Functions Are Available
	Obtaining the Current Node for the Current XSLT Template
	Finding an Element with a Particular Key
	Generating Temporary IDs for Nodes

	Accessing Other Documents During Query Execution
	Format of the document() Function
	When the First Argument is a Node Set
	Specification of Second Argument
	Example of Calling the document() Function

	XPath Quick Reference
	XPath Functions Quick Reference
	XPath Syntax Quick Reference
	XPath Abbreviations Quick Reference

	Chapter 11 Working with XQuery in Stylus Studio
	Getting Started with XQuery in Stylus Studio
	What is XQuery?
	What is an XQuery?
	The Stylus Studio XQuery Editor

	An XQuery Primer
	What is XQuery For?
	Your First XQuery
	Accessing XML Documents with XQuery
	XQuery and XPath
	Introduction to FLWOR Expressions
	Generating XML Output with XQuery
	Accessing Databases with XQuery

	Understanding FLWOR Expressions
	Simple XQuery FLWOR Expressions
	The Principal Parts of an XQuery FLWOR Expression
	Other Parts of the XQuery FLWOR Expression
	Grouping

	Building an XQuery Using the Mapper
	Process Overview
	Data Sources
	Specifying a Target Structure
	Modifying the Target Structure
	Mapping Source and Target Document Nodes
	Simplifying the Mapper Canvas Display
	Exporting Mappings
	Searching Document Panes
	FLWOR Blocks
	Function Blocks
	IF Blocks
	Condition Blocks
	Predicate Blocks
	SQL Function Blocks

	User-Defined Functions
	Creating a User-Defined Function
	Working with User-Defined Functions

	Working with Relational Data Sources
	Using the collection() Function in Stylus Studio
	How the collection() Function is Processed
	Creating a Database Connection
	Creating a collection() Statement
	Other Ways to Register a Database Configuration

	Working with Zip Archive Format Files as Data Sources
	Updating Relational Databases
	Overview
	Using SQL Function Blocks in XQuery Mapper
	Creating an Insert Function Call
	Creating an Update Function Call
	Creating a Delete Function Call

	Working with XQuery Library Modules
	Creating a Library Module
	Importing a Library Module
	Using a Library Module
	Removing a Library Module

	Debugging XQuery
	Using Breakpoints
	Viewing Processing Information
	Using Bookmarks
	Profiling XQuery

	Using DataDirect XQuery® Execution Plans
	Query Plans in Stylus Studio
	Example of a Query Plan
	Parts of a Query Plan
	Displaying a Query Plan
	Optimizing Your XQuery

	Creating an XQuery Scenario
	Specifying XML Input
	Selecting an XQuery Processor
	Using Custom URI Resolvers
	Setting Default Options for Processors
	Setting Values for External Variables
	Performance Metrics Reporting
	Validating XQuery Results
	How to Create a Scenario
	How to Run a Scenario
	How to Clone a Scenario

	Generating XQuery Documentation
	Documentation Defaults
	Syntax and Usage
	How to Generate XQuery Documentation

	Using XQuery to Invoke a Web Service
	Choosing an XQuery Processor
	Invoking a SOAP Request in an XQuery
	Invoking Multiple SOAP Requests

	Using Web Services in XQuery
	Choosing a ddtek:wscall Function
	Creating a ddtek:wscall Function
	Examining the ddtek:wscall Function Block
	Mapping ddtek:wscall Functions
	Example: Querying a Web Service

	Generating Java Code for XQuery
	What Does Stylus Studio Generate?
	Scenario Properties Used for Generating Code
	Java Code Generation Settings
	How to Generate Java Code for XQuery
	Compiling Generated Code
	Deploying Generated Code

	Generating C# Code for XQuery
	What Does Stylus Studio Generate?
	Scenario Properties Used for Generating Code
	C# Code Generation Settings
	How to Generate C# Code for XQuery
	Compiling Generated Code
	Deploying Generated Code

	Chapter 12 Composing Web Service Calls
	Overview
	Obtaining WSDL URLs
	Modifying a SOAP Request
	Understanding Parameters
	How to Modify a SOAP Request

	Testing a Web Service
	What Happens When You Test a Web Service
	How to Test a Web Service

	Saving a Web Service Call
	Using Web Service Calls as XML
	How to Save a Web Service Call

	Querying a Web Service
	Creating XQuery from a Web Service Call
	Example
	What Happens When You Create XQuery
	How to Create XQuery from a Web Service Call

	Creating a Web Service Call Scenario
	Overview of Scenario Features
	How to Create a Scenario
	How to Run a Scenario
	How to Clone a Scenario

	Chapter 13 Working with WSDL Documents
	Creating a WSDL Document in Stylus Studio
	Opening WSDL Documents
	Using the WSDL Editor
	Uses for the WSDL Editor
	Similarities to the XML Schema Editor
	Diagram Pane
	Text Pane
	Properties Window
	Symbols for WSDL Elements
	Displaying Documentation
	Error Detection
	Back-Mapping
	Background Color
	Moving Around the Diagram

	Working with WSDL Elements
	Sample WSDL - A Stock Quote Service
	The Definitions Element
	The Types Element
	The Service Element
	The Port Element
	The Message Element
	The Part Element
	The PortType Element
	The Operation Element
	The Binding Element
	The Input Element
	The Output Element
	The Fault Element
	The Documentation Element

	Importing WSDL Documents
	Making Imported WSDL Elements Available
	Example

	Printing a WSDL Document
	Saving the WSDL Diagram as an Image

	Chapter 14 Building XML Pipelines
	What is an XML Pipeline?
	Example of an XML Pipeline in Stylus Studio
	XML Pipeline Terminology
	XML Pipeline Semantics

	The XML Pipeline Editor
	Parts of the XML Pipeline Editor
	XML Pipeline Editor Toolbar
	Menu Actions

	Steps for Building an XML Pipeline
	Planning an XML Pipeline
	Design Approaches
	XML Pipeline Components
	Identifying Resources
	Deployment Considerations

	Use Case: Building order.pipeline
	order.pipeline Requirements
	Getting Started: Creating a New XML Pipeline
	XML Pipeline Scenarios
	Specifying an Execution Framework
	Configuring Data Sources
	Using XQuery to Merge Source File Data
	Adding an XQuery Node
	Setting the XQuery Node Data Sources
	Testing the XML Pipeline
	Setting a Value for an Output Port
	Designing a Report from the XML Document
	Adding XSLT and XQuery Transformations
	Finishing Up

	Working with Nodes
	Types of Nodes
	Adding Nodes to an XML Pipeline
	XQuery and XSLT Nodes
	XSL-FO Nodes
	Pipeline and Related Nodes
	Validate Nodes
	Choose Nodes
	ConvertToXML and ConvertFromXML Nodes
	Stop and Warning Nodes
	XML Parser Nodes
	XML Serializer Nodes

	Working with the XML Pipeline Diagram
	Displaying a Grid
	Labeling
	Zoom
	Edge Style
	Manipulating Nodes in the Diagram
	Saving the XML Pipeline Diagram as an Image
	Labeling XML Pipeline Diagrams

	Debugging an XML Pipeline
	Cross-Language Debugging
	Execution Framework Determines Debugging Support
	Setting and Removing Breakpoints
	Running the Debugger
	Stepping Into a Node
	Stopping Debug Processing

	Generating Code for an XML Pipeline
	Execution Framework and Code Generation
	Code Generation Settings
	How to Generate Code for an XML Pipeline
	Compiling Generated Java Code
	Deploying Generated Code

	XML Pipeline Node Properties Reference
	Choose Node Properties
	ConvertFromXML Node Properties
	ConvertToXML Node Properties
	Pipeline Node Properties
	Pipeline Input Node Properties
	Pipeline Output Node Properties
	Stop Node Properties
	Validate Node Properties
	Warning Node Properties
	XML Parser Node Properties
	XML Serializer Node Properties
	XQuery Node Properties
	XSL-FO Node Properties
	XSLT Node Properties

	Chapter 15 Publishing XML Data
	The XML Publisher
	Building an XML Publisher Report
	Process Summary
	How to Create an XML Publisher Report
	The XML Publisher Canvas

	Choosing a Report Format
	Working with Data Sources
	How Data Sources are Represented in XML Publisher
	Adding a Data Source
	Specifying a Default Data Source
	Data Source Required for XSLT
	Using XML Schema or DTD as a Data Source
	Grouping Data

	Adding Data to a Report
	How to Add Data to a Report
	Example: Dropping a Repeating Node
	How Data is Represented on the Canvas
	More About the Navigation Bar

	Working with Report Components
	Types of Components
	Tables
	Lists
	Text
	Images
	Repeaters
	Ifs
	Component Properties
	Formatting Components
	Formatting Decimal Numbers

	Generating Code for an XML Publisher Report
	Supported Transformation Languages
	Sources
	How to Generate Code

	Example: Building an XML Publisher Report
	Getting Started
	Insert and Populate a Table
	Simple Table Formatting
	Format Data Conditionally
	Generate the Code

	Properties Reference
	Context and XPath Sub-Properties
	Body Properties
	Table Properties
	List Properties
	Text Properties
	Repeater Properties
	If Properties
	Image Properties
	Dynamic Value Properties

	Chapter 16 Integrating with Third-Party File Systems
	Using Stylus Studio with TigerLogic XDMS
	Overview
	Connecting to TigerLogic XDMS
	Using Documents Stored on TigerLogic XDMS
	Creating Collections

	Chapter 17 Extending Stylus Studio
	Custom XML Validation Engines
	Registering a Custom Validation Engine
	Configuring a Custom Validation Engine

	Custom Document Wizards
	Registering a Custom Document Wizard
	Configuring a Custom Document Wizard

	Chapter 18 The Stylus Studio Java API
	Index

